
Biao Wang
School of Physics and Sino-French Institute of

Nuclear Engineering and Technology,
Sun Yat-sen University,

Guangzhou 510275, China
e-mail: wangbiao@mail.sysu.edu.cn

Material Strength: A Rational
Nonequilibrium Energy Model
for Complex Loadings
The failure of materials with some sort of loading is a well-known natural phenomenon, and
the reliable prediction of the failure of materials is the most important issue for many dif-
ferent kinds of engineering materials based on safety considerations. Classical strength the-
ories with complex loadings are based on some sort of postulations or assumptions, and
they are intrinsically empirical criteria. Due to their simplicity, classical strength theories
are still widely used in engineering, and they are very easy to incorporate into any finite
element code. Recently, a new methodology was proposed by the author. Instead of estab-
lishing empirical models, the material failure process was modeled as a nonequilibrium
process. Then, the strength criterion was established with the rational stability analysis
for the failure process. In this study, the author tried to use this idea to develop a rational
thermodynamic strength theory and to make the theory easy to use in engineering, similar to
the classical strength criteria. It was found that the predictions of the rational energy
strength theory were very reasonable compared to the experimental data even if no postu-
lation was taken. Through the analysis, it seemed that the strength problem could be effi-
ciently tackled using the rational nonequilibrium energy model instead of using some
sort of empirical assumptions or models. [DOI: 10.1115/1.4048988]

Keywords: general strength theory, nonequilibrium process, complex loadings, stability
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1 Introduction
The mechanical strength of materials is a key issue in many

fields. From the point of view of scientists and engineers in the
field of mechanical engineering, the strength criterion of a material
refers to the critical conditions for a material specimen to fail during
any complex loadings, assuming that one knows some critical
strength values of the material for some simple loading, such as uni-
axial tensile strength and simple shear strength. This has been a
long-standing problem lasting for hundreds of years, and the
famous strength criteria and their variations have been a standard
content in the textbooks of the mechanics of materials. However,
intrinsically, these criteria are empirical, and to make a safe
design for any components and structures in engineering, one has
to adopt some very big safety factors to overcome the uncertainty
in the prediction.
Material failure under external loading is a very complicated

phenomenon. For different materials, a failure mechanism is intrin-
sically different, and for the same material with different loadings, a
failure mechanism may be very different. The failure process may
involve the creation, accumulation, and growth of the various
defects such as dislocations, voids, and microcracks. To satisfy
engineering demands, researchers have developed strength criteria
based mainly on two approaches. One approach is to develop phe-
nomenological models to achieve a more accurate prediction of
material strength [1]. The other approach is to use so-called micro-
mechanics models based on the failure mechanism to develop the
prediction models of the failure of a material [2–4]. Recently,
Wang [5] modeled the failure process of materials as a nonequilib-
rium thermodynamic process and developed a rational energy

methodology to predict the failure of a material. In fact, the
Griffith energy release rate theory, which is used to predict
crack propagation [6], and the field theoretic formulation, which
is used to predict the landslip property along some faults in earth-
quake theory [7–9], are energy theories with the same origin.
Recently, many theoretical works have been conducted based on
first-principle calculations for the theoretical strength of diamond
and other ideal materials [10–12]. In addition, it can be shown
that the energy approach developed by the author can provide
correct predictions.
The classical strength theory is very easy to use for engineers

and other users. For this theory, the strength data for different mate-
rials are obtained using the standard specimens for simple loading
conditions, and the data are then collected into some engineering
handbooks. This theory is also very convenient to incorporate
into finite element method codes. Thus, users can evaluate the
stress distribution and the strength at the same time. In this study,
the author attempted to develop an easy-to-use method for evaluat-
ing material strength based on the nonequilibrium thermodynamic
scheme. In the future, it is hoped that it will be shown that the
energy approach could also be incorporated easily with some
numerical and experimental methods to solve the strength
problem of materials.

2 Nonequilibrium Energy Model
When considering a material specimen with some sort of external

loading, when the load is small, the specimen will deform elastically
without any energy dissipation or entropy production. By increas-
ing the external load, some sort of defects will be created or acti-
vated in the specimen, thus inducing entropy production. Based
on nonequilibrium thermodynamics [13], it is known that the
changing rate of the microstructural defect parameter can be
defined as the “flow” of the process, and the conjugate driving
force is the derivative of the entropy production with respect to
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the corresponding defect parameter. In other words, if the defect
parameter can be denoted as ai, the conjugate driving force can
be denoted as Fi. The first law of thermodynamics can be expressed
as follows:

δQ = dU − δW , δW =
∫∫

Γ
Πiδuids (1)

where dU is the internal energy increment. For static problems, dU
might refer to the elastic strain energy. δW is the environment work
on the system, Πi, ui, and Γ refer the force and displacements com-
ponents along the boundary Γ, and δQ is the heat supplied to the
system.
For a nonequilibrium process, the state function, the entropy S, is

introduced, and it can be divided into the exchange entropy due to
the exchange with the environment and irreversible entropy produc-
tion, as follows:

dS = dSr + dSi; dSr =
δQ

T
; dSi ≥ 0 (2)

which is also a state of the second law of thermodynamics. By com-
bining Eqs. (1) and (2), one can derive

dSi = dS− dSr = dS− δQ

T
= dS− 1

T
(dU − δW)

= − 1
T
(dU − δW − TdS) (3)

By introducing the definition of the Gibbs free energy, one can
write

G = U −W − ST (4)

Its variation can be written in the following form:

dG = dU −Γ δ Πiui( )ds− d(ST)
= dU −Γ Πiδuids−Γ uiδΠids− TdS− SdT (5)

By combining the earlier equations with Eq. (3), one can
establish

dSi = − 1
T

dG+Γ uiδΠids− SdT( ) = − 1
T
dG; δΠi = 0, dT = 0

(6)

It is very clear that in deriving Eq. (6), it is assumed that for the
condition of keeping the external loading and temperature constant,
the entropy production can be expressed as the decrease of the
Gibbs free energy.
According to nonequilibrium thermodynamics, if the entropy

production is due to defect creation and evolution, the thermody-
namic driving force can be expressed in the following form:

Fi =
∂Si
∂ai

= −
1
T

∂G
∂ai

(7)

Its conjugate “flow” can be expressed as follows:

dai
dt

= λFi = −
λ

T

∂G
∂ai

(8)

In fact, for a general nonequilibrium process not very far from the
equilibrium state, it is a well-known fact that the “flow” is linearly
related to its energy driving force [13]. At the least, it is a well-
known assumption. Thus, one could establish the evolution equa-
tion of the damaged microstructures of a material under external
loading. To determine the strength of a material specimen, generally
speaking, it is not necessary to derive the solution of the evolution
equation. If one can establish the stability condition of the evolution
equation, the critical condition gives the strength of the material
specimen. This is the basic idea for determining how to evaluate
the material strength. In other words, based on the failure

mechanism, by choosing a proper parameter to represent the
“flow” of the system, one can establish the nonequilibrium energy
evolution equation, from which one can obtain the critical failure
conditions of the materials. Compared with the classical strength
theory, the energy criterion is a global, rational criterion. In the fol-
lowing sections, we use some examples to show how to use the for-
malism for material failure problems.
In fact, if one is only interested in establishing the critical crite-

rion for the material failure, one only needs to consider the stability
condition for an equilibrium state with loading, i.e., using the
second-order variation of the Gibbs free energy at given load and
temperature. If this variation is smaller or equal to zero, it means
that the equilibrium state is not stable for any sort of perturbation.
Thus, one can establish the strength criterion by setting the
second-order variation of the Gibbs free energy equal to zero
under uniaxial loading or by analyzing the condition for which
the quadratic form obtained from the second-order derivatives of
the Gibbs free energy is equal to zero under complex loadings.

3 Energy Expressions Based on the Eigenstrain
The kernel of the energy methodology for predicting strength is

to find the Gibbs free energy for a material with loading. In this
study, the concept of “Eigenstrain” was used to help us to derive
the expressions of the Gibbs free energy, as follows.
Eigenstrain is a generic name given by Mura [14] for nonelastic

strains for thermal expansion, phase transformation, and misfit
strains. In his book, it is very clear that many kinds of defects,
such as voids, dislocations, and cracks, could be modeled by the
eigenstrains. Thus, both the Gibbs free energy and the dissipation
energy can be expressed as a function of the eigenstrains.
Considering a homogeneous material under the action of some

sort of external loading, some defects may be created or activated,
and one may say that some distribution of the eigenstrains has been
produced in the material specimen. For example, one dislocation in
a homogeneous material can be simulated by the eigenstrain distri-
bution as follows:

εTij (x) = −
1
2
(binj + bjni)δ(S − x) (9)

where δ(S − x) is the one-dimensional Dirac function in the normal
direction of S, being unbounded when x is equal to S and zero oth-
erwise, and b and n are the burgers vector and the normal vector,
respectively, toward S−. A mode-I penny-shaped crack (a1= a2=
a; a3= 0) can be simulated by the eigenstrain:

εT (x) = lim
a3�0

a3ε
T
33 = finite (10)

The other components are zero. With the creation of the distribu-
tion of the eigenstrains, the elastic Gibbs free energy of the system
will change, and some sort of energy dissipation cannot be avoided.
By introducing the concept of the eigenstrain, one can easily derive
the free energy as follows.
Considering a material specimen under external loading σ0ij, the

elastic Gibbs free energy can be written in the following form:

W0 =
1
2

∫∫∫
D
σ0ijε

0
ijdv −

∫∫
Γ
F0
i u

0
i ds (11)

When the load reaches some critical value, the irreversible defects
will be created or activated. Thus, the eigenstrain εTij (x) becomes
nonzero, and the elastic Gibbs free energy can be written as follows:

W =
1
2

∫∫∫
D
(σ0ij + σij)(ε

0
ij + εij − εTij )dv −

∫∫
Γ
F0
i (u

0
i + ui)ds

=
1
2

∫∫∫
D
(σ0ij + σij)(ε

0
ij + εij − εTij )dv −

∫∫
Γ
σ0ijnj(u

0
i + ui)ds

,

(12)
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where σij, εij, and ui are the perturbations of the stress, strain, and
displacement due to the eigenstrains. Using Green’s function, one
can obtain [14]

σij(x) = Cijkl

∫∫∫
D
esthelnhCpqmnTkp,qt(x − x′)εTsmdv

′

esthelnh = δslδtn − δsnδtl

, (13)

where Tkp,qt(x − x′) is the second-order derivative of Green’s func-
tion, Cijkl is the elastic moduli tensor, and δsl is the Kronecker delta.
The elastic Gibbs free energy change due to the occurrence of the
eigenstrain can be derived as follows:

ΔW =W −W0 = −
1
2

∫∫∫
D
(2σ0ij + σij)ε

T
ij dv (14)

In deriving Eq. (14), the following conditions were used:∫∫∫
D
σ0ij(εij − εpij)dv =

∫∫∫
D
σij(ε

0
ij + εij)dv = 0 (15)

Accompanying the creation of the eigenstrain, the resistant force
will do the work and increase the energy dissipation and the free
energy of a system. It is then necessary to determine how the dissi-
pation energy depends on the eigenstrain. This is the most crucial
problem. For a crack propagation problem, one can assume that
the surface energy plays the role of energy dissipation. Since the
purpose is to establish a general methodology to evaluate the mate-
rial strength, a general form of energy dissipation is used based on
the Landau–Lifshitz free energy expansion [15]. The total resistant
free energy can be written in the following form:

Λ =
∫∫∫

D
Δ[εTkl(x)]dv (16)

If the material specimen being considered is isotropic, since the
eigenstrain is a second-order symmetric tensor, only three invariant
scalars can form. One form can be expressed as follows [16]:

I1 = εTll = εT11 + εT22 + εT33

I2 = (εTik)
2 = (εT11)

2 + (εT22)
2 + (εT33)

2 + 2(εT12)
2 + 2(εT13)

2 + 2(εT23)
2

I3 = εTikε
T
ilε

T
kl = εT11[(ε

T
11)

2 + (εT12)
2 + (εT13)

2] + εT22[(ε
T
12)

2 + (εT22)
2 + (εT23)

2] + εT33[(ε
T
13)

2 + (εT23)
2 + (εT33)

2] + 2εT12(ε
T
11ε

T
12 + εT12ε

T
22 + εT13ε

T
23)

+ 2εT13(ε
T
11ε

T
13 + εT12ε

T
23 + εT13ε

T
33) + 2εT23(ε

T
12ε

T
13 + εT22ε

T
23 + εT23ε

T
33) (17)

By assuming that the eigenstrains are small quantities, the dissi-
pation energy can be expanded in the form of

Δ(εTkl) = AI1 + BI21 + CI2 + DI31 + EI1I2 + FI3 + · · · (18)

One should notice that for an isotropic material and a symmetri-
cal tensor of rank two, only one linear scalar, two quadratic scalars,
and three third-order scalars can be formed. In the following expres-
sions, the dissipation energy density expansion up to the third order
is used. In fact, it is well known that the deformation characteristics
for the tension and compression may be different. Therefore, the
constants should be determined according to different loading con-
ditions. In fact, the idea is that for any kind of material, if the six
constants in the expansion can be determined through some
simple testing such as uniaxial loading, the strength curve for
complex loading can be derived similar to the classic strength
theory. Of course, for some special materials, the dissipation
energy density may not be expanded as shown in Eq. (18), so one
needs to find its expression in some other way. This reflects the
resistance against failure of the materials. Nonetheless, for most iso-
tropic metal materials, such an expansion should be quite versatile.
The substitution of Eqs. (14) and (16) into Eq. (8) gives the evo-

lution equation of the eigenstrains:

dεTij
dt

= −λ
δG

δεTij
= −λ

δ(ΔW + Λ)
δεTij

= λ σ0ij + σij −
dΔ
dεTij

( )

= λ σ0ij −
dΔ
dεTij

+ CijklesthelnhCpqmn

∫∫∫
D
Tkp,qt(x − x′)εTsmdv

′
[ ]

(19)

By setting the evolution velocity to be zero, one obtains

σ0ij + σij −
dΔ
dεTij

= σ0ij −
dΔ
dεTij

+ CijklesthelnhCpqmn

∫∫∫
D
Tkp,qt(x − x′)εTsmdv

′ = 0

(20)

where

dΔ
dεTmn

= Ωmn

= Aδmn + 2BI1
dI1
dεTmn

+ C
dI2
dεTmn

+ 3DI21
dI1
dεTmn

+ E I1
dI2
dεTmn

+ I2
dI1
dεTmn

( )
+ F

dI3
dεTmn

+ · · · (21)

and

dI1
dεTmn

= δmn

dI2
dεTmn

= 2εTmn

dI3
dεTmn

= εTmlε
T
nl + εTmkε

T
kn + εTimε

T
in

(22)

It is very clear that Eq. (20) is an integral equation for the eigen-
strain distribution. To simplify the problem, one can assume that the
eigenstrain is uniform in the specimen. Thus, the following
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expression can be derived:

σ0mn = Aδmn + 2BI1
dI1
dεTmn

+ C
dI2
dεTmn

+ 3DI21
dI1
dεTmn

+ E I1
dI2
dεTmn

+ I2
dI1
dεTmn

( )
+ F

dI3
dεTmn

+ · · · (23)

Equation (23) presents the relationship between the applied
load and the eigenstrain. The total strain of the material is the
elastic strain added to the eigenstrain because the eigenstrain is
assumed to be uniform. Thus, one can derive the relationship
between the applied stresses with the total strain. If one can
obtain the stress–strain relationship through a simple loading test,
one can determine the material parameters A, B, C, D, E, and
F. It should be also noticed that the stress perturbation due to the
eigenstrain is zero for the uniform distribution of the eigenstrain
in a specimen, and the parameter A corresponds to the yielding
point of a material.
The question then becomes how to determine the strength

value, especially when the specimen is under complex loading.
The Gibbs free energy G is obtained using the concept of the
eigenstrain. In fact, Eq. (23) is derived with dG/dεTij = 0. For
some equilibrium state, if the eigenstrain has some small perturba-
tion ΔεTij , the free energy can be expressed in the form of

G(εTij + ΔεTij ) = G(εTij ) +
dG

dεTij
ΔεTij +

1
2

d2G

dεTij dε
T
αβ

ΔεTijΔε
T
αβ + · · ·

= G(εTij ) +
1
2

d2G

dεTij dε
T
αβ

ΔεTijΔε
T
αβ + · · · (24)

where

Πijαβ =
∂2G

∂εTij∂ε
T
αβ

=
∂2Δ

∂εTij∂ε
T
αβ

= 2A
∂I1
∂εTij

∂I1
∂εTαβ

+B
∂2I2

∂εTij∂ε
T
αβ

+ 12CI21
∂I1
∂εTij

∂I1
∂εTαβ

+ 2D
∂I2
∂εTαβ

∂I2
∂εTij

+ I2
∂2I2

∂εTij∂ε
T
αβ

( )

+E
∂I1
∂εTαβ

∂I3
∂εTij

+
∂I3
∂εTαβ

∂I1
∂εTij

+ I1
∂2I3

∂εTij∂ε
T
αβ

( )

+F 2
∂I1
∂εTαβ

I2 + I1
∂I2
∂εTαβ

( )
∂I1
∂εTij

+ 2I1
∂I1
∂εTαβ

∂I2
∂εTij

+ I21
∂2I2

∂εTij∂ε
T
αβ

[ ]

(25)

It is very clear that if the quadratic form in Eq. (24) is larger
than zero, any perturbation will make the free energy increase,
and the state will be stable. In contrast, if the quadratic form is
smaller than zero for some perturbation, the state will not be
stable. Thus, one can establish that the critical condition for the
material failure is that the quadratic form is zero. Substitution into
Eq. (23) gives the critical condition of applied loadings for material
failure.

4 Experimental Verification: From Simple Loading
Data to Complex Loading Prediction
To explain the basic idea of this study, as described in this

section, some materials were chosen as examples. Based on the
stress–strain relationship in simple uniaxial loading, the material
parameters were determined. Then, by using Eq. (25), one could
determine the strength criterion of the material with complex

loadings. The predictions were verified with experimental measure-
ments. For the uniaxial tensile loading, using Eq. (23), one could
establish the equation for the eigenstrain components, or the
plastic strains with the applied loading, from which one could deter-
mine the material constants. It was very clear that to determine all
six parameters, one needed at least two sets of the experimental
results of both uniaxial tensile and shear loading.
The experimental data obtained by Chino et al. [17] for AZ31Mg

alloy were used. They obtained the data for four types of specimens.
The detailed information is referred to in their publication. Accord-
ing to their work, it was clear that the eigenstrains could be treated
as the plastic strains, and one could assume that the plastic deforma-
tion would not induce the volume change, i.e.,

I1 = εTll = εT11 + εT22 + εT33 = 0 (26)

4.1 Uniaxial Tensile Loading. In this case,
εT22 = εT33 = −1/2εT11, and Eq. (23) became

σ011 = A + C
dI2
dεT11

+ EI2
dI1
dεT11

+ F
dI3
dεT11

+ · · ·

= A + 2CεT11 + EI2 + 3F(εT11)
2

= A + 2CεT11 +
3
2
E(εT11)

2 + 3F(εT11)
2

= A + 2CεT11 +
3
2
E + 3F

( )
(εT11)

2

σ012 = C
dI2
dεT12

+ EI2
dI1
dεT12

+ F
dI3
dεT12

+ · · ·

= 2CεT12 + 3F(εT11 + εT22)ε
T
12 + 3FεT13ε

T
23

(27)

Since the material considered was not superplastic, and it was not
unreasonable to assume that the normal plastic strain was not
coupled with the shear strain, F= 0. Thus, the first equation in
Eq. (27) became

σ011 = A + 2CεT11 +
3
2
E(εT11)

2 (28)

Using the stress–strain data for the uniaxial loading (Fig. 4 in
Ref. [17]), one could determine the parameters A, C, and E of the
material, which were used to predict the strength contour of the
material under biaxial loadings. In fact, for uniaxial tensile
loading, the position of the maximum stress was given by

∂σ011
∂εT11

= 0, (εT11)max = −
2
3
· C
E

(29)

The parameters for the four types of specimens were obtained
with the fitting scheme, which is presented in Table 1.

4.2 Strength With the Biaxial Loadings. For the purpose of
predicting the strength contour curve for the biaxial loading, the first

Table 1 Fitting parameters for the four types of AZ31 alloy
specimens

A C E −2C/3E

Specimen A 247.5 409.5 −1716.9 0.158
Specimen B 170.1 647.3 −2457.6 0.176
Specimen C 200.3 672.2 −3489.9 0.128
Specimen D 142.1 980.4 −5242.7 0.125
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two equations in Eq. (23) became

σ011 = A + C
∂I2
∂εT11

+ EI2
∂I1
∂εT11

= A + 2CεT11 + E[(εT11)
2
+ (εT22)

2
+ (εT11 + εT22)

2
],

σ022 = A + C
∂I2
∂εT22

+ EI2
∂I1
∂εT22

= A + 2CεT22 + E[(εT11)
2
+ (εT22)

2
+ (εT11 + εT22)

2
]

(30)

In addition, the components for the second derivation of the free
energy were given by Eq. (25), as follows:

∂2Π
∂(εT11)

2 = 2B + 4C + 4E(2εT11 + εT22),

∂2Π
∂(εT22)

2 = 2B + 4C + 4E(2εT22 + εT11),

∂2Π
∂εT11∂ε

T
22

= 2B + 2C + 6E(εT11 + εT22),

∂2Π
∂εT22∂ε

T
11
= 2B + 2C + 6E(εT11 + εT22)

(31)

FromEq. (23), one couldfind that even if thematerial couldnot keep
its volume unchanged in the deformation process, the contribution of

(a) (b)

(c) (d )

Fig. 1 The strength contour of the four types of specimens in plastic strain space. The solid (dashed) curves were given by
Eq. (31) with the parameters A, C, and E obtained for the uniaxial tensile (compressive) loading. The dots represent the experimen-
tal data.
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parameterB could also be adopted intoC. Therefore, one could take B
= 0. As discussed in Sec. 4.1, if the quadratic form given by Eq. (31)
was larger than zero, any perturbation would make the free energy
increase, and the state was stable, whereas if the quadratic form was
smaller than zero for some perturbation, the state was not stable. To
make the matrix of Eq. (31) positive, one could set

C + E(2εT11 + εT22) > 0,

4[C + E(2εT11 + εT22)][C + E(2εT22 + εT11)] − [C + 3E(εT11 + εT22)]
2

= E2[(εT11)
2
+ (εT22)

2
] + 2E2εT11ε

T
22 + 6CE(εT11 + εT22) + 3C2 > 0

(32)

whichgave the critical conditions for thematerial failure for the biaxial
loading. Itwasobvious that if the secondequation inEq. (32)was satis-
fied, the first equation was automatically satisfied.

All of the experimental data listed in Table 1 were obtained with
uniaxial tensile loading. If it was assumed that the stress–strain rela-
tionship of the materials considered here followed the same trend
for both tensile and compressive loadings, then for the uniaxial
compressive loading, the signs of the material parameters A and
E should have changed, whereas their values and the parameter C
should have stayed unchanged.
For the biaxial loading of the specimens, the strength contour

lines predicted for the four types of specimens by the second equa-
tion in Eq. (32) in plastic strain space are shown in Fig. 1, along
with the experimental data obtained by Chino et al. [17], where
the elastic deformation was neglected. One should notice that no
other postulations or assumptions were taken, except that the dissi-
pated energy could be expanded into the power form, Eq. (18), and
the predictions were quite reasonable. To obtain the strength
contour lines in stress space, condition (32) was substituted into
Eq. (30) and is shown Fig. 2. As shown in this figure, inside the

(a) (b)

(c) (d )

Fig. 2 The strength contours for the four types of specimens in stress space. The solid (dashed) curves were given by Eq. (30)
with the parameters A, C, and E obtained for the uniaxial tensile (compressive) loading.
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central closed contour, the specimens were safe. In addition, the
central safe areas for the four types of specimens are shown in
Fig. 3 for comparison.

5 Concluding Remarks
The conventional strength theories are mainly based on some sort

of postulations or empirical consideration. It is also a well-accepted
assumption that at the most dangerous point in a specimen, when
the maximum stress or some sort of the combination of stresses
reaches the critical value, the specimen will fail. In fact, the strength
problem is not a local phenomenon [5]; based on the thermody-
namics consideration, it is a global property. The failure process
is a nonequilibrium evolution process, and the strength criterion
of a material can be determined by identifying the critical state of
the failure process. However, the classical strength theory can be
used very easily in engineering. After the material data are deter-
mined using standard specimens with simple loadings, using the
classical strength theory, one can predict the strength for any speci-
mens with any sort of loadings. In this work, the aim was to develop
an easy-to-use strength theory similar to the classical strength
models based on rational thermodynamic consideration [5]. The
material constants could be determined with a simple loading test
such as uniaxial tensile and compressive loading. Then, based on
the rational strength theory, the material strength could be predicted
with complex loading. The most valuable point was that the strength
theory was not based any sort of empirical considerations such as
the classical strength theory. The only assumption was that the dis-
sipated energy density could be expanded into the power form of
the plastic deformation when it was small. Therefore, it was a
quite general theory. In this study, the predictions were also com-
pared with the experimental data, and the verification gave very
positive conclusions. However, the present strength model has
some obvious limitations; first, the free energy expression was
expressed using the concept of eigenstrains [18,19], which means
the damage process could be modeled by the eigenstrains;
second, the dissipation energy was expressed by using the
Landau–Lifshitz form expansion, which means the eigenstrain, or
plastic strain should be infinitesimal, and the material should be iso-
tropic, and with the same tensile and compressive properties.

Finally, the main purpose of this study is to illustrate the fact that
the rational nonequilibrium strength theory developed by the author
could also be easily used in engineering. Determining the strength
of materials has always been a key problem for scientists and engi-
neers. At the present stage, one should formulate strength theories
on a rational base, instead of depending on some empirical param-
eters or criteria. Very successful strength theories in fracture
mechanics, such as the energy release rate, the stress intensity
factor theory, and the J-integral, have set very good examples.
Since the problems of material strength have lasted for several
hundred years and the classical theories have been used for a very
long time, no one can expect to change the situation overnight.
However, such an important problem should not depend on the
empirical theory or models. Some new and intrinsic strength char-
acteristics have been found. One should reconsider the strength
problem and systematically develop more rational and accurate
methodology to evaluate the strength of materials and structures.
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