banner

王来顺 副教授

办公电话:18575626480

电子邮箱:wanglaish@mail.sysu.edu.cn

研究领域:热工水力实验和计算、沸腾传热及CHF、反应堆严重事故、铅铋堆、小型压水堆、CFD计算、新型燃料包壳传热及力学特性

一、基本信息

联系邮箱:wanglaish@mail.sysu.edu.cn

学科方向:核反应堆热工水力与安全                                              

研究领域:热工水力实验和计算、沸腾传热及CHF、反应堆严重事故、铅铋堆、小型压水堆、CFD计算、新型燃料包壳传热及力学特性

研究团队长年招收博士后、博士生、硕士生,欢迎联系

 

二、学习经历

2014.10-2017.09:东京大学原子力专攻  博士 导师:Koji Okamoto 教授

2011.09-2014.06:西安交通大学能源与动力工程学院,核能科学与工程专业  硕士 导师:苏光辉教授

2007.09-2011.06:武汉理工大学能源与动力工程学院,能源动力系统及自动化专业 学士

 

三、科研经历

2022.02  中山大学中法核工程与技术学院 副教授

2018.04-2022.02:中山大学中法核工程与技术学院   特聘副研究员,博士后(广东省海外博士后引进计划)

2017.10-2018.02:东京大学原子力专攻  特任研究员

 

四、主要科研项目

[1] 国家自然科学基金,基于RISA效应的混合润湿性表面强化沸腾传热机制研究,负责人

[2] 中广核研究院,冷棒临界影响原因XX计算分析,负责人

[3] GF横向项目,XX内纳米流体单相对流及沸腾换热特性及机理实验研究,负责人。

[4] 广东省区域联合基金,反应堆压力容器下封头外表面氧化对IVR策略CHF影响和机理研究,负责人。

[5] GFJG项目,XX增强XX通道沸腾传热实验及机理研究,负责人。

[6] 日本文部科学省,革新的な伝熱面構造制御による大型 PWR の IVR 確立(采用革新性传热面结构实现大型PWR的IVR策略),已结题,主要参与。

  此外,在多个在研实验项目中担任科研骨干。

 

五、主要学术论文  (已发表高水平论文二十余篇,包含一区Top期刊4篇)

[1] Laishun Wang, Weijie Ye, Xiaoqiang He, et al. Experimental study on the CHF enhancement effect of nanofluids on the oxidized low carbon steel surface[J]. Applied Thermal Engineering, 2021: 117968.

[2] Laishun Wang,Binghuo Yan. Scaling analysis of the hydraulic behavior in reactor pressure vessel[J]. Annals of Nuclear Energy (0306-4549), 2021, 164: 108636.

[3] Laishun Wang,Binghuo Yan. Scaling analysis of the thermal hydraulic behavior in the secondary side of steam generator[J]. Annals of Nuclear Energy (0306-4549), 2021, 164: 108609.

[4] Baojie Nie, Sheng Fang, Man Jiang, Laishun Wang, et al. Anthropogenic tritium: Inventory, discharge, environmental behavior and health effects[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110188.

[5] Laishun Wang, Yuan Yuan, Nejdet Erkan et al. Effect of metal honeycomb structure on enhancing CHF in saturated downward-facing flow boiling, International Journal of Heat and Mass Transfer (0017-9310), 2020, 119244.

[6] Laishun Wang, Kai Wang, Nejdet Erkan, et al. Metal material surface wettability increase induced by electron beam irradiation[J](short communication). Applied Surface Science (0169-4332), 2020, 511: 145555.

[7] Laishun Wang, Yuan Yuan, et al. Influence of surface wettability increase induced by Gamma-ray irradiation on critical heat flux in downward- facing flow boiling[J]. Annals of Nuclear Energy (0306-4549), 2020, 142: 107420.  

[8] Kai Wang, Haiguang Gong, Laishun Wang,et al. Effects of a porous honeycomb structure on critical heat flux in downward-facing saturated pool boiling [J]. Applied Thermal Engineering, 2020, 170: 115036.

[9] Laishun Wang, Nejdet Erkan, Haiguang Gong, Koji Okamoto. Electron beam irradiation effect on critical heat flux in downward-facing flow boiling [J]. International Journal of Heat and Mass Transfer, 2018, 120: 300-304.

[10] Haiguang Gong, Laishun Wang*, Abdul R. Khan, Nejdet Erkan, Koji Okamoto. Effects of downward-facing surface type and inclination on critical heat flux during pool boiling. Annals of Nuclear Energy, 2018, 113:344-352.

[11] Kai Wang, Nejdet Erkan, Haiguang Gong*, Laishun Wang, Koji Okamoto. Comparison of pool boiling CHF of a polished copper block and carbon steel block on a declined slope[J]. Journal of Nuclear Science and Technology, 2018, 55(9): 1065-1078. [中科院大类三区期刊,IF:1.25]

[12] Laishun Wang, Abdul R. Khan, Nejdet Erkan, Haiguang Gong, Koji Okamoto. Critical heat flux enhancement on a downward face using porous honeycomb plate in saturated flow boiling [J]. International Journal of Heat and Mass Transfer, 2017, 109: 454-461.  

[13] Haiguang Gong, Abdul R. Khan, Nejdet Erkan, Laishun Wang, Koji Okamoto. Critical heat flux enhancement in downward-facing pool boiling with radiation induced surface activation effect [J]. International Journal of Heat and Mass Transfer, 2017, 109: 93-102.