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Composition-gradient electrode material (CGEM) is one of the most promising materials in lithium-ion battery, and this paper studies
its performance from the stress analysis. The finite deformation theory and the stress-induced diffusion hypothesis are adopted to
establish the constitutive equations, and the nonlinear influence of finite deformation is considered. The aim is to investigate diffusion-
induced stresses (DISs) generated in a cylindrical composition-gradient electrode with the slope of −0.5 for Young’s modulus E(R).
Compared with stress distributions in a homogeneous electrode, CGEM is able to make the stress fields smaller and flatter and
improve the state of charging (SOC). Then we change the elastic modulus of electrode materials from 10GPa to 150GPa gradually,
and those advantages still exist. Finally, diffusion-induced buckling of cylindrical electrodes is analyzed and CGEMs make the
cylindrical electrode more difficult to buckle. Therefore, many electrode materials can be made into CGEMs to prevent the electrode
from cracking. The results can provide a theoretical guidance for the design of CGEMs.
© 2019 The Electrochemical Society. [DOI: 10.1149/2.1031904jes]
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The lithium-ion battery is one of the most promising secondary
cells. In recent years, it has been the stored-energy apparatus of many
portable electronic devices and electric vehicles due to its long cycle
life, high-energy capacity, low self-discharge rate, high open circuit
voltage and its environmental friendly merit.1,2 From a mechanical
point of view, lithium-ion batteries have their own weaknesses. Dur-
ing charging and discharging, the volume of electrodes will change
with the lithiation and delithiation. As anode materials, silicon has the
highest Li-ion intercalation capacity (4200mAh/g) which is about ten
times of that of graphite materials.3,4 But a silicon anode will generate
about 400 percent of volume deformation in the electrode when the
electrode is completely lithiated. Such large volume deformation will
leads to large strain energy. The accumulation of strain energy may
make the silicon electrode crack or degrade electrochemically.5–7 As
cathode materials commonly used now, LiCoO2 cathodes can generate
large stresses when it is constrained, and these stresses may fracture
electrodes.8

Excessive stresses in electrode are the main reason that make the
electrode failure. The stresses produced by deformation that can crack
the electrode are called diffusion-induced stresses (DISs). Therefore,
sufficient analysis of DISs can enable us to better protect the elec-
trode. Prussin started the initial research of DISs in silicon wafer.9

Since then, more and more researchers have shown great interest in
the study of DISs in various compositional solids. Zhang10 investi-
gated DISs in layered Li-ion battery electrode plates. They found that
the material of current collector should be as soft and flexible as possi-
ble to reduce DISs. Yang et al.11 analyzed the DISs caused by insertion
deformation in a spherical electrode particle under potentiostatic and
galvanostatic conditions. Rutooj Deshpande et al.12 investigated DISs
in nanowire electrode structures under plane strain condition and gen-
eralized plane strain condition. Song et al.13 worked out the analytical
solutions of DISs in a cylindrical multilayer electrode and provided
many design insights for LIBs. Li et al.14 considered the dislocation
effect on diffusion-induced stress in electrodes and also got the analyt-
ical expressions of DISs. Zhang et al.15 studied the effect of reversible
electrochemical reaction on DISs and diffusion in a cylindrical elec-
trode. They compared solutions of reaction induced stress with that
of diffusion induced stresses in electrodes and got that the former is
larger. Christensen and Newman16 and Zhang17 introduced the chem-
ical potential coupling for diffusion and stresses. Woodford et al.18

studied the electrochemical shock of intercalation electrodes and ana-
lyzed the fracture mechanics failure in electrode particles. Pallab Barai
et al.19 developed a stochastic computational methodology to capture
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the large deformation and mechanical degradation in high-capacity
anode materials.

The studies above all used the linear elastic theory to analyze DISs
and ignored nonlinear influence of large deformation. Many other
scholars have made achievements in these fields. Zhao et al.20 for-
mulated a large plastic deformation theory based on nonequilibrium
thermodynamics. They mainly studied the effect of plastic yielding
on the magnitude of DISs in silicon electrodes. Cui et al.21 intro-
duced the development of a new stress-dependent chemical potential
for solid-state diffusion under multiple driving forces in tensor form
and investigated the influence of plastic deformation in electrodes.

Recently many researchers studied other factors that affect the
stresses of the electrode and how to reduce these stresses. Li et al.22

studied the influence of local velocity on diffusion-induced stress in
large-deformation electrodes and they found that this influence could
negligible for the immobile boundary condition. Duan et al.23 in-
vestigated a coupled electrochemical–thermal–mechanical model for
spiral-wound Li-ion batteries. Weng et al.24 analyzed DISs in their
own negative Poisson’s ratio electrode under different operations. It
provides a new idea for the selection of electrode materials.

This paper focuses on the material itself. So many studies are look-
ing for the substitution and improving the preparation technology
in LIB anode materials. Among advanced materials substituted for
LiCoO2, composition-gradient materials shows better electrochem-
ical performances in many ways.25,26 We focuses on stress anal-
ysis of composition-gradient materials under different conditions.
Compared to those above single homogeneous materials, the studies
have synthesized two kinds of new-style composition-gradient mate-
rials as spherical electrode particle, which are LiMn1.87Ni0.13O4 and
Li1.2(Mn0.62Ni0.38)0.8O2.27,28 The concentration of Ni increases and
that of Mn of the former material decreases from the core to the
surface and the latter material has an opposite trend. Both of them
have excellent characteristics in the electrochemical performance. The
composition-gradient electrode LiMn1.87Ni0.13O4 has a capacity reten-
tion of 90.2% after 200 cycles, while the LiMn2O4 was only 57.8% in
the same test conditions. Moreover, the capacity of the composition-
gradient electrode Li1.2(Mn0.62Ni0.38)0.8O2 retained 97% after 100 cy-
cles relative to the first cycle at a rate of C/2. However, a few of liter-
atures focus on the mechanical and electrochemical properties about
these new composition-gradient materials. It is difficult to obtain the-
mechanical and electrochemical properties of these two composition-
gradient electrodes.

The main work of this paper is to study the difference be-
tween composition-gradient electrodes and homogeneous electrodes
in cylindrical shape. We try to use the mechanical and electrochemical
parameters of LiMn2O4 as the properties of homogeneous electrodes.
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The compositions of the composition-gradient material vary contin-
uously from the center to the surface. Therefore, we assume that the
composition-gradient electrodes are homogeneous electrodes whose
properties change continuously from the electrode center to its sur-
face. Besides, we focus on the elastic modulus. We just change the
elastic modulus, and we treat the material that changes the modulus of
elasticity as different materials. Then we get how gradient influence
on the different of DISs, SOC and axial force that produce in inhomo-
geneous and homogeneous electrodes at various elastic modulus. In
addition, we consider the nonlinear influence of large deformation and
the interaction between diffusion and stresses. We choose nonlinear
finite deformation theory mainly because it contains nonlinear terms.
When the higher order quantities are ignored, the nonlinear finite de-
formation theory can be reduced to the linear elastic small deformation
theory. So our model is more general because it involves nonlinear de-
formation. After this, composition-gradient materials will be extended
to a wider range of materials and provide a theoretical guidance for
the design of composition-gradient electrode materials.

Basic Theory

Mechanical equilibrium.—The electrode may generate large vol-
ume deformation when lithium-ions diffuse into or out of the electrode.
To better describe the problem, there are two descriptions which are
Lagrangian form and Eulerian form. Lagrangian form is based on the
initial configuration, while Eulerian form is based on the current con-
figuration. In the cylindrical electrode with an initial radius of R0, the
coordinate system in the Lagrangian description is (R, �, Z). And
the corresponding coordinate system in the Eulerian description is
(r, θ, z) after a period of time t. Based on the above definition, the to-
tal deformation gradient tensor in the cylindrical coordinate is defined
as

F =
⎡
⎣ F11

F22

F33

⎤
⎦ =

⎡
⎣ 1 + ∂u

∂R
1 + u

R
1 + ∂w

∂Z

⎤
⎦ , [1]

where u is the radial displacement, and w is the axial displacement. The
total deformation F includes elastic part Fe and inelastic part Fi. Here,
the plasticity of the composition-gradient electrode is not considered.

F = Fe Fi. [2]

Lithium-ions diffusion causes the inelastic volume expansion, so
it is assumed to be isotropic. So the inelastic deformation gradient
tensor is adopted as follow.29

Fi= (�i )
1
3 I, [3]

where I is the unit tensor and �i is the inelastic volume ratio. The
inelastic volume ratio is dominated by the lithium-ion concentration
C based on the Lagrangian description. So it is expressed as

�i= 1 + �C, [4]

where � is the diffusion partial molar volume.
The components of the elastic deformation gradient tensor Fe is

given as

Fe = F
(
Fi

)−1

=

⎡
⎢⎢⎣

(
1 + ∂u

∂R

) (
�i

)− 1
3 (

1 + u
R

) (
�i

)− 1
3 (

1 + ∂w
∂Z

) (
�i

)− 1
3

⎤
⎥⎥⎦ ,

[5]

The total Green-Lagrange strain tensor E can be written as

E =1

2

(
FTF-I

)
, [6]

Combined with Eq. 2, the elastic Green-Lagrange strain tensor Ee

and the inelastic Green-Lagrange strain tensor Ei can be expressed as

Ee = 1

2

(
(Fe )TFe-I

)
, [7]

Ei = 1

2

(
(Fi )

T
Fi-I

)
, [8]

where I is the second order unit matrix.
Then we need to get the stresses of the electrode. The non-zero

components of the first Piola-Kirchhoff stress σ0 can be determined
by

σ0 = ∂W

∂F
= ∂W

∂Ee

∂Ee

∂Fe

∂Fe

∂F
, [9]

where W is the elastic strain energy density. It is assumed as a function
of Green–Lagrange strain tensor21,30

W = �i E

2(1+υ )

{
υ

1−υ
[tr (Ee)]2 + tr (EeEe)

}
, [10]

where E and υ are the Young’s modulus and Poisson’s ratio of the
composition-gradient electrode, respectively.

Substituting Eqs. 4 and 10 into Eq. 9, we can obtain

σ0 = �i E

2(1+υ )

[
2υ

1 − 2υ
tr (Ee) +2Ee

]
Fe

Fi
, [11]

Combining Eqs. 1, 3, 4, 5 and 7 with Eq. 11 leads to

σ0
R = (1 + �C)

E

(1 + υ ) (1 − 2υ )

× [
(1 − υ ) Ee

R + υ
(
Ee

� + Ee
Z

)] 2Ee
R + 1

1 + ∂u
∂R

, [12]

σ0
� = (1 + �C)

E

(1+υ ) (1 − 2υ )

× [
(1−υ ) Ee

� + υ
(
Ee

R+Ee
Z

)] 2Ee
� + 1

1 + u
R

, [13]

σ0
Z = (1 + �C)

E

(1 + υ ) (1 − 2υ )

× [
(1−υ ) Ee

Z + υ
(
Ee

�+Ee
R

)] 2Ee
Z + 1

1 + ∂w
∂Z

, [14]

where σ0
R, σ0

� and σ0
Z are components of the first Piola-Kirchhoff stress

σ0. Ee
R, Ee

� and Ee
Z are components of the elastic Green-Lagrange strain

tensor Ee given as

Ee
R = 1

2

[ (
1 + ∂u

∂R

)2

(1 + �C)
2
3

−1

]
, [15]

Ee
� = 1

2

[ (
1 + u

R

)2

(1 + �C)
2
3

−1

]
, [16]

Ee
Z = 1

2

[ (
1 + ∂w

∂Z

)2

(1 + �C)
2
3

−1

]
, [17]

The velocity of atomic diffusion is much slower than that of elastic
deformation, so the quasi-static mechanical equilibrium is assumed.31

Then, in the absence of body force, the equations of mechanical equi-
librium in the cylindrical coordinate are

∂σ0
R

∂R
+ σ0

R − σ0
�

R
= 0, [18]
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∂σ0
Z

∂Z
= 0. [19]

The mechanical equilibrium behavior is governed by Eqs. 12∼19.

Diffusion equation.—According to the law of mass conservation,
the diffusion kinetic equation in the Lagrangian description should be
expressed as

∂C

∂t
+ ∂ (RJ )

R∂R
= 0, [20]

whereC is the concentration of lithium-ions in the Lagrangian descrip-
tion. J is the radial diffusion flux of the solute based on the Lagrangian
description. Moreover, the true concentration of lithium-ions c in the
Eulerian description is related to C and can be expressed as follow

C = c · det (F) = cFRF�FZ , [21]

where FR, F� and FZ are components of the total deformation gradient
tensor F

The true diffusion flux j in the Eulerian description is a function of
the chemical potential μ.

j = − cD

RgT

∂μ (r, c)

∂r
, [22]

where D is the diffusivity of Lithium-ions in the electrode, Rg is the
gas constant and T is the temperature. Combining Eq. 21 with Eq. 22,
the diffusion flux J in the Lagrangian description can be written as

J = − CD

RgT

1

FR
2

∂μ (R,C)

∂R
, [23]

where μ(R,C) is expressed by the Lagrangian coordinates.
Considering many factors, the form of the chemical potential per

mole can be expressed as32

μ (r, c) = μ0 + RgT log (γc) − �σm + �w, [24]

where μ(r, c) is the chemical potential based on the Euler description,
μ0 is a reference value, γ is the activity coefficient and σm is the hy-
drostatic stress. Here, we let γ equal to 1. w being the strain energy
density in the Eulerian description. The strain energy density repre-
sents the deformation energy stored on the surface of the solid due to
elastic deformation introduced by the electromechanical interaction
and surface perturbations. It expressed as

w = W

det(Fi )
= E

2(1+υ )

{
υ

1−υ
[tr (Ee)]2 + tr (EeEe)

}
, [25]

From Eqs. 21∼23, we can obtain

J = jF�FZ . [26]

Substituting Eq. 24 into Eq. 22 and combining Eq. 26, the diffusion
flux J is formulated as

J = −D
F�FZ

FR

∂

∂R

(
C

FRF�FZ

)

+ 1

RgT

CD

FR
2

(
∂�

∂R
σm + ∂σm

∂R
� − ∂�

∂R
w − ∂w

∂R
�

)
, [27]

where the diffusion partial molar volume � could be a function of the
radial coordinate R in the Lagrangian description. And the hydrostatic
stress σm is expressed as

σm = 1

3
(σR + σ� + σZ ) , [28]

while the first Piola-Kirchhoff stress σ0 and the Cauchy stress σ have
a relationship as follow

σ0 = det (F) fσ [29]

in which f = ∂X
∂x = I − ∂u

∂x

Therefore, the Cauchy stress σ can be denoted by the first Piola-
Kirchhoff stress σ0 as

σ = 〈σR, σ�, σZ〉 =
〈

1(
1 + u

R

) (
1 + ∂w

∂Z

)σ0
R,

1(
1 + ∂u

∂R

) (
1 + ∂w

∂Z

)σ0
�,

1(
1 + ∂u

∂R

) (
1 + u

R

)σ0
Z

〉
. [30]

The diffusion kinetic behavior is dominated by Eqs. 20, 27 and 30.
In a cylindrical composition-gradient electrode, the material prop-

erties vary along the radial direction. However, these properties remain
the same along the azimuthal and the axial direction. Therefore, the
elastic modulus E is the functions of radial coordinate E(R) in the
Lagrangian description.

Boundary and initial conditions.—We assume that the radial sur-
face of the cylinder is stress-free and the cylindrical center has no
displacement, that is

σ0
R (R0,t ) = 0, [31]

u(0, t ) = 0, [32]

Potentiostatic operation is set to a constant concentration Cmax at
the surface, that is the formula

C(R0, t ) = Cmax, [33]

while the boundary conditions for galvanostatic operation are given
by

J (R0, t ) = in

F
, [34]

where in is the applied current density and F is the Faraday’s constant.
At the center of the cylinder, the diffusion flux J is given as

J (0, t ) = 0, [35]

Constraints are imposed on the top and bottom faces of the cylinder
to constrain the deformation of the ends in the axial direction. We
assume that such constraints may not prevent the ends of the cylinder
from moving in the lateral direction, that is w = 0 on the faces of the
ends.

At last, we adopt Li-free, stress-free and displacement-free initial
conditions in the cylinder, that is

C(R, 0) = 0, [36]

u(R, 0) = 0. [37]

Results and Discussion

It’s almost impossible to get the analytical solution of equations
above, so we solve numerically the system of equations described in
Basic Theory section by using the finite element method (COMSOL
Multiphysics). As mentioned in previous papers, it is difficult to obtain
the mechanical and electrochemical properties of the composition-
gradient electrodes. The exact functions of E (R) have not been fully
understood and studied. Following the previous assumption,29 these
functions are linear with several different slopes of radial coordinate
R. Once the properties are constant along the radial coordinate, the
inhomogeneous theory in Basic Theory section reduces to the theory
in a homogeneous cylindrical particle of LiMn2O4. It is assumed that
E(R) is simple linear functions of R given as follow

E (R) = k1

(
R

R0
− 1

2

)
E0 + E0 [38]

where k1 is respectively dimensionless slopes of the Young’s modulus.
One previous paper has drawn the conclusion that the optimal slope
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Table I. Material properties and operating parameters of
LiMn2O4.29

Parameter Symbol Value

Young’s modulus E0 10GPa
Poisson’s ratio υ 0.3
Surface lithium-ion concentration Cmax 2. 29 × 104 mol m−3

Diffusion partial molar volume �0 3. 497 × 10−6 m3 mol−1

Gas constant Rg 8.31 J mol−1 K−1

Diffusion coefficient D0 7.08 × 10−15 m2 s−1

Temperature T 273 K
Faraday’s constant F 96485.3365 A s mol−1

Cylinder radius R0 2.25 × 10−6 m

for inhomogeneous E(R) is −0.5 for LiMn2O4 which elastic modulus
is 10GPa,31 so in our paper k1 is −0.5. According to our research,
D(R) only influences the velocity of diffusion. It has little influence
on stresses. And this paper mainly considers the influence of elastic
modulus, so the results of D(R) are not listed.

The main purpose for this paper is study the effect of gradient on
DISs of different materials in a cylindrical composition-gradient elec-
trode during potentiostatic operation. Here we only focus on the elastic

modulus, so we use the material properties and operating parameters of
LiMn2O4 and only change the elastic module from 10GPa to 150GPa
gradually. By this assumption, different materials with different elastic
modulus are represented. Then we get how gradient influence on them.
The material properties of LiMn2O4 are listed in Table I,29 which will
be also used as reference values in a cylindrical composition-gradient
electrode.

Here, the state of charging (SOC), is used to represent the percent-
age of full capacity and to evaluate the charging process of the cylinder.
This is also an important research content of this paper. Thus, SOC is
given as31

SOC =
∫ R0

0 CR dR∫ R0
0 Csteady−stateR dR

, [39]

And the normalized time τ is represented as

τ = Dt/R2, [40]

The elastic modulus E0 we choose 10GPa, 50GPa, 100GPa,
150GPa. These four values basically represent the range of elastic
modulus of the electrode material from low to high. Moreover previ-
ous papers that studied the LiMn2O4 have selected 10GPa, 40GPa and
190 GPa29,34 as its elastic modulus values.

Figure 1. Illustrations of lithium-ion concentration (a), radial stress (b), hoop stress (c) and axial stress (d) of homogeneous and inhomogeneous of E0 = 10GPa
at different normalized time.
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Lithium-ion concentration and stress fields.—Solid lines plot the
results of an inhomogeneous cylindrical particle, while dashed lines
plot the results of a homogeneous cylindrical particle. In addition, if
not specified, all results in this part follow this rule.

Fig. 1 illustrates lithium-ion concentration and stress fields for ho-
mogeneous and inhomogeneous elastic modulus E(R) of E0 = 10GPa
at different normalized time. In Fig. 1a the influence of inhomogeneous
elastic modulus E(R) is not obvious at most normalized times, but it
can make the concentration at the center reach the maximum faster,
which means it is easier to fill and has the higher charging efficiency.
In addition, the lithium-ion concentration exceed the maximum con-
centration. This is mainly due to E(R). The hydrostatic stress σm at the
steady-state is non-uniform pressure stress in the composition-gradient
electrodes, while σm is non-uniform in the homogeneous electrodes.
At the steady-state, the hydrostatic pressure is lower at the center and
higher at the surface in the inhomogeneous electrodes. The existence
of non-uniform hydrostatic pressure leads to the non-uniform chemical
potential according to Eq. 24. Therefore, the distribution of concen-
tration is non-uniform at the steady-state according to Eq. 27. The
hydrostatic pressure can inhibit lithium-ion diffusion. Therefore, the
lower hydrostatic pressure means the higher lithium-ion concentra-
tion. The boundary condition is that lithium-ion concentration is Cmax

at the surface. So the lithium-ion concentration exceed the maximum

concentration at steady-state. In Fig. 1b, radial stress of inhomoge-
neous material is a little lower than that of homogeneous material, but
it has a small value and is in the same direction along the radius, not the
main stress that causes fracture. In Fig. 1c, negative gradient E(R) can
effectively decrease the magnitudes at the surface of the electrode and
reduce the positive hoop stress at the center, especially at the begin-
ning. It is generally believed that the main reason leading to electrode
materials fracture is hoop stress,8,18,35,36 so negative gradient E(R) can
prevent the electrode from cracking. In Fig. 1d, at the center of the
electrode, inhomogeneous E(R) hardly affects the axial stress values
at the beginning and then makes a great difference that gradient E(R)
increases the magnitudes of axial stresses. Nevertheless, at the surface
of the electrode, negative gradient E(R) can effectively decrease the
magnitudes of axial stresses, especially at the beginning. In addition,
the stress distributions, especially the axial stress, change unevenly
along the coordinate R finally, while the stress distributions are flat in
a homogeneous electrode at the same time. These results are consistent
with the simulation results of References 31,33.

Fig. 2 illustrates lithium-ion concentration and stress fields for ho-
mogeneous and inhomogeneous elastic modulus E(R) of E0 = 50GPa
at different normalized time. Similar to Fig. 1, the results are almost
identical. In Fig. 2a the concentration will reach the maximum faster
for inhomogeneous elastic modulus E(R), which means that it has the

Figure 2. Illustrations of lithium-ion concentration (a), radial stress (b), hoop stress (c) and axial stress (d) of homogeneous and inhomogeneous of E0 = 50GPa
at different normalized time.
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Figure 3. Illustrations of lithium-ion concentration (a), radial stress (b), hoop stress (c) and axial stress (d) of homogeneous and inhomogeneous of E0 = 100GPa
at different normalized time.

higher charging efficiency. In Fig. 2b radial stress of inhomogeneous
material is a little lower than that of homogeneous. In Fig. 2c, at the
surface of the electrode, negative gradient E(R) can effectively de-
crease the magnitudes and the difference between center and surface
of hoop stresses. So gradient E(R) can prevent the electrode damage.
In Fig. 2d, at the center of the electrode, inhomogeneous E(R) make a
great difference that gradient E(R) increases the magnitudes of axial
stresses, but can effectively decrease the magnitudes of axial stresses
at the electrode surface. However, there are still some differences, the
concentration at the center of the electrode increases more and more
rapidly, indicating that the larger the elastic modulus, the faster the
charge will be.

Fig. 3 illustrates lithium-ion concentration and stress fields for
homogeneous and inhomogeneous elastic modulus E(R) of E0 =
100GPa at different normalized time. The elastic modulus becomes
large and the trend of the results in this case is similar to that in
previous cases. In Fig. 3a, compared to the previous figures, the in-
fluence of inhomogeneous elastic modulus E(R) is more obvious, it
makes the concentration at the center increase slower at the begin-
ning and reach the maximum faster finally. However, we also can
observe that the concentration at the center cannot reach the maxi-
mum for homogeneous material at the high elastic modulus E0, while
it can reach for the maximum inhomogeneous material. As for the
results of the three stresses, they are same as before largely. In Fig. 3c,

the inhomogeneous elastic modulus reduces the hoop stress and ef-
fectively prevents the electrode from cracking. However, with the
increase of elastic modulus E0, the maximum value of each stress
also increases. It can be concluded that even with the increase of
elastic modulus, inhomogeneous material can have a good protec-
tive effect on the electrode and can improve the percentage of full
capacity.

Fig. 4 illustrates lithium-ion concentration and stress fields for
homogeneous and inhomogeneous elastic modulus E(R) of E0 =
150GPa at different normalized time. The trend of the results in this
case is similar to that in previous cases. In Fig. 4a, the influence of inho-
mogeneous elastic modulus E(R) makes the concentration at the center
increase slower at the beginning and reaches the maximum faster fi-
nally. However, we can observe that the concentration at the center
cannot reach the maximum for homogeneous material at the high E0,
and it can neither reach for the maximum inhomogeneous material. So
we know that inhomogeneous elastic modulus E(R) can improve the
percentage of full capacity while cannot reach the maximum due to
the elastic modulus is too large. As for the results of the three stresses,
they are same as before largely. In Fig. 4c, the inhomogeneous elastic
modulus reduces the hoop stress and effectively prevents the elec-
trode damage. However, with the increase of elastic modulus E0, the
maximum value of each stress also increases. In addition, different
from when the elastic modulus is small, when the elastic modulus is
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Figure 4. Illustrations of lithium-ion concentration (a), radial stress (b), hoop stress (c) and axial stress (d) of homogeneous and inhomogeneous of E0 = 150GPa
at different normalized time.

high, the stress distributions change unevenly along the coordinate R
finally in a homogeneous electrode, while the stress distributions are
more even in an inhomogeneous electrode. It can be concluded that
even with the increase of elastic modulus, inhomogeneous material
can have a good protective effect on the electrode.

The state of charging (SOC).—In order to prove that the gradient
material can improve the SOC of the electrode under various elastic
modulus, the following results are obtained (here, we are considering

the deformation of the electrode and do the correction), as shown in
Fig. 5. Firstly, with the increase of elastic modulus, the charging time
of the electrode is gradually shortened, and the maximum SOC of the
electrode is gradually decreased. Secondly, under any elastic modulus,
inhomogeneous materials can improve the final SOC of the electrode,
but it is not obvious when the value of the elastic modulus is smaller
than 10GPa and larger than 150GPa. Finally, we can also found that
the value of SOC cannot be more than ninety percent when the elastic
modulus is larger than 150GPa, even if we use the inhomogeneous

Figure 5. Illustrations of SOC of homogeneous and inhomogeneous of each E0 at different normalized time.
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material as electrode. Therefore, the elastic modulus has a great influ-
ence on the storage capacity of the electrode.

Analysis of diffusion-induced buckling of cylindrical
electrodes.—According to the results of the previous section, it
can be seen that there is a great difference in the distribution of
axial stress between composition-gradient materials and homoge-
neous materials. Here we consider the electrode particles as slender
cylinders. In the mechanical, this is a plane strain problem. There
are some papers considering that the constraint conditions of the
cylindrical electrode is a free end and a fixed end. However, in the
actual situation, the constraint conditions of the electrode is uncertain.
The constraint condition might be that both ends of the electrode
are fixed ends. When both ends of the cylinder electrode are fixed
in axial direction, the axial force on both ends will be increased as
the charging process goes on. When the axial force at both ends of
a column of a certain length increases to the critical axial force of
bending, the column will lose stability and undergo bending failure.
It is necessary to study the effect of composition-gradient material on
the buckling of cylindrical electrode.

The axial force on both ends of the cylinder is

FZ = 2π

∫ R0

0
σZ r dr, [41]

where σZ is the axial stress, it can be obtained from result at the con-
dition of E0 = 10GPa

In order to effectively judge the critical axial force of compression
bending of slender cylinder, Euler bending criterion is selected here.
The formula is

Fcrit = π2EI

(χL)2 . [42]

Where Fcrit is critical axial force that causes the column to bend. E is
the elastic modulus of material and E = 10GPa. I is the moment of
inertia of a cylindrical section

I = πR4

4
, [43]

and EI is the bending stiffness of the cylindrical electrode material. χ
is the coefficient considering the constraint conditions at both ends. L
is the length of the electrode and L = 20R.

The above bending criterion is for static pressure bending model,
and this chapter develops the bending criterion to consider dynamic
process. Therefore, it is assumed that the electrode charging process
is a slow process, which ensures that the electrode is suitable for the
improved bending criterion. In addition, the displacement in the radius
of the electrode increases with time during the charging process. So
the radius is modified as follow

R = R0

(
1 + ∂u

∂r

)
. [44]

The charge state of the electrode Capacity is defined as follows

Capacity = 2π
∫ R0

0 Crdr

2π
∫ R0

0 rdr
. [45]

It represents the charging state of the electrode in the reference con-
figuration.

In practice, the constraint conditions of both ends of the electrode
is uncertain. Therefore, in order to better simulate electrode buckling
under various conditions, three boundary conditions were selected.
The first condition is that both ends of the electrode are pinned ends
and it means χ = 1. The second condition is that both ends of the
electrode are a pinned end and a fixed end and it means χ = 0.7.
The third condition is that both ends of the electrode are fixed ends
and it means χ = 0.5. Under these conditions, a small disturbance
will cause the cylinder to buckle when the axial force FZ exceeds its
critical stress Fcrit . For the electrode, both the uneven doping of the
material and the defects caused by the expansion of the electrode may

Figure 6. Illustrations of axial force and the critical force of the different con-
straint conditions of homogeneous and inhomogeneous at different capacity.

cause small perturbations. Then the electrode particles will buckle.
The result is shown in Fig. 6.

As shown in Fig. 6, the three nearly horizontal curves are in order
from bottom to top: χ = 1, χ = 0.7 and χ = 0.5. The axial force in
the composite gradient material electrode is significantly smaller than
that in the homogeneous material electrode at any Capacity. There-
fore, the Capacity value of the intersection point of the axial force of
composition-gradient material electrodes and three critical stress val-
ues is much larger than that of homogeneous material electrodes. The
composition-gradient material can reduce the buckling of the elec-
trode.

Conclusions

In this paper, we have formulated a theory in a cylindrical
composition-gradient electrode constrained axially by considering the
interaction effects of diffusion and stress. Combining with the diffu-
sion theory and the finite deformation theory, the constitutive equations
are established to analyze an electrode of being charged under poten-
tiostatic operation. We have validated previous studies, the slope of
−0.5 for E(R) from the electrode center to its surface are able to de-
crease the maximum stresses comparing with that in a homogeneous
electrode and make stress distributions flatter. Therefore, the electrode
can be well protected from being damaged by force during charging
and discharging. Moreover, we can find that the center and the surface
of an electrode are two critical positions where the maximum stresses
are generated. Then we extended this study and found that under dif-
ferent elastic modulus, from 10GPa to 150GPa gradually. Negative
gradient E(R) can also improve charging speed, reduce the maximum
stress, and improve the state of charging (SOC). That is, from the
point of stress analysis, the negative gradient may have a function
improvement on many electrode materials. Many electrode materials
can be made into composition-gradient electrode materials to prevent
electrode from cracking, and the choice of the slope depends on the
function and practical application of electrodes. Composition-gradient
material can make the cylindrical electrode more difficult to buckle,
thus better protecting the electrode. These theoretical results need to
be tested experimentally in future. We hope that they provide some
guidance on the design of composition-gradient electrodes.
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