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Materials failure under some sort of loading is a well-known natural phenomenon, and the reliable prediction of materials failure
is the most important key issue for many different kinds of engineering structures based on their safety considerations. In this
research, instead of establishing empirical models, the material failure process was modeled as a nonequilibrium process based
on the microstructural mechanism. Then, the evolution equations were established and the stability analysis was carried out to
obtain the critical conditions for the materials failure. It was found that the material strength was a global property in nature, and
the commonly used local criteria based on the most dangerous point failure were not the rational assumption. Based on the idea,
some examples were considered, such as the size effect of the material strength, the strength of the polycrystalline metals, the
stress-strain relationship of the ultrafine crystalline metal with nanoscale growth twins, the strength of lithium niobite crystal
specimens with notches. All of the theoretical predictions gave reasonable results compared with the experimental data.
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1 Introduction

Material breakages or failures under loading are very com-
mon natural phenomena, and how to establish the criterion of
material breakdown has attracted much attention from phy-
sicists, material scientists, earth scientists, and mechanical
and civil engineers in particular, for a very long time. In
essence, the strength theory of materials is the failure cri-
terion of a material. da Vinci (1452-1519) and Galilei (1562-
1642) may be the earliest researchers of the problem. They
performed tensile and bending tests of wires and stones to
determine their strength. da Vinci believed that the strength
of an iron wire depended significantly on its length, while
Galilei believed that fracturing occurred when a critical

stress was reached. To satisfy widespread engineering needs,
various strength theories have been established for different
materials. A general common characteristic of all the
strength theories is that when some stresses or stress com-
binations at some point in a material specimen reach a cri-
tical value, the material sample will break. The critical values
for different materials have been measured using some
standard small samples, and these values have been tabulated
in technical handbooks. A specific characteristic for the
classical strength theory is based on the essential belief that
material failure behavior is a local phenomenon; i.e., the
most dangerous point will fail independently when a local
strength criterion is satisfied. The neighboring points only
affect the stress distributions in the specimen.
These classical strength criteria can generally be treated as

empirical criteria based on the experience and the vast ex-
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perimental data. It is a well-known fact that in some cases,
the predictions by these classical strength theories face sig-
nificant discrepancies with the experimental results for dif-
ferent kinds of materials. Engineers have to use some
significantly large safety factors to consider uncertainty
when they carry out the design of some structures. Generally
speaking, since the ultimate strength of metals changes in-
versely with the fracture toughness for many kinds of ma-
terials, the higher the strength of the material is, the lower the
fracture toughness is. Therefore, in the 1940s, catastrophic
failures happened in many ships, bridges, and the other
constructions based on the ultimate strength design due to the
lower fracture toughness of the materials used to build these
structures. To solve the strength problem for the materials
and structures with some sort of existing cracks, fracture
mechanics was established. Fracture mechanics plays an
extremely important role and is well accepted in both aca-
demic society and engineering society. In fact, fracture me-
chanics was initiated by Griffith [1] in 1921. Griffith
considered the phenomena of rupture and flow in solids
using a flat glass plate as an example. If a crack exists in a
continuum body, the maximum stress at the crack tip exhibits
some singularity and approaches infinity for any non-zero
applied loading. Of course, if the applied loading is very
small and the crack length is very tiny, the specimen will not
break. To solve such a contradiction, the energy release rate
and some related energy criteria were established that pro-
vided very reliable tools for engineers to evaluate the
strength of materials with cracks. Recently, many nanoma-
terials have been successfully fabricated and the size effect
of material strength has become more enhanced. For ex-
ample, if the grain size of nano-grained Cu decreases below
100 nm, the tensile yielding strength may become ten times
larger than that of coarse-grained copper [2]. Recently, it has
become possible to obtain flawless or near-flawless material.
The theoretical prediction of ideal material strength based on
chemical bonds also faces many challenges. For example,
the ideal strength of carbon fiber was predicted to be about
180 GPa, but the experimental measurements for carbon
whiskers or the fibers ranged from about 2% to about 10% of
the ideal strength. Although most scholars believed that the
departure was attributed to the existing defects in the fibers,
many uncertainties in the theoretical prediction for the ideal
strength were also very obvious. Many researchers used the
first-principle calculation to obtain the theoretical strength
values for some ideal materials. The basic criterion mainly
depended on the total energy release of the chemical bonds
breaking [3].
In the present work, based on the failure mechanism, the

failure process was modeled as a nonequilibrium process [4],
the changing rates of some microstructural parameters
played the role of the “flows” of the failure process, and their
conjugate forces served as the driving forces to induce the

failure. Thus, the thermodynamic evolution equations of the
failure process were established. With a stability analysis,
one could establish the condition for the loss of the stability
of the failure process, which was equivalent to the failure
criterion of the material. It was found that for the material
with an existing crack, the criterion gave the same result as
the energy release rate criterion. Based on the established
energy criterion and dimensional analysis, a general size
effect of the strength was also derived and compared with the
extensive experimental data. As another example, the stress-
strain relationship, the strength of the polycrystalline metals,
and the ultrafine crystalline metal with nanoscale growth
twins were used. It was found that the strength property was
indeed a global behavior of the specimen; i.e., when the
external loading reached its critical value, all of the points in
the specimen were correlated with each other.
This methodology for evaluating the material strength or

the failure property could also be defined as the virtual
process energy criterion (VPEC). First of all, one needed to
identify or assume the failure process, then choose some
microstructural parameters to describe the process, and then
derive the free energy change and establish the non-equili-
brium evolution equations. The failure properties such as the
strength of the materials could be determined from these
equations.
To explain the difference between the local and global

strength theory, the recent experimental results on the
strength of lithium niobite crystal specimens with different
sizes of notches obtained by our group were used.

2 Global non-equilibrium energy criterion

When considering a material specimen under some sort of
external loading, when the load is small, the specimen will
deform elastically without any energy dissipation, or the
entropy production. By increasing the external load, some
sort of defects will be created or activated in the specimen,
thus inducing entropy production. Based on the non-equili-
brium thermodynamics [4], it is known that the changing rate
of the microstructural defect parameters can be defined as the
“flow” of the process, and the conjugate driving force is the
derivative of the entropy production with respect to the
corresponding defect parameter. In other words, if the defect
parameters can be denoted as ai, the conjugate driving force
can be denoted as Fi. The first law of thermodynamics can be
expressed as:

Q U W W u s= d , = d , (1)i i

where dU is the internal energy increment. For our static
problems, dU might refer to the elastic strain energy, δW is
the environment work on the system, Πi, ui, Γ refer the force
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and displacements components along the boundary Γ, and δQ
is the heat supplied to the system.
For a non-equilibrium process, the state function, entropy

S, is introduced, and it can be divided into the exchange
entropy due to the exchange with the environment and irre-
versible entropy production, as shown below:

S S S S Q
T Sd = d + d ,   d = ,   d 0, (2)r i r i

which is also a state of the second law of thermodynamics.
By combining eqs. (1) and (2), one can derive

S S S S Q
T S T U W

T U W T S

d = d d = d = d 1 (d )

= 1 (d d ). (3)

i r

By introducing the definition of the Gibbs free energy, one
can write

G U W ST= . (4)

Its variation can be written in the form shown below:

G U u A ST

U u A u A T S S T

d = d ( )d d( )

= d d d d d . (5)

k k

k k k k

By combining the above equation with eq. (3), one can
establish

S T G u s S T T G

T

d = 1 d + d + d = 1 d ;

= 0, d = 0.
(6)i k k

k

It is very clear that in deriving eq. (6), it is assumed that
under the condition of keeping the external loading and
temperature constant, the entropy production can be ex-
pressed as the decrease of the Gibbs free energy.
According to the non-equilibrium thermodynamics, if the

entropy production is due to the defect creation and evolu-
tion, the thermodynamic driving force can be expressed in
the following form:

F S
a T

G
a= = 1 . (7)k

i

k k

Its conjugate “flow” can be expressed as:
a
t F T

G
a

d
d = = . (8)k

k k
k

k

In fact, for a general non-equilibrium process not very far
from equilibrium state, it is a well-known fact that the “flow”
is linearly related to its energy driving force [4]. At the least,
it is a well-known assumption. Thus, we could establish the
evolution equation of the damaged microstructures of the
material under the external loading. To determine the
strength of the material specimen, generally speaking, it is
not necessary to derive the solution of the evolution equa-
tion. If one can establish the stability condition of the evo-
lution equation, the critical condition gives the strength of

the material specimen. This was our basic idea of how to
evaluate the material strength. In other words, based on the
failure mechanism, by choosing a proper parameter to re-
present the “flow” of the system, one can establish the non-
equilibrium energy evolution equation, from which one can
obtain the critical failure conditions of the materials. Com-
pared with the classical strength theory, the energy criterion
is a global, rational criterion. In fact, for most cases, one can
decide if an equilibrium state is stable or not by using the
second-order variation of the Gibbs free energy. If it is larger
than zero, that means any perturbation will increase the free
energy, the state is stable, whereas, if it is smaller than zero,
any perturbation will make the free energy decrease, this
process will continue spontaneously, and such a state is un-
stable. Therefore, one can establish the strength criterion by
setting the second-order variation of the Gibbs free energy
equal to zero without need to consider the evolution equa-
tions with time. In the following sections, we use some ex-
amples to show how to use the formalism for material failure
problems.

3 Some examples

3.1 A crack in an infinite body

In such a case, the crack length can be treated as the mi-
crostructural parameter. Its rate can be treated as the “flow”:

a
t T

G
a T

E
a

d
d = = ( + ) = 0, (9)

where E refers to the elastic Gibbs free energy and Λ refers to
the resistant part of the free energy, such as the surface en-
ergy, and plastic dissipation energy. For the steady state, eq.
(9) gives the same result as the energy release rate criterion
given by Griffith. It is a well-known fact that the energy
release rate criterion is a global criterion. It depends on the
total released energy of a whole specimen. If one assumes
that the resistant part of the free energy Λ also depends on the
crack length, one needs to evaluate the second-order deri-
vative to judge when the crack propagation will lose its
stability.

3.2 Size effect of strength using the dimensional ana-
lysis

The strength of materials, especially brittle materials, de-
pends on their size. Generally speaking, the larger a speci-
men is, the smaller its strength is. Usually, it is assumed that
random defects exist in a specimen, and extreme statistics are
used to obtain the size effect of the strength. Additionally, the
Weibull distribution of the strength can be derived for brittle
materials. Extensive investigations have been carried out on
the size effects for different materials [5,6]. Based on the
energy criterion, and using the dimensional analysis [7], the
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author derived the size effect of the strength for general
materials.

3.2.1 The size effect of the strength of an infinite body with
a finite crack size
For a crack with the area S in an infinite body, the dimensions
of the length, mass, and time are set as L, M, and t, respec-
tively. The dimension of stress σ can be derived as ML−1t−2,
the strain ε is dimensionless, and the dimension of the re-
sistant energy R per unit area is Mt−2. We assumed that the
released energy per unit propagation area of the crack could
be expressed in the form shown below:

G f S= ( ) . (10)

Based on the energy criterion, the substitution of the di-
mensions of all the variables yielded,

G R f ML t L Mt= ( )( ) = . (11)1 2 2 2

From eq. (11), one could derive,

= 1, = 1
2. (12)

Thus, one could establish the relationship of the strength
with the crack area, as follows:

S , (13)1/2

which was the same as the result of the fracture mechanics,
and irrelevant to the material properties.

3.2.2 The size effect of the strength of a finite body
It is assumed that the free energy drop accompanies some
defect creation or propagation in the material can be ex-
pressed as follows:

G f V= ( ) , (14)

where V is the volume of a specimen.
For different failure mechanisms, the dimension of the

resistant energy may be different, which can be discussed as
follows.
(1) For a ductile material, the failure process is usually due

to the growth of voids. Thus, the dimension of the resistant
energy per unit volume is R=ML−1t−2. According to the en-
ergy criterion, one can establish

G R f ML t L ML t= ( )( ) = . (15)1 2 3 1 2

One can find α=1, β=0. This means that for such a failure
mechanism of the ductile material, no obvious size effect can
be found, which has also been proven with extensive ex-
perimental data.
(2) If the material fails due to some sort of area-defect,

such as a crack, the dimension of the resistant energy per unit
area is R=Mt−2. One can find

f ML t L Mt( )( ) = . (16)1 2 3 2

One can derive

= 1,  =1/3. (17)
Then

V . (18)1/3

(3) If the material fails due to the propagation of a line or
point defect, the dimension of the resistant energy per unit
length is R=MLt−2, and one can establish

f ML t L MLt( )( ) = . (19)1 2 3 2

One can obtain

= 1, =2/3, (20)

V . (21)2/3

In summary, if the power law of the size effect of the
strength is valid, based on the energy criterion, the general
power exponents are found by dimensional analysis. Based
on the published experimental data [8-11] for different ma-
terials, the power law of the size effect of the strength seems
well established, whereas the exponents can vary to a large
extent, as shown below.
(i) The size effect of the nominal strength of notched

specimens of graphite/epoxy fiber composite laminate
Bažant et al. [8] carried out the measurement of the size

effect of the nominal strength of notched specimens of gra-
phite/epoxy crossly and quasi-isotropic fiber composite la-
minates. Their results are shown in Figure 1 along with the
power-law fitting curve.
(ii) The size effect on the compressive failure of concrete
Vu et al. [9] investigated the size effect on the compressive

failure of heterogeneous materials. The materials were
mainly concrete materials. Their experimental results are
shown in Figure 2, along with the power-law fitting curve.
(iii) The size effect in ceramic fractures with different

toughening effects
For ceramics and ceramic composites with different

toughening mechanisms, such as crack deflection, Zdeněk
and Kazemi [10] carried out an investigation on the size
effect in a fracture. Their results are shown in Figure 3.
(iv) The size effect on the shear behavior of the rock joints
Bandis et al. [11] carried out experimental studies of the

size effect on the shear strength of rock joints. Their results
are shown as in Figure 4.

3.3 Some general characteristics of the plastic and
failure behaviors of polycrystalline metals

Plastic deformation and high ductility are the main char-
acteristics of polycrystalline metals. To satisfy both aca-
demic and engineering demands, extensive investigations
have been carried out from various aspects of view, such as
in the previous study conducted by Wang and Boehler [12].
Based on the methodology developed above, the author es-
tablished a quantitative plastic evolution model, from which
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one can derive some general characteristics for the plastic
and failure behaviors. Then focusing on the stress-strain re-

lationship and the strength of an ultrafine crystalline metal
with nanoscale growth twins, and the predicted results were
compared with the available experimental data.
It is well known that when a polycrystalline metal speci-

men is subjected to some sort of external loading, it will
deform elastically, and when the load reaches some critical
value, some favorable slip systems will become active and
induce plastic deformation. With the occurrence of the
plastic deformation, the elastic Gibbs free energy will
change, and energy dissipation related to the slip resistance
can be created. I derived the total free energy change using
eigenstrain methodology [13], as follows.
Considering a polycrystalline metal specimen under ex-

ternal loading ij
0, the elastic Gibbs free energy can be written

in the form shown below:

W v F u s= 1
2 d d . (22)

D ij ij i i0
0 0 0 0

When the load reaches a critical value, the irreversible
slips induce plastic deformation x( )ij

p , and the elastic Gibbs
free energy can be written in the form shown below:

W v

F u u s

v

n u u s

= 1
2 ( + )( + )d

( + )d

= 1
2 ( + )( + )d

( + )d , (23)

D ij ij ij ij ij
p

i i i

D ij ij ij ij ij
p

ij j i i

0 0

0 0

0 0

0 0

where u, ,ij ij i are the perturbations of the stress, strain, and
displacement due to the plastic strain. Using Green’s func-
tion, one can obtain [13]

C e e C T v

e e

x x x( ) = ( ) d ,

= ,
(24)ij ijkl D sth lnh pqmn kp qt sm

p

sth lnh sl tn sn tl

,

where T x x( )kp qt, is the second-order derivative of Green’s
function, Cijkl is the elastic moduli tensor, and sl is the
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Figure 1 (Color online) The graphite/epoxy laminates with different si-
zes were stretched at room temperature, and the relationships between the
strength and volume were fitted to a logarithmic scale. The black dots
represent the double-edge notched crossply specimens, and the blue dots
represent the single-edge notched quasi-isotropic specimens.
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Figure 3 (Color online) The logarithmic relationship between the
strength and volume of ceramic under Mode I fracture loading.
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Kronecker delta. The elastic Gibbs free energy change due to
the occurrence of the plastic deformation can be derived as
follows:

W W W v= = 1
2 (2 + ) d . (25)

D ij ij ij
p

0
0

In deriving eq. (25), we used the following conditions:

v v( )d = ( + )d = 0. (26)
D ij ij ij

p
D ij ij ij

0 0

Accompanying the plastic deformation, the slip resistant
force will do the work and increase the free energy of the
system. Since we only needed to consider some general
characteristics of the plastic deformation, we adapted a
general form for the resistant free energy in unit volume

x[ ( )]k l
p , which is a function of the plastic strains. The total

resistant free energy is

vx= [ ( )]d . (27)
D kl

p

The substitution of eqs. (25) and (27) into eq. (8) gives the
evolution equation of the plastic deformation

t
Wd

d = ( + ) = + d
d . (28)ij

p

ij
p ij ij

ij
p

0

For the equilibrium state, the evolution velocity is zero,
and one obtains

C e e C T vx x

+ d
d

= d
d + ( ) d

= 0. (29)

ij ij
ij
p

ij
ij
p ijkl sth lnh pqmn D kp qt sm

p

0

0
,

Eq. (29) is the same as the equilibrium stress condition,
from which one can determine the steady plastic deforma-
tion. It was not our intention to solve the equation for some
specific materials, but some special characteristics predicted
by eq. (29) were pursued.
First of all, if the uniform solution of the plastic de-

formation is assumed, the solution depends on the applied
loading and the slip resistant load. To determine the critical
load for the specimen failure, one can set the second-order
derivative of the total free energy to be equal to zero to obtain
the critical value of the plastic strain firstly, as follows:

( )
C e e C T vx x( )d d

d
= 0. (30)ijkl sth lnh pqmn D kp qt

ij
p,

2

2

Then, by substituting into eq. (29), one can obtain the
critical load. This is a similar approach to the spinodal ana-
lysis for many critical phenomena, such as nucleation and
crystallization problems [14]. To investigate the material
specific characteristics when the load approaches its critical
value ij

c, by writing = ; = +ij ij
c

ij ij
p

ij
c

ij
p0 , which

indicates a fluctuation from the average value, one needs
only to consider the behavior of the fluctuation field. The
author did not try to derive the detailed solutions, here the

main concern was determining how the plastic zone would
develop when the load approached its critical value.
The fluctuation ij

p is considered a small quantity and

x[ ( )]k l
p is expanded up to the second-order terms in power

of ij
p. By taking the Fourier transform of the last term in eq.

(29), and expanding the Fourier transformed T k( ) in powers
of k and keeping the terms to the second order, since it is not
interesting to consider the change of fluctuation distribution
shape profile, substitution of all the expressions into eq. (29)
yields

R C( ) ( ) + = 0, (31)p p2 2 2

where

R M x

C

T x e k x= ( )[ ( ) ] d ,

= 1
2

d
d( )

.
(32)

ij
p

2 3

3

3 =ij
p

ij
c

In deriving eq. (31), in order to estimate the special
properties predicted by the model, it was assumed that only
one component of plastic strain was not zero, and the fol-
lowing equations were also used:

T T x

T
T T

T x T x

T x

T x T x

k x

k
k

k k
k

k
k

x k x e k x

k x e k x

x k x e k x

( ) = ( )e d

= ( = 0)+
( )

+
( )

+

= ( )d + i ( ) ( ) d

( )[ ( ) ] d +

= ( )d ( )[ ( ) ] d + ,

kp qt kp qt

kp qt
kp qt kp qt

kp qt kp qt

kp qt

kp qt kp qt

k x

k k

, ,
i 3

,
,

=0

2
,

2 =0
2

,
3

,
3

2
,

2 3

,
3 2

,
2 3

C e e C T v

C e e C T v

T x x T x x

x x

x x

( ) = ( ),
d
d + ( )d =0,

( )d d
d( )

= 0,

ij
c

ij
p ijkl sth lnh pqmn sm

c
D kp qt

ijkl sth lnh pqmn D kp qt
ij
p

= ,

,

2

2 =

ij
p

ij
c

ij
p

ij
c

( )

d
d = d

d + d
d( )

+1
2

d
d( )

+ .

ij
p

ij
p ij

p

ij
p

ij
p

ij
p

=

2

2 =

2 3

3 =

ij
p

ij
c

ij
p

ij
c

ij
p

ij
c

(33)
Following the methodology of refs. [14,15], if one only

considers the general profile of the plastic zone, the detailed
variations along the angles can be neglected, and eq. (31)
becomes

R r Cd ( )
d ( ) + = 0, (34)

p
p2

2

2
2
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where the first-order derivative term is neglected, whichwill only
change the shape of the profile. Eq. (34) can be solved analyti-
cally, and its solution can be written in the form shown below:

r( ) ( / ), ( ) , (35)p 1/ 2 1/4

which means that plastic zone is divergent from the corre-
lation length when the load reaches its critical value. This is
also a proof that the failure behavior is a global property,
which means that all of the points are closely related to each
other at the critical point.

3.4 The stress-strain relationship and the strength of
the ultrafine crystalline metal with nanoscale growth
twins

For metal materials, generally speaking, the strength of a
metal material changes inversely with its ductility; i.e., for
those materials with high yielding or ultimate strength, their
ductility is generally low. Therefore, finding and fabricating
a metal material with both high strength and good ductility is
a long-held desire for material scientists. Recently, sig-
nificant progress has been made in this area. One metho-
dology involves fabricating ultrafine grain metal with
nanoscale growth twins inside the grains [16]. The effect can
be even more enhanced by creating a gradient nano-twinned
structure [17]. A clear understanding based on the large-scale
molecular dynamics simulation has been given in ref. [18].
According to the Hall-Petch relation, if the grain size of
crystalline metal is reduced, its yielding strength will in-
crease according to the power law with the exponent −1/2.
For metal with a nanoscale grain size, the dislocation
movement may be blocked efficiently by the grain bound-
aries. Thus, the material may have a much higher strength,
but its ductility will become much lower than that of a
coarse-grain counterpart. In contrast, for metal materials
with comparatively larger grains, by introducing growth
twins with tens of nanometer thicknesses inside the grains,
the dislocation can move favorably along the twin bound-
aries because the slip resistance across the boundaries (called
the hard slip mode) is three to five times higher than that
along the boundaries (called the soft slip mode) [19]. For
such a material structure, it was found that high strength and
good ductility could be achieved to some extent. Another
methodology involving fabricating a high-entropy alloy is
not discussed in this manuscript. To simplify the model for
the energy dissipation mechanism, it was assumed that in
each grain, only one type of nanoscale twin existed, and that
the slip displacement under the loading occurred first along
the twin boundary direction. Then, with the load increasing
and dislocations accumulating, the slip across the twins
might occur.
By considering one representative grain in a crystalline

metal under an applied loading ij
0 equal to the average stress,

if the average plastic strain is denoted as kl
p, the misfit plastic

strain inside the grain from its average value can be modeled
as the eigenstrain =kl k l

p
kl
p* [13] based on its average

value, and one can establish the elastic Gibbs free energy
change due to the eigenstrain as follows:

W v v= 1
2 [ + 2 ] d = 1

2 + 2 d , (36)ij ij ij
0 * 0 *

where ij represents the stress perturbation inside the grain
and is given as follows:

C S I
C S I

= ( )

= ( )( ), (37)
ij ijk l klmn klmn mn

ijk l klmn klmn mn
p

mn
p

*

for which the author followed the self-consistent approach in
order to consider the interaction among different grains.
Sklmn, Iklmn are Eshelby’s tensor for a spherical grain and the
Identity tensor, respectively, which are shown in Appendix.
For the grain metal with one type of nanoscale twins, since

the slip resistance along the twin boundary is far less than the
slip resistances across the twin boundary, the slip systems
will become active in order. Thus, the plastic strain inside the
grain can be expressed in the form shown below:

( )m n m n= + ,   = 1
2 + , (38)k l

p
k l kl k l k l l k

=1

3

=4

12

where m n,k l represent a unit vector normal to either the slip
plane or the twin boundary plane, and the slip direction.
During the slip process, the cohesive energy will create the
resistant force to block the slip, thus increasing the Gibbs
energy ( )p .
The total Gibbs free energy is the sum shown below:

G W= + , (39)
which is a function of the plastic strain and the external field.
By keeping the external field and the temperature un-
changed, the non-equilibrium evolution equation can be es-
tablished as follows:

( )

( )

t
G W

t
G W

d
d = = +

= + ,   1 3,

d
d = = +

= + ,   4 12,

(40)
ij ij ij

p

ij ij ij
p

1 1

1
0

1

2 2

2
0

2

where , 1 2 are the material constants, or mobility, and

= , 1 3,

= , 4 12.
(41)

p

p

1

2

Eq. (40) then becomes
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( )

( )

t C S I

t C S I

d
d = + = + ( ) + ,  1 3,

d
d = + = + ( ) + ,  4 12.

(42)
ij ij ij

p
ij ij ijkl k lmn klmn mn mn mn

p p

ij ij ij
p

ij ij ijk l klmn klmn mn mn mn
p p

1
0

1 1
0

=1

3

=4

12

1

2
0

2 2
0

=1

3

=4

12

2

We could only consider the equlibrium state, that is,

( )

( )

C S I

C S I

+ = 0,

+ ( ) +

  = 0, 1 3,

+ = 0,

+ ( ) +

     = 0, 4 12.

(43)

ij ij ij
p

ij ij ijkl k lmn klmn mn mn mn
p

p

ij ij ij
p

ij ij ijkl k lmn klmn mn mn mn
p

p

1
0

1

0

=1

3

=4

12

1

2
0

2

0

=1

3

=4

12

2

In fact, eq. (43) is the same as the equations derived by the
self-consistent approach established by many distinguished
scholars, as summarized in Mura’s book.
When the applied load reaches some critical value, the

preferable slip system becomes active, and with the increase
of the load, an increasingly orientation-preferable slip system
becomes active. Thus, the true orientation distribution of the
active slip system is evaluated with the increasing loading.
The self-consistent scheme is used to simulate the stress-

strain behaviors for nano-twinned copper. In the equilibrium
state, it can be assumed that each grain experiences a quasi-
static process when the applied loading is increased. Ac-
cording to eq. (43), one had the increment equations for an
isotropic elastic spherical grain

G v
v+2 1 2(4 5 )

15(1 ) = ,ij ij ij mn mn
p p0

=1

12

(44)
whereG is the shear modulus and v is the Poisson’s ratio. Eq.
(44) could be solved iteratively at a given applied loading
increment ij

0 for all potentially active slip systems in each

grain until a self-consistent solution of p is obtained. The
change of the macroscopic strain is calculated with

C= + . (45)ij ijk l ij ij
p1 0

Thus, the macroscopic stress-strain response is obtained.
The controlling factors of the self-consistent calculation

are the critical resolved shear stress for both the soft mode
and the hard mode, which are the function of the plastic shear
strain. In the implementation of the model, we adopted a
hardening law that provided only self-hardening

h
= + 1 exp . (46)p 0 1

1

Therefore, the linear approximation of p with respect to
the plastic shear strain can be expressed as:

h
h

= exp . (47)p
1

In the calculations, the orientation distribution was re-
presented by 4800 copper grains, for which the twin plane
orientation of each grain was described by three random
Euler angles. The diameter of each grain was assumed to be
400 nm so that the initial critical resolved shear stress of the
soft mode soft

0 was taken to be 67 MPa [18]. hard
0 could be

determined with the Hall-Petch relationship:

k d= + / , (48)hard
0

0 twin

where d twin represents the twin spacing. Figure 5 shows the
tensile strain-stress curves estimated by the self-consistent
model, along with the experimental results [18]. The main
trends of the strain-stress responses in terms of the twin
spacing were captured. The material constants for the self-
consistent calculation are as follows: Y=110 GPa, G=
46 GPa, v=0.34, τ0=15 MPa [19], k=1.6 GPa·nm1/2[20], hβ=
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 Experiment 100 nm
 Experiment 35 nm
 Experiment 15 nm
 Simulation 100 nm
 Simulation 35 nm
 Simulation 15 nm

Figure 5 (Color online) Comparison of the simulated and experimental
tensile stress-strain curves of nano-twinned copper with different twin
spacings (100 nm, 35 nm, 15 nm). The experimental data is available in ref.
[18]. The symbol X denotes the point whose strain was equal to the ex-
perimentally observed strain at the tensile strength. The corresponding
stresses for the three X were 540 MPa (experiment: 552 MPa) for dtwin=
100 nm, 852 MPa (experiment: 897 MPa) for dtwin=35 nm and 1136 MPa
(experiment: 1118 MPa) for dtwin=15 nm.
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1 GPa, and τβ
1=0.2.

If one is only interested in the ultimate strength, one can
take the second variation of the right-hand terms of eq. (42)
and make it equal to zero. One can then find the inflection
point in the Gibbs free energy curve that corresponds to the
ultimate strength point. One can find that for this case, the
ultimate strength can be reached when the slip strain ap-
proaches infinity.

3.5 Comparison of local strength criterion and global
strength criterion

Most empirical strength criteria are local criteria. whereas,
many criteria in fracture mechanics such as the energy re-
lease rate criterion and J-integral belong to the global
strength criterion. To show how different the prediction by
the local criterion and the global criterion, in this work two
cases will be considered: one is a hole with different sizes in
an infinite plate under the uniaxial tensile loading; the other
is our recent experimental results on the strength of lithium
niobite crystal specimens with different sizes of notches1).
The maximum stress strength criterion is used as the local
criterion, and compared with the present global strength
criterion.

3.5.1 A circular hole with different sizes in an infinite plate
under the uniaxial loading
(1) Local criterion based on the maximum stress
For an infinite plate with a circular hole under the uniaxial

loading (Figure 6(a)), the maximum stress will arise at the
boundary of the hole, and the maximum stress can be given
by the theory of elasticity as follows:

=3 = ; = 1
3 , (49)s c s cmax

which means that the strength does not depend on the size of
the hole.
(2) Global criterion based on the energy approach
According to the VPEC, one can assume that the specimen

breaks from the tiny crack at the boundary (Figure 6(b)), then
one can establish the energy criterion, which is the same as
the energy release rate criterion of fracture mechanics as
follow:

K F a a K
K

F a a
K

F a a

= ( + ) = ,

=
( + )

= ( ) .
(50)

I s IC

s
IC IC 1/2

It is very clear the strength should be proportional to
a( ) 1/ 2. The author has not found the experimental data in the
references to check the predictions, but it is not difficult to
obtain the experimental results.

3.5.2 The strength of single crystal lithium niobate
(LiNbO3) specimen with different notches
Recently, the strength properties of c-axis oriented LiNbO3

has been experimentally investigated by our group1). Three-
point bend testing was carried out with single-edge-notched
bend (SENB) specimens at room temperature. Polarized and
non-polarized SENB specimens with different depth of U-
shaped notch were prepared and tested. In this work the
experimental data will be used to verify the local and global
strength model.
(1) Specimens preparation
The single crystal LiNbO3 for the experiment was pro-

duced by using the Czochralski method in our laboratory.
Crystal orientation was determined by using the X-ray
crystal orientation tool. Bulk LiNbO3 polarization process
was carried out in muffle furnace. Temperature was in-
creased from room temperature to 1200°C in 20 h. Then, a
5.0 mA/cm2 direct current was applied in the c-axis direction
for 8 h. Finally, temperature was cooled down from 1200°C
to room temperature in 30 h. According to the classic three-
point bending specimen design requirements, the shape of
specimen was designed as Figure 7: 1≤W/B≤4, S=4W, where
W is width, and B is thickness. The sizes of W and B were
machined to about 4.0 and 1.7 mm, so the nominal span was
set as 16.0 mm. The depth of notch, a, was machined to
about 0.8, 1.3, 1.7, 2.0 mm by the wire cutting with a
thickness of 0.3 mm diamond line (Figure 8(a)). In order to
use the DICM to measure deformation, the test piece needs to
make a CSI professional speckle (Figure 8(b)). The length of
test specimens is shown as Figure 8(c).
(2) Experimental results
The obtained experimental results are shown in Tables 1

and 2.
(3) Local strength criterion based on the maximum stress
For the experimental setup shown in Figure 7, the max-

imum stress should arise the root of the notch, and the ap-
proximate relationship between the applied loading P and the

a  a 
∆a

(a) (b)

σσ

Figure 6 Schematic of a circular hole in an infinite plate (a) without and
(b) with the tiny crack under uniaxial loading.

1) G. Lian, B. Wang, and Y. Liu, Eng. Fract. Mech., 2020 (to be published).
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maximum stress has been derived [21], which can be written
in the form as:

P S
BW

a
a

W a
W a

W W f a W

f a
W

a
W

a
W

a
W

a
W

= = 3
2

+
+ 2

× 2 1 2 + 1 2 ( / ),

= 1.12 1.40 + 7.33

13.08 + 14 .

(51)

c
c

max 2 2

2

1 2

2

3 4

The critical stress is obtained as the average value of the
maximum stress at the failure point, which is = 294 MPac .
Then the predicted applied maximum loading versus a is
shown in Figure 9.
(4) Global strength criterion based on the energy approach
As explained above, the global energy criterion is the same

as the energy release rate or the stress intensity factor cri-
terion for a specimen with a crack. To simplify the deriva-
tion, it is assumed that a pre-existing tiny crack is located at
the tip of the notch. Then from the fracture mechanics, the
stress intensity factor can be written in the form as:

K P S
BW a a f a

W K

f a
W

a a
W

a a
W

a a
W

a a
W

= 3
2 ( + ) = ,

= 1.12 1.40 + + 7.33 +

13.08 + + 14 + .

(52)

I
c

IC2 0

0 0
2

0
3

0
4

It was found that K = 108.25 MPa mm ,IC
1
2 a0=0.126 mm,

the maximum relative error is less than 2%. The maximum
applied loading versus a can be obtained, and shown in
Figure 9, together with the experimental data.
It is very clear that the global energy criterion gives the

more reasonable results. One can imagine that if the critical
maximum stress is determined by the strength value of the
specimen without the notch, the local strength theory gives
much more unreasonable results.

4 Some concluding remarks

In this research, the main goal was to reconsider the strength
problem in mechanics. Based on the virtual failure me-
chanism, the evolution equation was established based on
rational nonequilibrium thermodynamics. Then, the strength
properties could be determined using the stability analysis. In
fact, if one is only interested in the strength value, one can
use the second-order variation of the free energy to find out

P  

S 

C-axis 

A-axis 

a 

B  

B-axis 

A-axis 

W  

Figure 7 Experimental setup and geometry of SENB specimen.

(a)

(b)

(c)

Figure 8 (Color online) (a) Specimens with different depth of U-shaped
notch, (b) specimens with speckle, (c) the size of specimens.
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the unstable equilibrium point as shown in nonequilibrium
thermodynamics without need to consider the evolution
equations [4]. From such an energetic idea, it was very clear
that the strength property was a global behavior, and at the
critical state, all of the points in the specimen were all closely
correlated. It was not my purpose to show that all the con-
ventional local strength theories are incorrect. In fact, for
example, the stress intensity factor criterion in fracture me-
chanics proposed by Irwin [22] was a very clever idea. It is a
local criterion. However, it is also directly related to the
global criterion, the energy release rate criterion. I only
wanted to demonstrate that the strength was intrinsically a
global property, and that the fundamentals of the local
strength criteria based on the maximum stress, stress com-
bination, and other factors might need revision. From com-
parison with our experimental data of the lithium niobite
specimens with notches of different sizes, the pre-existing
tiny crack at the root of the notches seems the key factor, in
fact, it is not the main purpose here. Whereas it is very clear
that many fracture criteria, such as the energy release rate

criterion and J-integral criterion should give the same results
as the energy theory developed here, therefore we adopted
the fracture mechanics analysis to deal with the strength
problem for simplification, and the results are satisfactory,
which means that the pre-existing defect assumption should
be reasonable, since at least the real materials are not real
continuum. To satisfy the engineering demands, it is needed
to develop some methodologies based on rational thermo-
dynamics. In fact, based on the energy methodology, one can
do many reasonable predictions for different problems [23-
31].
Finally, one should notice that the examples considered in

this work are familiar to the scholars in this area, and they are
only the explanations for the main ideas of the author. It is
the main purpose to find out the intrinsic characteristics of
material failure, establish its thermodynamic foundation, and
to help researchers to formulate their strength theories on a
rational base, instead of depending on some empirical
parameters or criteria.
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Figures 6 and 9, and Mr. Jun Hui, my PhD student, helped me to collect the
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Appendix Eshelby’s tensor for spherical inclu-
sion and identity tensor

For spherical grain, Eshelby’s tensor only depends on Pois-
son’s ratio as follows:

S S S

S S S S S S

S S S

= = = 7 5
15(1 ) ,

= = = = = = 5 1
15(1 ) ,

= = = 7 5
15(1 ) ,

(a1)

1111 2222 3333

1122 2222 3311 1133 2211 3322

1212 2323 3131

where is Poisson’s ratio, and the identity tensor is

I = 1
2( + ), (a2)ijk l ik jl il jk

where ij is Kronecker delta.
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