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Abstract
The behaviors of vortex switching in a ferroelectric nanodot on different surface screening
conditions are investigated by phase-field simulations. It is found that asymmetric electrical
boundary conditions have a significant effect on the formation of vortex domain structures and
play a deterministic role in manipulating the vortex chirality by a homogeneous electrostatic
field. The results indicate that the critical electric field for vortex switching can be greatly
reduced by engineering the asymmetric surface screening conditions in a ferroelectric nanodot
with a regular structure and uniform composition.

Keywords: asymmetric surface screening, vortex switching, chirality, phase-field model
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1. Introduction

Polar topology in low dimensional ferroelectric materials is
currently a hot topic in materials science and condensedmatter
physics. The polarized vortex as a typical ferroelectric topo-
logical structure, has attracted increasing attention due to its
potential applications for high-density non-volatile memor-
ies, sensors, actuators, etc [1–3]. The presence of vortex
domain structures in low dimensional ferroelectric materials
is closely related to the near-open-circuited (OC) electrical
boundary conditions. Due to poor screening conditions, the
bound charges near the surface cannot be compensated by
the free charges, resulting in a considerable depolarization
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field. The depolarization field plays a decisive role in the
formation of nanoscale ferroelectric vortex. In the presence
of the depolarization field, the head-to-tail electric dipoles
rotate to decrease the electrostatic energy of the system and
evolve into a closed domain structure called vortex with def-
inite handedness. As a topological order parameter represent-
ing the handedness characteristics, chirality is one of the basic
properties of vortex domain structure [4]. Distinct from ferro-
magnetic vortex, ferroelectric vortex possesses only chirality
but no polarity. It is of significance to investigate the switch-
ing behaviors of ferroelectric vortex chirality for its potential
applications.

The ferroelectric vortex state is firstly predicted in nan-
odots, nanowires, and nanodisks through first principles based
effective Hamiltonian calculations [5, 6]. Since then, pro-
gress has been made in experiment and theory on ferroelectric
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vortex. First, it is theoretically proven that near-open-circuit
electrical boundary conditions are the decisive factor in the
formation of vortexes in nanostructures [7]. Further studies
showed that stress and strain also played an important role in
the formation and stabilization of the vortex [8, 9]. Experi-
mentally, the existence of ferroelectric vortex was determined
in Pb(Zr,Ti)O3 nanostructures by scanning probe microscopy
[1, 10, 11]. Another milestone is the observation of ferroelec-
tric vortex arrays reported in PbTiO3-SrTiO3 superlattice [12].
In recent years, due to the potential application on high-density
information storage, the chirality reversal of ferroelectric vor-
tex has been investigated in theoretical research. Researchers
have found that the vortex chirality can be controlled with
the application of the point charge or rotational electric field
[13–15]. Thereafter, a series of schemes for breaking sym-
metry were proposed, e.g. by introducing non-central void
defect [16], pinning effect of dislocation [17], asymmetric
geometric structure [18], and compositional gradient materi-
als [19], etc, in which the homogeneous electric field worked.
Recently, tip bias sweeping has been reported to manipulate
ferroelectric vortex chirality [20].

The chirality control of ferroelectric vortex can be realized
by homogenous electrostatic field. Previous work mentioned
above either breaks the symmetry of geometric structure or the
symmetry of material composition to achieve this goal. How to
control the vortex chirality by homogenous electrostatic field
in samples with a regular structure and uniform composition
has attracted considerable attention. In fact, in addition to geo-
metry and composition, boundary conditions also play a sig-
nificant role in the formation and stabilization of ferroelectric
vortex. In previous work, almost all the studies on ferroelectric
vortex domain structures were carried out under symmetrical
electrical boundary conditions, including symmetric surface
screening condition [21, 22]. So far, no research on the influ-
ence of asymmetric surface screening conditions on ferroelec-
tric vortex has been reported. Due to the symmetry breaking by
introducing different screening conditions onto different sur-
faces, it is feasible to investigate the reversal behavior of vortex
chirality in a ferroelectric nanodot with regular geometry and
uniform composition by using a homogeneous electric field.

2. Phase-field model

In this letter, we employ the phase-field model to study
the influence of asymmetric surface screening conditions
on the vortex chirality in ferroelectric nanodot. As part of
the total polarization Ptotal, the spontaneous polarization P
is selected as the order parameter describing the ferroelec-
tric domains. Thus, the electric displacement is expressed
as D= ε0E+Ptotal = εbE+P, where E is electric field, ε0
and εb are the vacuum dielectric constant and the back-
ground dielectric constant, respectively. According to the
Landau–Ginzburg–Devonshire theory, the system-free energy
is the sum of bulk Landau energy, gradient energy, elastic
energy, electrostatic energy and surface energy, i.e. F=´
V
(fLand + fgrad + felas + felec)dV+

´
S
fsurfdS, where fLand, fgrad,

felas, felec and fsurf represents the energy densities. For a
ferroelectric system below Curie temperature, the specific
expressions of these energy densities are as follows. For the
bulk Landau energy density, fLand = aijPiPj+ aijklPiPjPkPl+
aijklmnPiPjPkPlPmPn+ aijklmnopPiPjPkPlPmPnPoPp, where aij,
aijkl, aijklmn, and aijklmnop are the phenomenological coeffi-
cients which determine the thermodynamic behavior of the
ferroelectric material. For the gradient energy density, fgrad =
1
2GijklPi,jPk,l, where Gijkl is the gradient energy coefficient of
spontaneous polarizations which deeply influences the forma-
tion and behavior of ferroelectric domain walls. For the elastic
energy density, felas = 1

2Cijklε
e
ijε

e
kl =

1
2Cijkl(εij− ε0ij)(εkl− ε0kl),

where Cijkl represent the stiffness coefficients which reflect
deformation capacity of the material. εij, εeij and ε0ij are the
total strain, elastic strain, and eigenstrain tensor, respect-
ively. For perovskite ferroelectrics, the eigenstrain is determ-
ined by spontaneous polarization, i.e. ε0ij = QijklPkPl, where
Qijkl is the electrostrictive coefficients of the ferroelectrics.
For the electrostatic energy density, felec =−PiEi− 1

2εbEiEi.

For surface energy density, fsurf = 1
2 (

DS
1

δeff1
P2
1 +

DS
2

δeff2
P2
2 +

DS
3

δeff3
P2
3),

where DS
i is the surface coefficients related to the gradi-

ent energy coefficient and the surface normal vector, and
δeffi is the extrapolation length which measures the relaxa-
tion effect of eigenstrain near the surfaces. By integrating the
above free energy densities over the entire volume and sur-
faces, the total Helmholtz free energy is achieved. The evol-
ution of the spontaneous polarization field over time can be
described by the variation of total free energy on polarization,
which is expressed by the time-dependent Ginzburg-Landau
equation, ∂Pi/∂t=−L∂F/∂Pi, where L is the kinetic coeffi-
cient related to the domain wall mobility. The corresponding
Newman boundary condition is njGijklPk,l+ωijPj = 0, where
ωij = diag(Ds

1/δ
eff
1 ,Ds

2/δ
eff
2 ,Ds

3/δ
eff
3 ) and ni is the outward nor-

mal unit vector of a specific surface. Besides, the mechan-
ical equilibrium equations are considered as σij,j = 0, where
the stress tensor σij = Cijklεkl. Correspondingly, the New-
man boundary condition is njσij = τi, in which τi represent
the external loads. Meanwhile, the Maxwell equation, Di,i =
−εbφ,ii+Pi,i = 0, is introduced to describe the electrostatic
field distribution, where φ is the electric potential. Consider-
ing the surface charge screening effect, a screening factor θ
that belongs to [0,1] is introduced to approximately express the
surface charge screening level [23]. To be specific, the depolar-
ization field is expressed as (1− θ)Edep

i . In other words, θ = 0
refers to ideal OC electric boundary conditions in which the
depolarization field reaches maximum, and θ = 1 refers to
ideal short-circuited conditions with the depolarization field
vanishing. As θ increases from 0 to 1, the depolarization
field gradually lowers in magnitude, and screening conditions
change from open circuit to short circuit. In perovskite fer-
roelectrics, the above three sets of governing equations and
boundary conditions can describe various evolution behaviors
of domain structures.

In the following simulations, a freestanding PbTiO3 (PTO)
nanodot is chosen to study the effect of surface screen-
ing conditions on vortex chirality by a two-dimensional
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Figure 1. Schematic of a square ferroelectric nanodot with uniform
composition. The side length of the nanodot is H, and the eccentric
distance of the vortex core from neutral surface is δ.

(2D) phase-field model. A regular square nanodot with side
length H is selected for investigation and the 2D Cartesian
coordinates are established as depicted in figure 1. The mech-
anical boundary conditions on all surfaces are traction-free,
that is njσij = 0, thus the spontaneous strain generated by the
electrostrictive effect can be fully relaxed in each direction.
The electric boundary condition on the surfaces except the top
one is open-circuited, i.e. θ = 0 and niDi = 0. Distinct from
the bottom surface, the top surface satisfies charge screening
condition, in which θ ranges from 0 to 1. In our simulation,
we choose H= 8 nm and the room temperature T= 300K as
the default conditions. We mesh the nanodot into 20 × 20
elements, and select random polarization perturbation at each
node according to the Gaussian distribution as the initial polar-
ization condition. The values of all the parameters of PTO are
taken from [24–29]. For the convenience of a numerical solu-
tion, all the parameters and variables in this work are nondi-
mensionalized [30]. As the temperature decreases below the
Curie temperature, a first-order phase transition from paraelec-
tric to ferroelectric phase occurs in the nanodot. Under the
OC boundary condition, the depolarization field near the sur-
faces gets the maximum due to the lack of compensation of
free charges. As a result, the electric dipoles near the sur-
faces rotate to form a vortex with a head-to-tail arrangement to
reduce the depolarization field to the greatest extent. Distinct
from the ferromagnetic vortex, the ferroelectric vortex exerts
a planar chiral domain structure wherein the polarization near
the vortex core is zero. As seen in figure 1, we define the dis-
tance from the bottom surface to the vortex core as δ+H/2,
wherein δ represent the offset between the vortex core posi-
tion with minimum polarization and the geometric central pos-
ition of the specimen. In general, the ferroelectric vortex chir-
ality can be characterized by the toroidilization G, i.e. G=
V−1
´
r×

(
P− P̄

)
dV, in which r is position vector and P̄ is the

average volume of the polarization [3]. Apparently, if G> 0,
the vortex is counterclockwise (CCW), vice versa, the vortex is
clockwise (CW).

3. Results and discussions

In previous work, the electrical boundary conditions in low
dimensional ferroelectric materials are generally chosen to be
symmetric, resulting in the vortex domain structure formed
in a nanodot with regular geometry and uniform composition
being symmetric. The chirality of an ideal symmetric vortex
cannot be reversed by homogenous electrostatic electric field.
Thus, different beneficial schemes have been proposed to gen-
erate an asymmetric vortex in a ferroelectric nanodot, e.g. by
introduction of structure design or composition gradient. In
fact, in addition to the geometric structure and composition,
boundary conditions play a significant role in the forming pro-
cess of vortex domain as well. Here, we consider the effect
of asymmetric electrical boundary condition on the formation
and transformation of ferroelectric vortex.

3.1. Effect of asymmetric surface screening on vortex
domain structures

The schematic of electric boundary conditions in the nanodot
is inserted in figure 2(b). Charge screening effect adjusted
by θ is considered existent on the top surface. For other
surfaces other than the top, OC boundary conditions are satis-
fied, i.e. θ = 0. For θ ∈ (0,1), the top surface is under incom-
plete screening condition due to partial compensation of free
charge. Under the asymmetric electrical boundary conditions
between the top and bottom surfaces, the ferroelectric vortex
will be asymmetric along x2-axis. The polarization distribu-
tions in the nanodot under different screening conditions, i.e.
θ = 0, 0.8, 0.9, 1, are depicted in figure 2(a). The white cones
indicate the direction of the polarizations, and the color bar
represents the magnitude of polarization, wherein the polar-
ization P=

√
P2
1 +P2

2. Due to the top surface with ideal OC
boundary condition when θ = 0, the vortex is symmetric and
the offset δ = 0 inherently. As the screening factor θ increases,
the bound charges of the top surface are gradually com-
pensated by free charges from electrode or ambient, result-
ing in the depolarization field lowering correspondingly. As
shown in figure 2(b), when θ is less than 0.8, the offset of vor-
tex core caused by incomplete screening conditions increases
only slightly, and the vortex core basically maintains a circu-
lar region. In other words, the symmetry of ferroelectric vortex
remains at a high level. When θ continues to increase, the cir-
cular vortex core starts to deform into an elliptic one along
the x2-axis. Thus, the vortex core position with the minimum
polarization sharply moves towards the top surface. When
θ is more than 0.99, the bound charges on the top surface
are nearly compensated completely, resulting in δ approaches
H/2. Herein, the ferroelectric domain structure is no longer a
vortex due to its non-closure characteristics at the top surface.

3.2. Effect of asymmetric surface screening on chirality
reversal of a vortex

In a regular nanodot with uniform composition, the
ferroelectric vortex exerts perfectly symmetric domain pattern
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Figure 2. Influence of the top surface charge screening on the vortex domain structure in the nanodot. (a) Domain pattern for different
screening factor θ = 0, 0.8, 0.9, and 1. The color bar represents the magnitude of polarization. (b) Relation curve of screening factor θ and
the offset δ. The schematic and illustration of electrical boundary conditions are inserted in (b).

resulting in no feasibility to manipulate its chirality by applic-
ation of a homogeneous electric field. However, by introdu-
cing asymmetric electrical boundary conditions, it is made
probable due to the symmetry of vortex domain structure
being broken. Without loss of generality, we choose the case
θ = 0.8 to study the influence of the asymmetric screening
effect on the reversal of vortex chirality. Under asymmetric
surface screening conditions, the chirality of the vortex can be
reversed by a uniform electrostatic field, which is loaded and
unloaded according to the pattern in the inset in figure 3(b).
The polarization evolution snapshots of the transformation
from an initial CW vortex to a final CCW vortex are shown
in figure 3(a). The transforming process is divided into three
steps. In step I, for the dimensionless evolution time step
t∗ = 0∼ 100, a CW vortex evolved from random polariza-
tion perturbation is selected as the initial state. In step II for
t∗ = 100∼ 200, a homogenous electrostatic field is loaded
and unloaded to the nanodot along the x1-axis. In step III
for t∗ = 200∼ 300, after the electric field is removed, the
vortex chirality is reversed to CCW ultimately. The toroid-
ilization evolution curve of the vortex switching is depicted in
figure 3(b). Distinct from the color bar in figure 3(a) which rep-
resents the polarization magnitude, the color bar in figure 3(b)
refers to the polarization orientation. As mentioned earlier,
the offset δ of the vortex core is a very small value when

θ = 0.8, and the vortex is almost symmetric. In step I, the
stable state A at t∗ = 80 is an initial CW vortex state, and the
toroidilization G in state A is −0.756 e Å−1. In step II, with
application of an external electric field E= 2.9 MV cm−1,
firstly the vortex core gradually moves along the negative
direction of x2-axis until it disappears at the bottom surface,
afterwards, the nucleation and growth of a new vortex core
occurs at the top surface due to the asymmetric screening con-
dition. Typical states from B to G exhibit this transformation
process. It is seen that the vortex domain structure experiences
severe deformation during t∗ = 100∼ 140 after E loading,
meanwhile the toroidilization changes from −0.688 e Å−1

in state B to 0.659 e Å−1 in state G. With the unloading
of the external electric field, the new vortex core rapidly
moves down along the negative direction of x2-axis (state
H ∼ I). As a result, a new vortex with a reverse chirality
generates and stabilizes in step III. Stable state J at t∗ = 300
is the final CCW vortex state in which the toroidilization is
0.756 e Å−1. Ultimately, the CW vortex in a regular nanodot
with uniform composition indeed bemanipulated and reversed
to the CCW vortex by external homogeneous electrostatic
field.

Furthermore, the influence of different screening con-
ditions on electrical switching of ferroelectric vortex at
room temperature has been investigated. For different θ, the
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Figure 3. Vortex switching in the condition of θ = 0.8 on the top surface of an 8 nm × 8 nm PTO nanodot by a homogeneous electrostatic
field E = 2.9 MV cm−1 at room temperature. Three steps in the switching process: In step I, the initial vortex is clockwise (CW). In step II,
the electric field E is loaded and unloaded along the x1-axis. In step III, the final vortex is counterclockwise (CCW). (a) The evolution
snapshots of vortex domain structures in step I ∼ III. The color bar represents the magnitude of polarization. (b) The evolution curve of
vortex toroidilization G in the process of electrical switching. The color wheel represents the orientation of polarization. State A at t∗ = 80
is chosen as an initial CW vortex in step I. States B ∼ I show the domain structures during E loading and unloading in step II. State J is the
final CCW vortex after E unloading in step III. States A, G, and J are stable. The schematic of the electrostatic field loading is shown in the
inset.

critical electric field for vortex switching is different. For
the case of θ = 0, and θ = 1, the top surface satisfies OC
and short-circuited boundary condition, respectively. There
is no feasibility of vortex switching due to the vortex being
perfect symmetric when θ = 0. Meanwhile, the domain struc-
ture forming in the nanodot is no longer a closed vortex when
θ = 1, thus no vortex switching exists. Therefore, the typical
cases of vortex switching for θ ∈ [0.05,0.9] are considered to
investigate the relationship between θ and the corresponding
critical electric field Ec. As depicted in figure 4, it indicates

that Ec decreases continuously with the increase of θ. When
θ = 0.05, Ec reaches 10.1 MV cm−1 owing to the symmetry
of the vortex just being the slightly broken. Subsequently,
the critical electric field drops sharply with the increase of θ.
Finally, Ec decreases to 1.3 MV cm−1 in the case of θ = 0.9.
It can be revealed that the asymmetric surface screening effect
plays a decisive role in the feasibility of ferroelectric vortex
switching. Moreover, the greater the asymmetry of the elec-
trical boundary conditions exerts, the easier the manipulation
of vortex chirality by the homogenous electric field would be.
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Figure 4. The relation curve of the critical electric field Ec for
vortex switching and different screening factors on the top surface,
wherein θ is taken from 0.05 to 0.90.

4. Conclusion

In summary, the influence of the asymmetric surface charge
screening effect on the vortex state in a ferroelectric nanodot
is investigated numerically based on phase-field simulation.
Under the asymmetric surface screening effect, the vortex core
is driven to deform and move to the surface with better screen-
ing conditions, which results in the symmetry-breaking of the
vortex. It is this symmetry-breaking that is responsible for
the electric switching of vortex chirality. The simulation res-
ults reveal the feasibility of the manipulation of the chirality
of the ferroelectric vortex in a nanodot with a regular struc-
ture and uniform composition by application of a homogen-
eous electrostatic field. In fact, ferroelectric vortex domain
structure is influenced significantly by boundary conditions,
geometric structure, and material composition. Therefore, by
satisfying appropriate electrical, mechanical or polarization
boundary conditions, an asymmetric vortex can be obtained,
and the vortex switching by homogenous electric field can also
be achieved.
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