
            

PAPER • OPEN ACCESS

Thermodynamics of magnetic emergent crystals under coupled
magnetoelastic fields
To cite this article: Yangfan Hu et al 2021 New J. Phys. 23 023016

 

View the article online for updates and enhancements.

This content was downloaded from IP address 183.6.9.90 on 12/05/2021 at 05:00

https://doi.org/10.1088/1367-2630/abdd6d


New J. Phys. 23 (2021) 023016 https://doi.org/10.1088/1367-2630/abdd6d

OPEN ACCESS

RECEIVED

7 October 2020

REVISED

14 January 2021

ACCEPTED FOR PUBLICATION

19 January 2021

PUBLISHED

11 February 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Thermodynamics of magnetic emergent crystals under coupled
magnetoelastic fields

Yangfan Hu1,∗ , Xuejin Wan1 and Biao Wang1,2

1 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, People’s Republic of China
2 State Key Laboratory of Optoelectronic Materials and Technologies and School of Physics, Sun Yat-sen University, Guangzhou

510275, People’s Republic of China
∗ Author to whom any correspondence should be addressed.

E-mail: huyf3@mail.sysu.edu.cn and wangbiao@mail.sysu.edu.cn

Keywords: skyrmion, magnetoelastic coupling, anisotropic Dzyaloshinskii–Moriya interaction

Supplementary material for this article is available online

Abstract
Magnetic fields and mechanical forces can change the deformation and stability of magnetic
emergent crystals (MECs) such as Bloch skyrmion crystal (SkX), Néel SkX and Anti-SkX. Due to
the tensor nature of strains, mechanical loads provide more fruitful ways to manipulate the MECs,
while their effect on MECs other than the Bloch SkX is hitherto unclear. We construct a
thermodynamic model for noncentrosymmetric ferromagnets in all possible point groups when
subjected to coupled magnetoelastic fields. Compared with classic theories, we include terms
coupling the elastic strains, the magnetization, and its derivatives in the free energy, which lead to
strain-induced Dzyaloshinskii–Moriya interaction anisotropy. For epitaxial thin films in three
types of point groups (T, C3v, D2d) hosting Bloch SkX, Néel SkX and Anti-SkX, we find the newly
added terms always deform the MECs and eventually lead to their instability as the misfit strains
increase. Specifically, for Bloch SkX in group T materials and Néel SkX in group C3v materials, a
novel magnetic phase called paired-skyrmion crystal (pSkX) appears. Our theory lays the path to
study deformation and phase transitions of different MECs, and to explore novel states of MECs in
chiral magnets when subjected to magnetoelastic fields.

1. Introduction

Magnetic emergent crystals (MECs) are spatially periodic field patterns of magnetization that emerge from
the atomic crystals. Examples of MECs include the Bloch skyrmion crystal (SkX) [1–4], Néel SkX [5–7],
Anti-SkX [8, 9], Meron crystals [10], etc. These magnetic states are attracting attention because of their
ultrahigh mobility to electric current [11, 12] which can be useful for racetrack memories [13–15], and
because of the nano-scaled magnetic emergent particles, which permit bottom-up magnonics applications
[16]. In both scenarios, the deformation of MECs is significantly affecting their desired properties [17–21].
When subjected to mechanical forces, SkX deforms significantly [22–24], affecting its generation [25],
chirality [26], structural phase transitions [21], and elementary excitations [27]. The variety of related
phenomena suggest that mechanical force is an effective approach to tune the properties of SkX and other
MECs. Combining mechanical forces and magnetic fields, the tunability of the MECs is expected to be
further enhanced. Practically, the presence of strains in materials is inevitable, either through possible
defects and dislocations, or through lattice mismatch between the film and substrate in epitaxial thin films,
or through surface tension in free nanomaterials. Therefore, a general theory which quantitatively
determines the deformation of MECs and the variation of their physical properties when the material is
subjected to magnetoelastic fields is in great need.

Theoretically, it is found that the magnetoelastic coupling of the underlying material provides a good
explanation to the deformation of MECs in B20 compound [21, 22], the phase diagrams [19], and variation
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of elastic constants of the materials [28, 29] when subjected to mechanical forces [30]. In the model
constructed, it is shown that classic theories of magnetoelastic coupling in ferromagnets [31, 32] are not
sufficient to explain the above mentioned phenomena, and terms of the form εijMkMl,n must be added to
the Helmholtz free energy density. Interestingly, when studying the deformation of SkX in MnSi [21, 30], it
is found that the scale of the energy term εijMkMl,n is at least an order of magnitude smaller than that of the
regular magnetoelastic term εijM2

k , while the two terms are both indispensable. This recalls us of the fact
that SkX in bulk helimagnets are stabilized by competition between the exchange interaction and the
Dzyaloshinskii–Moriya interaction (DMI), where DMI is usually of a much smaller scale than that of the
exchange interaction. In fact, the term εijMkMl,n can be interpreted as strain-induced DMI anisotropy,
which generally exists for all chiral magnets, while their precise form for materials outside group T is not
known. Besides, the free energy functional derived for B20 compounds is the Helmholtz free energy,
which is applicable when the system is subjected to strain restrictions. When mechanical forces are applied
at the boundary, the appropriate thermodynamic potential, being the elastic Gibbs energy [33], is not
obtained.

In this paper, we systematically develop the thermodynamics of chiral magnets under coupled
magnetoelastic fields. Specifically, we accomplish the following points: (A) for chiral magnets in different
point groups, we derive the concrete form of magnetoelastic free energy density functional incorporating
the strain-induced DMI anisotropy through symmetry analysis; (B) through Legendre transformation, we
derive the general expression of the elastic Gibbs energy for chiral magnets; (C) for chiral magnets in three
specific point groups (T, C3v , D2d), we derive the thermodynamic potential for their epitaxial thin films
when subjected to equiaxed in-plane misfit strain or pure shearing misfit strains. We systematically analyze
the effect of the strain-induced DMI anisotropy on the deformation and stability of the three types of MECs
(Bloch SkX, Néel SkX, Anti-SkX) that appear in the materials. Generally speaking, presence of the
strain-induced DMI anisotropy term in the magnetoelastic free energy profoundly affects the deformation
of the MECs such that they are stretched, sheared, or rotated in certain direction when subjected to a
combination of magnetic fields and misfit strains. In particular, at appropriate conditions, a novel magnetic
state called paired-skyrmion crystal (pSkX) may appear in thin films in group T and group C3v . pSkX is also
topologically nontrivial, but possesses a different topological density than the SkX phase. This means that as
the value of misfit strains smoothly changes, a phase transition between two topologically nontrivial states
occurs, accompanied by a jump of topological density. To sum up, we establish the theoretical foundation
for studying magnetoelastic related phenomena in different skyrmionic magnetic materials.

2. Helmholtz free energy density with magnetoelastic interactions for chiral magnets

Generally, the Helmholtz free energy density with magnetoelastic interactions for chiral magnets takes the
following form:

w = wmag(m) + wme(m, εij) + wel(εij), (1)

where wmag(m) denotes the part of free energy density which relies merely on the magnetization vector m,
wme(m, εij) denotes the contribution of magnetoelastic coupling, and wel(εij) denotes the elastic energy
density which relies merely on the strain components εij. We present here two available models of wmag(m)
that are widely used. The first model is temperature dependent, which yields a magnetization vector with
changeable modulus:

wmag1(m) = wDM(m) +
3∑

i=1

(
∂m

∂ri

)2

− 2b · m + tm2 + m4, (2)

where wDM(m) denotes the generalized DMI whose exact form depends on the symmetry of the material
(expanded in supplementary material (https://stacks.iop.org/NJP/23/023016/mmedia) part A), t denotes the
temperature, and b denotes the magnetic field. This model derives from the Landau theory [32], which is
usually used near the Curie temperature to study temperature dependent phenomena. The second model is
used at low temperature, which yields a magnetization vector with fixed modulus:

wmag2(m) = wDM(m) +
3∑

i=1

(
∂m

∂ri

)2

− b · m. (3)

Equations (2) and (3) are presented in a rescaled manner for convenience, with two types of different
rescaling procedure (for equation (2), see the supplementary information of reference [1], for equation (3),
see reference [34]).
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Table 1. Numbers of independent magnetoelastic thermodynamic parameters for different
point groups.

O T C2v C3v C4v C6v D2 D3

nGK 3 4 12 8 7 6 12 8
nGL 6 13 41 28 21 17 39 26
n′

GL 4 8 28 22 14 13 24 19

D4 D6 D2d Ch S4 C3 C4 C6

nGK 7 6 7 20 10 12 9 8
nGL 19 15 20 82 40 54 40 32
n′

GL 12 11 12 56 26 44 26 25

For chiral magnets, we propose a general form of wme(m, εij) as follow:

wme(m, εij) = aijklεijmkml + dijklnεijmkml,n, (4)

where the first term with coefficient aijkl (hereafter called the a term) is the interaction considered in classic
theories of magnetoelastic coupling [31, 32]. When studying the effect of strains in chiral magnets, the
second term with coefficient dijkln (hereafter called the d term) is non-ignorable, and sometimes dominant.
If one fixes the strains of the material, the d term induces an anisotropy to the DMI, which can be
significant due to the intrinsic smallness of the DMI. The form of magnetoelastic free energy density given
in equation (4) can be simplified after considering the symmetry requirement of the materials, which
reduces to

wme(m, εij) =
nGK∑
i=1

KGif
I

Gi(εij, m) +
nGL∑
i=1

LGif
II

Gi(εij, m,∇m), (5)

where the first term with coefficient KGi is reduced from the a term, and the second term with coefficient
LGi is reduced from the d term, and the subscript G depends on the point group of the material considered
(e.g. for group O, the letter G is replaced by O). For a specific point group, nGK and nGL determines the
independent thermodynamic parameters we have in the model. The detailed expression of f I

Gi(εij, m) and
f II
Gi(εij, m,∇m) are given in supplementary material part B. When the material studied is suffering

homogeneous deformation, the number nGL can be further reduced to n′
GL, because some pairs of the

expressions of f II
Gi(εij, m,∇m) are found to be equivalent to each other through integration by part. The

values of nGK, nGL, and n′
GL are listed in table 1 for different groups.

To make use of the model proposed in equation (1), one has to obtain the exact values of the
thermodynamic parameters, especially the magnetoelastic parameters aijkl and dijklm proposed in
equation (4). These parameters can generally be determined through magnetostriction measurements.
Here, we use group O as an example to show how to determine these thermodynamic parameters by
experiments or first-principle calculation of the magnetostriction. For materials in group O, we have

wme(m, εij) =
3∑

i=1

KOif
I

Oi(εij, m) +
6∑

i=1

LOif
II

Oi(εij, m,∇m), (6)

where

f I
O1 = ε11m2

1 + ε22m2
2 + ε33m2

3, (7a)

f I
O2 = ε11m2

2 + ε11m2
3 + ε22m2

1 + ε22m2
3 + ε33m2

1 + ε33m2
2, (7b)

f I
O3 = 4ε12m1m2 + 4ε13m1m3 + 4ε23m2m3, (7c)

f II
O1 = ε11m1m2,3 − ε11m1m3,2 − ε22m1,3m2 + ε22m2m3,1 + ε33m1,2m3 − ε33m2,1m3, (7d)

f II
O2 = ε11m1,3m2 − ε11m1,2m3 − ε22m1m2,3 + ε22m2,1m3 + ε33m1m3,2 − ε33m2m3,1, (7e)

f II
O3 = −ε11m2,1m3 + ε11m2m3,1 + ε22m1,2m3 − ε22m1m3,2 − ε33m1,3m2 + ε33m1m2,3, (7f)

f II
O4 = 2ε12m1m1,3 − 2ε12m2m2,3 − 2ε13m1m1,2 + 2ε13m3m3,2 + 2ε23m2m2,1 − 2ε23m3m3,1, (7g)

f II
O5 = 2ε12m1m3,1 − 2ε12m2m3,2 − 2ε13m1m2,1 + 2ε13m2,3m3 + 2ε23m1,2m2 − 2ε23m1,3m3, (7h)

f II
O6 = 2ε12m1,1m3 − 2ε12m2,2m3 − 2ε13m1,1m2 + 2ε13m2m3,3 + 2ε23m1m2,2 − 2ε23m1m3,3. (7i)
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When the material studied is free from external forces, we have for the stresses σij =
∂(wme+wel)

∂εij
= 0 for i = j

and σij =
∂(wme+wel)

∂γij
= 0 for i �= j (γ ij = 2εij), where wel =

1
2 C11(ε2

11 + ε2
22 + ε2

33) + 2C44(ε2
23 + ε2

13 + ε2
12)

+ C12(ε11ε22 + ε11ε33 + ε22ε33). For materials in group O it gives:

C11ε11 + C12(ε22 + ε33) = −F11(m,∇m),

C11ε22 + C12(ε11 + ε33) = −F22(m,∇m),

C11ε33 + C12(ε11 + ε22) = −F33(m,∇m),

2C44ε23 = −F23(m,∇m),

2C44ε13 = −F13(m,∇m),

2C44ε12 = −F12(m,∇m),

(8)

where Cij are the elastic stiffness of the material, and F11 = KO1m2
1 + KO2(m2

2 + m2
3) + (LO1 − LO2)

(m1m2,3 − m1m3,2) + LO3(m2m3,1 − m3m2,1), F22 = KO1m2
2 + KO2(m2

1 + m2
3) + (LO1 − LO2)

(m2m3,1 − m2m1,3) + LO3(m3m1,2 − m1m3,2), F33 = KO1m2
3 + KO2(m2

1 + m2
2) + (LO1 − LO2)

(m3m1,2 − m3m2,1) + LO3(m1m2,3 − m2m1,3), F23 = 2KO3m2m3 + LO4(m2m2,1 − m3m3,1) +
(LO5 − LO6)(m2m1,2 − m3m1,3), F13 = 2KO3m1m3 + LO4(m3m3,2 − m1m1,2) + (LO5 − LO6)
(m3m2,3 − m1m2,1), F12 = 2KO3m1m2 + LO4(m1m1,3 − m2m2,3) + (LO5 − LO6)(m1m3,1 − m2m3,2).

To determine the parameters, one should apply bias magnetic field of different strength in different
directions, and then measure the associated strains εij. Firstly, apply a strong magnetic field in axis-r3 at low
temperature, the magnetization in such a case should be m = [0 0 ms]T, where ms denotes the saturation
magnetization. For the measured strains εij, we have after manipulation

KO1 = − 1

m2
s

[C11ε33 + C12(ε11 + ε22)], (9)

KO2 = − 1

m2
s

[C11ε11 + C12(ε22 + ε33)]. (10)

Equations (9) and (10) determines KO1 and KO2 by the measured strains and magnetization. At a lower
magnetic field, the material is stabilized in the conical phase with the magnetization m = [mq cos(qr3)
mq sin(qr3) m0]T, where mq denotes the Fourier magnitude, m0 denotes the constant r3-component, and q
denotes the wave number. We have after manipulation

LO1 − LO2 = − 2

m2
qq

[
C11ε11 + C12(ε22 + ε33) +

1

2
(KO1 + KO2)m2

q + KO2m2
0

]
, (11)

LO3 = − 1

m2
qq

[C11ε33 + C12(ε11 + ε22) + KO2m2
q + KO1m2

0]. (12)

Similarly, apply a strong magnetic field and a moderate magnetic field in direction [110], the magnetization
is given respectively by m = [

√
2/2ms

√
2/2ms 0]T and

m =

⎡
⎣

√
2/2(mq cos(

√
2/2q(r1 + r2)) + m0)√

2/2(−mq cos(
√

2/2q(r1 + r2)) + m0)
mq sin(

√
2/2q(r1 + r2))

⎤
⎦ . (13)

We have after manipulation

KO3 = − 2

m2
s

C44ε12, (14)

LO5 − LO6 =
1

m2
qq

[4C44ε12 + KO2(2m2
0 − m2

q)]. (15)

Equations (9)–(15) provide the relations between the thermodynamic parameters and the measured
magnetostriction (in equation (11), LO1 − LO2 is treated as a single parameter because when suffering
homogeneous elastic fields, the terms related to LO1 and −LO2 can be switched to each other through
integration by part; equation (15) is understood in the same way). Further study shows that the term with
coefficient LO4 in equation (6) is not affecting the magnetostriction measurement. It only has an effect on
the inhomogeneous distribution of periodic strains in space, for which the value of parameter LO4 cannot
be examined through ordinary magnetostriction measurement. For materials in points groups with lower
symmetry, we need to perform magnetostriction measurements in more directions to get a full set of
parameters and the solution of the parameters is generally more complicated.
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3. Elastic Gibbs energy density with magnetoelastic interactions for chiral magnets

In the Helmholtz free energy density given in equation (1), the elastic strains and the magnetization are
chosen as the independent variables of the system, which is applicable to materials with a fixed
displacement, or approximately, with displacement boundary conditions. When the stress boundary
conditions are given instead, the elastic Gibbs free energy density [33] is the appropriate thermodynamic
potential to be used, which can be derived from the Helmholtz free energy density through the Legendre
transformation. We derive it as follow for chiral magnets suffering a coupled magnetoelastic field. From
equation (4), all strain-related terms in wme are linear to the strain components. Therefore equation (4) can
be reformulated as

wme = ε · F(m,∇m), (16)

where

F(m,∇m) = [F11(m,∇m)F22(m,∇m)F33(m,∇m)F23(m,∇m)F13(m,∇m)F12(m,∇m)]T, (17)

Fij(m,∇m) = ∂wme
∂εij

if i = j, Fij(m,∇m) = 1
2
∂wme
∂εij

if i �= j, and

ε = [ε11 ε22 ε33 2ε23 2ε13 2ε12]T. (18)

The elastic Gibbs energy density of the system can be derived through the following Legendre
transformation

g(σ, m,∇m) = w − ε · σ, (19)

where σ = [σ11 σ22 σ33 σ23 σ13 σ12]T. After manipulation, we have from equation (19)

g(σ, m,∇m) = wmag − wel(σ) + σTSF− 1

2
F

TSF, (20)

where wel(σ) = 1
2σ

TSσ, and S = C−1 is the flexibility matrix.
Equation (20) is a general formula of the elastic Gibbs energy density. To use it, one has to first consider

the specific symmetry requirement of the material studied, and derive the particular form of F from
equation (5), and then substitute it into equation (20). Notice that the last term on the right-hand-side of
equation (20) is generally very complicated, while its effect is to induce a modification of the
magneto-crystalline anisotropy and other higher order magnetic anisotropy terms. Yet according to
previous analysis [30], for materials with a magnetostriction smaller than 10−4 (which is generally true), the
effect of this term is negligible. For different point groups, the detailed expressions of Fij(m,∇m) are given
in supplementary material part C.

4. Thermodynamic potentials for epitaxial thin films of chiral magnets

Sometimes the material studied possess a mixed boundary condition. The most frequently encountered case
of this type is an epitaxial thin film, which is mechanically clamped in-plane, and subjected to forces on the
out-of-plane surfaces. In this case, the appropriate thermodynamic potential is:

gTF = w − ε33σ33 − 2ε23σ23 − 2ε13σ13, (21)

where the independent variable for the elastic fields are ε11, ε22, ε12,σ33,σ23 and σ13. The expression of gTF

depends on the symmetry of the material studied. For orthorhombic materials (group D2 or C2v), we have

gTF = wmag + gel + ε11F11 + ε22F22 + 2ε12F12 +
1

C33
(σ33 − C13ε11 − C23ε22)F33

+
σ23

C44
F23 +

σ13

C55
F13 −

F2
33

2C33
− F2

23

2C44
− F2

13

2C55
, (22)

where gel denotes the part of free energy density that depends merely on the elastic strains, and in the case
of an epitaxial strain is equal to a constant, for which its detailed expression is not expanded. The
expressions of Fij differ for different groups and can be found in supplementary material part C.
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For trigonal materials (group D3, C3 or C3v), we have

gTF = wmag + gel + ε11F11 + ε22F22 + 2ε12F12 +
1

C33
(σ33 − C13ε11 − C13ε22)F33

+
1

C44
(σ23 − C14ε11 + C14ε22)F23 +

1

C44
(σ13 − 2C14ε12)F13 −

F2
33

2C33
− F2

23

2C44
− F2

13

2C44
. (23)

For hexagonal materials (group D6, C6 or C6v), we have

gTF = wmag + gel + ε11F11 + ε22F22 + 2ε12F12 +
1

C33
(σ33 − C13ε11 − C13ε22)F33

+
σ23

C44
F23 +

σ13

C44
F13 −

F2
33

2C33
− F2

23

2C44
− F2

13

2C44
. (24)

For cubic materials (group O or T), we have

gTF = wmag + gel + ε11F11 + ε22F22 + 2ε12F12 +
1

C11
(σ33 − C13ε11 − C13ε22)F33

+
σ23

C44
F23 +

σ13

C44
F13 −

F2
33

2C33
− F2

23

2C44
− F2

13

2C44
. (25)

5. Epitaxial thin films of chiral magnets in group T, C3v and D2d under equiaxed strain
and pure shear

Now we provide some concrete applications of the theory constructed above. We consider two most
commonly encountered mechanical boundary conditions for epitaxial thin films: (a) equiaxed in-plane
misfit strain ε11 = ε22 = ε, ε12 = σ33 = σ23 = σ13 = 0, and (b) pure shear ε12 =

γ
2 ,

ε11 = ε22 = σ33 = σ23 = σ13 = 0. Notice that ε and γ are assumed to be constants in this work. We derive
the concrete form of thermodynamic potentials to be used for materials in three different types of point
groups (group T, C3v and D2d) subjected to the two conditions of misfit strains. These three point groups
are chosen since they provide hosts for three types of MECs respectively: Bloch SkX [1–4, 22], Néel SkX
[5, 35–38], and Anti-SkX [8], which have already been observed in experiments. Helimagnets in group T
includes MnSi [1, 39], Fe0.5Co0.5Si [2], and FeGe [3, 22, 40], etc; helimagnets in group C3v includes GaV4S8

[5]; helimagnets in group D2d includes Mn1.4Pt0.9Pd0.1Sn [8].
For materials in group T subjected to condition (a), the thermodynamic potential to be used is reduced

to

gTF = wmag + gel + K∗
Tεm2 + K∗

T1εm2
1 + K∗

T2εm2
3 + L∗

T1εm1m2,3 + L∗
T2ε(m3m1,2 + m2m3,1) + L∗

T3εm3m1,2,
(26)

where L∗
T1 = LT1 − LT3 − LT2 + LT5 − 2C12

C11
(LT4 − LT6), L∗

T2 = LT1 − LT3 − 2C12
C11

(LT2 − LT5) + LT4 − LT6,

L∗
T3 = −(1 + 2C12

C11
)(LT1 − LT3 + LT2 − LT5), and KTi and LTi are the magnetoelastic thermodynamic

parameters for materials in group T, which are defined in supplementary material part B. When K∗
T1 = 0

and L∗
T2 = −L∗

T1, equation (26) reduces to the thermodynamic potential for materials in group O.
Equation (26) shows that for epitaxial helimagnets in group T subjected to equiaxed in-plane misfit strain,
the emergent deformation of the MECs are completely determined by six thermodynamic parameters: K∗

T ,
K∗

T1, K∗
T2, L∗

T1, L∗
T2, and L∗

T3. Here we investigate the effect of each individual magnetoelastic terms in
equation (26). K∗

Tεm2 reduces the Curie temperature of the material by K∗
Tε [here and in the discussion

below we have used equation (2) instead of equation (3)]. K∗
T1εm2

1 and K∗
T2εm2

3 induce an uniaxial
anisotropy, which is studied in previous works [41, 42]. The term with a coefficient L∗

T1 is ineffective when
studying 2D MECs in the r1–r2 plane. The term with a coefficient L∗

T2 shares the form of the original DMI
of the material, for which its effect is to change the lattice constant of the MEC studied without causing a
pattern deformation. The term with a coefficient L∗

T3 induces an anisotropy of DMI, which causes
deformation and even phase transition of MECs (figure 1). To be more specific, a negative (positive) L∗

T3ε

stretches the Bloch SkX in direction r1 (r2), and as the value of L∗
T3ε decreases (increases), the Bloch SkX

finally evolves to the In-plane single Q (IPSQ) phase.
One should notice that in a certain range of magnetic field, as the value of positive L∗

T3ε increases, a ‘cell
division’ phenomena occurs: the skyrmions in the SkX is suddenly stretched into a pair of ‘linked’
skyrmions, which form a novel magnetic state called pSkX. The ‘particle’ of pSkX, a paired-skyrmion, is
different from a biskyrmion [43] or a dipole skyrmion [44]. To be more specific, a paired-skyrmion is

6
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Figure 1. (a, c) phase diagrams and (ai, cj), for i = 1–6 and j = 1, 2, magnetization field configurations of the magnetic phases
appearing in epitaxial thin films in Group T subjected to (a) equi-axed in-plane misfit strain ε11 = ε22 = ε, and (c) pure shear
ε12 =

γ
2 . The x-axis of (a) is defined by λT1 = L∗

T3ε, and the x-axis of (c) is defined by λT2 = L∗
T4γ. (b) plots the variation of the

topological density of magnetization field with b corresponding to the loading condition of (a), and the result is calculated at
λT2 = 0.2. In (ai, cj), the vectors illustrate the distribution of the in-plane magnetization components with length proportional to
their magnitude, while the colored density plot illustrates the distribution of the out-of-plane magnetization component. The
black (white) solid line plots the deformed (undeformed) position of the Wigner–Seitz cell of SkX due to presence of misfit
strains.

composed of two identical skyrmions; a biskyrmion is composed of two skyrmions with the opposite
in-plane magnetization distribution and the same out-of-plane magnetization distribution; a dipole
skyrmion is composed of two skyrmions with the opposite in-plane and out-of-plane magnetization
distribution. Interestingly, the topological density of pSkX is nontrivial, but is different from that of the SkX
state. As a result, the topological density of the system undergoes a sudden change during a SkX-pSkX phase
transition, which is realized by smoothly changing the applied misfit strains. The details for calculating the
phase diagrams and magnetization distributions in figure 1 and other figures are introduced in the methods
section.

For materials in group T subjected to condition (b), the thermodynamic potential to be used is reduced
to

gTF = wmag + gel + 2KT4γm1m2 + LT7γm1m1,3 + LT9γm2m2,3 + LT13γm3m3,3

+ L∗
T4γm3m2,2 + L∗

T5γm3m1,1, (27)

where L∗
T4 = LT12 − LT10, L∗

T5 = LT11 − LT8. When LT9 = −LT7, LT13 = 0, and LT11 − LT8 = LT10 − LT12,
equation (27) reduces to the thermodynamic potential for materials in group O. Here we investigate the
effect of each individual terms in equation (27). The term with a coefficient KT4 can be transformed to
uniaxial anisotropy in a particular direction in the r1 –r2 plane (i.e. after a rotation of coordinates in the
r1 –r2 plane, the term with a coefficient KT4 can take a similar form to K∗

T1εm2
1 in equation (26), for which

they possess similar effects). Generally speaking, for all the point groups studied, all terms with a coefficient
KGi can be transformed to uniaxial anisotropy in a specific direction, for which we will not analyze the
effect of terms with a coefficient KGi repeatedly in the discussion for materials in other point groups. Terms
with coefficients LT7, LT9, and LT13 are ineffective when studying 2D MECs in the r1 –r2 plane. The two
terms with coefficients L∗

T4 and L∗
T5 induce anisotropy of DMI, which cause deformation and even phase

transition of MECs (figure 1). To be more specific, a negative (positive) L∗
T4γ stretches the Bloch SkX in

direction [110] ([110]), and as the value of L∗
T4γ decreases (increases), the Bloch SkX finally evolves to the

IPSQ phase. The term with a coefficient L∗
T5 has an exactly opposite effect to that of the term with a

coefficient L∗
T4 (if we assume that L∗

T5 = −L∗
T4, the L∗

T5 term has exactly the same effect as the L∗
T4 term).

For materials in group C3v subjected to condition (a), the thermodynamic potential to be used is
reduced to

7
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gTF = wmag + gel + K∗
C3v

εm2 + K∗
C3v1εm2

3 + L∗
C3v1ε(m1m1,1 − m2m2,1) + L∗

C3v2ε(m1m1,3 + m2m2,3)

+ L∗
C3v3εm3m3,3 + L∗

C3v4ε(m3m2,2 + m3m1,1), (28)

where K∗
C3v

= KC3v1 + KC3v3 − 2C13
C33

KC3v7, K∗
C3v1 = 2KC3v4 − KC3v1 − KC3v3 +

2C13
C33

(KC3v7 − KC3v8),

L∗
C3v1 =

1
2 (LC3v1 − LC3v3 − LC3v6 − LC3v7 − 2C13

C33
LC3v24), L∗

C3v2 = LC3v2 + LC3v8 − 2C13
C33

LC3v25,

L∗
C3v3 = 2(LC3v14 − C13

C33
LC3v28), L∗

C3v4 = LC3v10 + LC3v12 − LC3v4 − LC3v9 +
2C13
C33

LC3v27 − 2C13
C33

LC3v26, and KC3v i

and LC3v i are the magnetoelastic thermodynamic parameters for materials in group C3v , which are defined
in supplementary material part B. If L∗

C3v1 = 0, equation (28) reduces to the thermodynamic potential for
materials in group C6v . Here we investigate the effect of each individual terms in equation (28). Terms with
coefficients L∗

C3v1, L∗
C3v2, and L∗

C3v3 are ineffective when studying 2D MECs in the r1–r2 plane. The term with
a coefficient L∗

C3v4 shares the form of the original DMI of the material, for which its effect is to change the
lattice constant of the MEC studied without causing a pattern deformation.

For materials in group C3v subjected to condition (b), the thermodynamic potential to be used is
reduced to

gTF = wmag + gel + (KC3v1 − KC3v3)γm1m2 + 2KC3v2γm2m3 −
C14

C44
KC3v5γ(m2

1 + m2
2)

− 2C14

C44
KC3v6γm1m3 + L∗

C3v5γm2m1,1 + L∗
C3v6γ(m2m1,2 − m2m2,1)

+ L∗
C3v7γ(m3m1,2 + m3m2,1) + L∗

C3v8γ(m3m1,1 − m3m2,2) + gn, (29)

where

gn = L∗
C3v9γm1m1,2 + L∗

C3v10γm2m2,2 −
C14

C44
LC3v15γ(m1m1,1 + m2m2,1) − C14

C44
LC3v23γm3m3,1

+ (LC3v5 − LC3v11)γm3m2,3 −
C14

C44
LC3v16γ(m1m1,3 − m2m2,3) +

C14

C44
(LC3v19 − LC3v22)γm3m1,3, (30)

and L∗
C3v5 = (LC3v6 − LC3v3), L∗

C3v6 =
C14
C44

(LC3v17 − LC3v20), L∗
C3v7 =

1
2 (LC3v10 − LC3v4 − LC3v12 + LC3v9),

L∗
C3v8 =

C14
C44

(LC3v18 − LC3v21), L∗
C3v9 =

1
4 (−LC3v1 + LC3v3 + LC3v6 − 3LC3v7), L∗

C6v10 = − 1
4 (3LC3v1

+ LC3v3 + LC3v6 + LC3v7). When KC3v2 = KC3v5 = KC3v6 = L∗
C3v1 = L∗

C3v5 = L∗
C3v6 = L∗

C3v8 = 0 and gn = 0,
equation (29) reduces to the thermodynamic potential for materials in group C6v . Terms in equation (30)
are ineffective when studying 2D MECs in the r1 –r2 plane. The four terms with coefficients L∗

C3v5, L∗
C3v6,

L∗
C3v7 and L∗

C3v8 induce anisotropy of DMI, which cause deformation and even phase transition of MECs
(figure 2). To be more specific, as the modulus of L∗

C3v5γ increases, the Néel SkX rotates about 30◦. The term
with a coefficient L∗

C3v6 causes internal deformation [45] of the Néel SkX: as the modulus of L∗
C3v6γ

increases, the Néel skyrmions in SkX are stretched in axis r1, while the lattice constant of the Néel SkX is
kept unchanged. The term with a coefficient L∗

C3v7 causes pure shearing of the Néel SkX: a positive
(negative) L∗

C3v7γ rotates and stretches the SkX in direction [110] ([11̄0]). The term with a coefficient L∗
C3v8

causes uniaxial elongation of the SkX: a positive (negative) L∗
C3v8γ stretches the SkX in axis r1 (r2). One

should notice that in a certain range of magnetic field, as the value of negative L∗
C3v8γ decreases, the

SkX-pSkX phase transition with is observed in Bloch SkX for materials in group T occurs again. Similarly,
the topological density of the system undergoes a sudden change during a SkX-pSkX phase transition of
materials in group C3v .

For materials in group D2d subjected to condition (a), the thermodynamic potential to be used is
reduced to

gTF = wmag + gel + K∗
D2d

εm2 + K∗
D2d1εm2

3 + L∗
D2d1ε(m2m1,3 + m1m2,3) + L∗

D2d2(m3m1,2 + m3m2,1), (31)

where K∗
D2d

= KD2d1 + KD2d2 − 2C13
C33

KD2d6, K∗
D2d1 = 2(KD2d3 +

C13
C33

KD2d6 − C13
C33

KD2d7) − KD2d1 − KD2d2,

L∗
D2d1 = LD2d1 + LD2d3 − 2C13

C33
LD2d18, L∗

D2d2 = LD2d5 + LD2d6 − LD2d2 − LD2d4 +
2C13
C33

LD2d19 − 2C13
C33

LD2d20, and
KD2di and LD2di are the magnetoelastic thermodynamic parameters for materials in group D2d. In
equation (31), the term with a coefficient L∗

D2d1 is ineffective when studying 2D MECs in the r1 –r2 plane.

The term with a coefficient L∗
D2d2 shares the form of the original DMI of the material, for which its effect is

to change the lattice constant of the MEC studied without causing a pattern deformation.
For materials in group D2d subjected to condition (b), the thermodynamic potential to be used is

reduced to
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Figure 2. (a, b, c, d) phase diagrams and (ai, bi, ci, dj), for i = 1, 2 and j = 1–4, magnetization field configurations of the MECs
appearing in epitaxial thin films in Group C3v subjected to pure shearing misfit strain ε12 = γ

2 . The x-axis of (a, b, c, d) is defined
respectively by λC3v1 = L∗

C3v5γ, λC3v2 = L∗
C3v6γ, λC3v3 = L∗

C3v7γ, λC3v4 = L∗
C3v8γ. (e) plots the variation of the topological density

of magnetization field with b corresponding to the loading condition of (d), and the result is calculated at λC3v4 = −0.2. In
(ai, bi, ci, dj), the vectors illustrate the distribution of the in-plane magnetization components with length proportional to their
magnitude, while the colored density plot illustrates the distribution of the out-of-plane magnetization component. The black
(white) solid line plots the deformed (undeformed) position of the Wigner–Seitz cell of SkX due to presence of misfit strains.

gTF = wmag + gel + 2KD2d4γm1m2 + LD2d7γ(m1m1,3 + m2m2,3)

+ LD2d10γm3m3,3 + L∗
D2d3γ(m3m2,2 + m3m1,1), (32)

where L∗
D2d3 = (LD2d9 − LD2d8). In equation (32), terms with coefficients LD2d7 and LD2d10 are ineffective

when studying 2D MECs in the r1 –r2 plane. The term with a coefficient L∗
D2d3 causes pure shearing of the

Anti-SkX (figure 3): a positive (negative) L∗
D2d3γ rotates and stretches the SkX in direction [11̄0] ([110]).
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Figure 3. (a) phase diagrams and (ai), for i = 1–4, magnetization field configurations of the MECs of epitaxial thin films in
Group D2d subjected to pure shearing misfit strain ε12 =

γ
2 . The x-axis of (a) is defined by λD2d1 = L∗

D2d3γ. In (ai), the vectors
illustrate the distribution of the in-plane magnetization components with length proportional to their magnitude, while the
colored density plot illustrates the distribution of the out-of-plane magnetization component. The black (white) solid line plots
the deformed (undeformed) position of the Wigner–Seitz cell of SkX due to presence of misfit strains.

To sum up, we systematically analyze the effect of each of the strain-induced DMI terms on the
deformation and phase transition of MECs appearing in chiral magnets in group T, C3v , and D2d when the
thin film is subjected to misfit strains of equiaxed in-plane tension/compression or pure shear. In real
materials, the condition of misfit strains is usually more complicated, and all the strain-induced DMI terms
coexist with different strength depending on the material studied. The analysis performed in this work can
be regarded as basic case studies of the large variety of possible deformation pattern and novel MECs that
can appear due to presence of coupled magnetoelastic fields.

6. Methods

In this section, we introduce how to use the free energy density derived in the above section to perform free
energy minimization for different MECs. In particular, we discuss the terms in the magnetoelastic free
energy density which may lead to anisotropic deformation or phase transition of the MECs. For epitaxial
thin films in group T subjected to condition (a), we should discuss the equilibrium state of the material by
using equation (26). Based on the discussion given below equation (26), the only magnetoelastic term that
leads to anisotropic deformation of the Bloch-SkX is the term with coefficient L∗

T3. To study the effect of this
L∗

T3 term alone, we assume that λT1 = L∗
T3ε, and K∗

T = K∗
T1 = K∗

T2 = L∗
T1 = L∗

T2 = 0, t = 0.5 in
equation (26), for different values of λT1 and the magnetic field b = [00b]T, we minimize the volume
integral of equation (26) to determine the equilibrium magnetic state. And by changing the values of λT1

and b, we repeat the minimization process which finally yields the λT1-b phase diagram as shown in
figure 1(a). Here the variation of the parameter λT1 has two ways of interpretation: it can either be
understood as the change of misfit strain ε for a certain type of material, or be understood as a variation of
the parameter L∗

T3 while the misfit strain is fixed. When practically performing the calculation, we choose
wmag in equation (26) to be wmag1(m) defined in equation (2). We consider the case where the thickness of
the thin film is smaller than a period of the helical state of the material, in which case the conical state is
suppressed, so that the magnetization of the material can be expression by the Fourier representation as
[45, 46]:

m = m0 +

n∑
i=1

ni∑
j=1

mqij
eiqij·[(I−Fe)r] (33)

where qij denotes the reciprocal vectors of the undeformed EC, which is ordered in such a way that∣∣∣q1j

∣∣∣ < ∣∣∣q2j

∣∣∣ < ∣∣∣q3j

∣∣∣ < · · · , and |qi1| = |qi2| = · · · =
∣∣qini

∣∣. In equation (33), m0 is a constant vector, and

Fe =

[
εe

11 εe
12 + ωe

εe
12 − ωe εe

22

]
(34)

with εe
ij being the emergent elastic strains of the EC, and ωe being the emergent rotational angle. In practice,

we truncate the expansion given in equation (33) at n = 3, and substitute it into equation (26) (one should

10
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notice that when n = 3, we have considered 18 Fourier terms in equation (33) while the well-known
triple-Q approximation considers only 6 terms). At given values of λT1 and b, we minimize the free energy
with respect to m0, mqij

, εe
ij, and ωe, which determines the equilibrium magnetization. Repeating this free

energy minimization process for different values of λT1 and b, one obtains the variation of magnetization
with them, as well as the corresponding phase diagrams.

The calculation process introduced above is generally useful. For epitaxial thin film of materials in group
T subjected to condition (b), we consider the following thermodynamic parameters: λT2 = L∗

T4γ,
λT3 = L∗

T5γ, and b, and minimize the free energy given in equation (27). For epitaxial thin film of materials
in group C3v subjected to condition (b), we consider the following thermodynamic parameters:
λC3v1 = L∗

C3v5γ, λC3v2 = L∗
C3v6γ, λC3v3 = L∗

C3v7γ, λC3v4 = L∗
C3v8γ and b, and minimize the free energy given in

equation (29). For epitaxial thin film of materials in group D2d subjected to condition (b), we consider the
following thermodynamic parameters: λD2d1 = L∗

D2d3γ and b, and minimize the free energy given in
equation (31). Softwares that permit symbolic calculations are helpful when doing the derivation, and we
have used mathematica in this work.
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[8] Nayak A K et al 2017 Magnetic antiskyrmions above room temperature in tetragonal heusler materials Nature 548 561
[9] Koshibae W and Nagaosa N 2016 Theory of antiskyrmions in magnets Nat. Commun. 7 10542

[10] Yu X Z, Koshibae W, Tokunaga Y, Shibata K, Taguchi Y, Nagaosa N and Tokura Y 2018 Transformation between meron and
skyrmion topological spin textures in a chiral magnet Nature 564 95

[11] Jonietz F et al 2010 Spin transfer torques in MnSi at ultralow current densities Science 330 1648
[12] Zang J, Mostovoy M, Han J H and Nagaosa N 2011 Dynamics of skyrmion crystals in metallic thin films Phys. Rev. Lett. 107

136804
[13] Nagaosa N and Tokura Y 2013 Topological properties and dynamics of magnetic skyrmions Nat. Nanotechnol. 8 899
[14] Fert A, Reyren N and Cros V 2017 Magnetic skyrmions: advances in physics and potential applications Nat. Rev. Mater. 2 17031
[15] Iwasaki J, Mochizuki M and Nagaosa N 2013 Current-induced skyrmion dynamics in constricted geometries Nat. Nanotechnol. 8

742
[16] Garst M, Waizner J and Grundler D 2017 Collective spin excitations of helices and magnetic skyrmions: review and perspectives

of magnonics in non-centrosymmetric magnets J. Phys. D: Appl. Phys. 50 293002
[17] White J et al 2014 Electric-field-induced skyrmion distortion and giant lattice rotation in the magnetoelectric insulator

Cu2OSeO3 Phys. Rev. Lett. 113 107203
[18] Zhou Y and Ezawa M 2014 A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry Nat.

Commun. 5 4652
[19] Nii Y et al 2015 Uniaxial stress control of skyrmion phase Nat. Commun. 6 8539

11

https://orcid.org/0000-0001-8954-4028
https://orcid.org/0000-0001-8954-4028
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nmat2916
https://doi.org/10.1038/nmat2916
https://doi.org/10.1126/science.1214143
https://doi.org/10.1126/science.1214143
https://doi.org/10.1038/nmat4402
https://doi.org/10.1038/nmat4402
https://doi.org/10.1103/physrevlett.119.237201
https://doi.org/10.1103/physrevlett.119.237201
https://doi.org/10.1103/physrevlett.122.107203
https://doi.org/10.1103/physrevlett.122.107203
https://doi.org/10.1038/nature23466
https://doi.org/10.1038/nature23466
https://doi.org/10.1038/ncomms10542
https://doi.org/10.1038/ncomms10542
https://doi.org/10.1038/s41586-018-0745-3
https://doi.org/10.1038/s41586-018-0745-3
https://doi.org/10.1126/science.1195709
https://doi.org/10.1126/science.1195709
https://doi.org/10.1103/physrevlett.107.136804
https://doi.org/10.1103/physrevlett.107.136804
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1038/nnano.2013.176
https://doi.org/10.1038/nnano.2013.176
https://doi.org/10.1088/1361-6463/aa7573
https://doi.org/10.1088/1361-6463/aa7573
https://doi.org/10.1103/physrevlett.113.107203
https://doi.org/10.1103/physrevlett.113.107203
https://doi.org/10.1038/ncomms5652
https://doi.org/10.1038/ncomms5652
https://doi.org/10.1038/ncomms9539
https://doi.org/10.1038/ncomms9539


New J. Phys. 23 (2021) 023016 Y Hu et al

[20] Hu Y 2019 Long-wavelength emergent phonons in Bloch skyrmion crystals distorted by exchange anisotropy and tilted magnetic
fields Phys. Rev. B 100 144424

[21] Hu Y, Lan X and Wang B 2019 Nonlinear emergent elasticity and structural transitions of a skyrmion crystal under uniaxial
distortion Phys. Rev. B 99 214412

[22] Shibata K et al 2015 Large anisotropic deformation of skyrmions in strained crystal Nat. Nanotechnol. 10 589
[23] Chacon A, Bauer A, Adams T, Rucker F, Brandl G, Georgii R, Garst M and Pfleiderer C 2015 Uniaxial pressure dependence of

magnetic order in MnSi Phys. Rev. Lett. 115 267202
[24] Fobes D M, Luo Y, León-Brito N, Bauer E D, Fanelli V R, Taylor M A, DeBeer-Schmitt L M and Janoschek M 2017 Versatile

strain-tuning of modulated long-period magnetic structures Appl. Phys. Lett. 110 192409
[25] Liu Y, Lei N, Zhao W, Liu W, Ruotolo A, Braun H-B and Zhou Y 2017 Chopping skyrmions from magnetic chiral domains with

uniaxial stress in magnetic nanowire Appl. Phys. Lett. 111 022406
[26] Chen G, N’Diaye A T, Kang S P, Kwon H Y, Won C, Wu Y, Qiu Z and Schmid A K 2015 Unlocking Bloch-type chirality in

ultrathin magnets through uniaxial strain Nat. Commun. 6 6598
[27] Zhang X-X and Nagaosa N 2017 Ultrasonic elastic responses in a monopole lattice New J. Phys. 19 043012
[28] Nii Y, Kikkawa A, Taguchi Y, Tokura Y and Iwasa Y 2014 Elastic stiffness of a skyrmion crystal Phys. Rev. Lett. 113 267203
[29] Petrova A and Stishov S 2015 Field evolution of the magnetic phase transition in the helical magnet MnSi inferred from

ultrasound studies Phys. Rev. B 91 214402
[30] Hu Y and Wang B 2017 Unified theory of magnetoelastic effects in B20 chiral magnets New J. Phys. 19 123002
[31] Kittel C 1949 Physical theory of ferromagnetic domains Rev. Mod. Phys. 21 541
[32] Landau L D and Lifshitz E M 1980 Statistical Physics, Part 1 (Oxford: Butterworth-Heinemann)
[33] Lines M E and Glass A M 2001 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford university press)
[34] Leonov A O and Bogdanov A N 2018 Crossover of skyrmion and helical modulations in noncentrosymmetric ferromagnets New

J. Phys. 20 043017
[35] Heinze S, Von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Spontaneous

atomic-scale magnetic skyrmion lattice in two dimensions Nat. Phys. 7 713
[36] Fujima Y, Abe N, Tokunaga Y and Arima T 2017 Thermodynamically stable skyrmion lattice at low temperatures in a bulk crystal

of lacunar spinel GaV4Se8 Phys. Rev. B 95 180410
[37] Pollard S D, Garlow J A, Yu J, Wang Z, Zhu Y and Yang H 2017 Observation of stable Néel skyrmions in cobalt/palladium
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