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A B S T R A C T

Phase-field models are widely adopted to study the void evolution problem, overcoming difficulties and
drawbacks of the sharp boundary approach and rate theory. This paper focuses on improving the performance of
the phase-field model of which the vacancy concentration is used as the single conserved order parameter.
Following recent developments in these phase-field models, the void dynamic, or more precisely the void growth
rate which plays a vital role in characterizing the microstructural evolution of irradiated materials, cannot be
accurately reproduced. Moreover, the interfacial energy or the void-matrix interface modeled by the Ginzburg-
type gradient energy term is usually characterized by an empirical coefficient that is quite difficult to determine.
For these reasons, a general relation of the bulk free energy density, the coefficient of the gradient energy term
and the interface width is analytically derived from the planar interface case, and then validated by the nu-
merical simulation example of a single void evolution in molybdenum (Mo). The obtained void growth rate
agrees well with the prediction of rate theory while the interface width is smaller than a critical value in the
considered cases regardless of the shape of the free energy density. This study will not only help to construct the
appropriate formulation of the bulk free energy density, but will also provide an easy method of calculating the
corresponding gradient energy coefficient and selecting the grid size according to the pre-estimated interface
width.

1. Introduction

Under long-time exposure of energetic particle radiation, numerous
Frenkel pairs, i.e. vacancies and self-interstitials, are generated in ir-
radiated materials. Regardless of the recombination, due to the fast
diffusion, the interstitials are much easily trapped by the sinks such as
dislocations and grain-boundaries, which results in more surviving
vacancies. This process is known as production bias [1–4]. These su-
persaturated vacancies can freely migrate inside a crystalline solid, and
then either be trapped by the sinks or cluster together to form the nu-
cleus of the void. A nucleus with a small radius containing just a few
vacancies is generally not stable and dissolves immediately. However,
because of the continuous generation of additional vacancies and their
diffusion, a void with a sufficiently large radius occasionally forms and
grows by absorbing more vacancies. This long-term evolution is known
as void nucleation and growth [5–7].

The aforementioned process can cause volumetric swelling (a

decrease in the density), a reduction of the Young’s modulus, a decrease
in plasticity and a change in the yield stress of the structural materials
in nuclear reactor [8–11], which may significantly affect the mechan-
ical properties and the life-times of these components. In this context,
the void growth rate, generally used to quantify the void evolution
behavior, therefore plays a vital role in characterizing the micro-
structural evolution of irradiated materials. The mechanical under-
standing of these material degradations can help to design high irra-
diation-resistant materials for nuclear reactor components [12,13].

The void growth can be simply described using the following che-
mical-reaction-like process:

+ +nV Void Void .m m n

where V denotes the vacancy. Physically, the bulk containing vacancies
with supersaturated concentration is thermally unstable. Therefore, as
shown in Fig. 1, the existing void with a radius R that is a physical
vacuum space with zero vacancy concentration, acts as a sink for ab-
sorbing the supersaturated vacancies. Neglecting the mechanical drift
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of the void strain field to the vacancies, the point defect concentration
gradient is the only driving force governing such process. Because of the
sharp interface between the bulk and the void, the corresponding in-
terfacial tension, acting as the drag force, effectively reduces the flux of
vacancies towards the void. This is a typical unbiased diffusion-con-
trolled reaction process.

For an isotropic crystal, it can be simplified as a spherical system
with a single void located at the center that is surrounded by bulk
crystal with initial (and boundary) vacancies concentration c0.
Following the reaction rate theory (RT) which is based on mean-field
approximation, the void growth rate can be calculated by the increasing
rate of the void radius =R R t( ) as [12,14,15]

=R
t

D c c L
L R R

d
d

[ ]
( )eR0 (1)

where D is the vacancy diffusion coefficient and =D D E k Texp( / )m
0 B ,

where D0 is the vacancy diffusivity pre-exponential, Em is the vacancy
migration energy, kB is Boltzmann’s constant, and T is the absolute
temperature. L is the dimension of the spherical domain containing
supersaturated vacancies and ceR is the thermal equilibrium con-
centration of the vacancy solution in presence of the void with radius R,
which is expressed as

= =c E E R k T c b Rexp[ ( ( ))/ ] ( )eR
f

eB (2)

where =c E k Texp( / )e
f

B is the vacancy equilibrium concentration
(without the presence of the void). E f is the formation energy and

=b R E R k T( ) exp( ( )/ )B characterizes the resistant effect due to the in-
terfacial tension, determined by =E R R( ) 2 /s , where s is the surface
tension and is the atomic volume of the metal. Eq. (1) under the
mean-field approximation could provide only average spatial informa-
tion on the void growth. Originally proposed by Gibbs [16] to emulate
the phase transition and micro-structural evolution in crystalline solids,
the sharp interface approach (SBA) was developed to achieve the spatial
resolution, wherein a set of differential equations are used to describe
the void nucleation and growth with a zero-thickness interface between
the void and matrix phases, i.e. the sharp boundary [17,18]. However,
the requirement for tracking the instantaneous position of the moving
interface has some numerical difficulties, especially in case with

complicated phase morphology. In this regard, the phase-field model
(PFM) with a diffusive boundary was widely adopted to overcome the
drawbacks of the sharp boundary approach for modelling the phase
separation, of which the temporal evolution of a spatial-related order
parameter c is solved from the time-dependent Ginzburg-Landau
equation [19–25]. The description of the diffuse interface results in a
continuous distribution of such order parameter, and therefore no need
for the specific treatment on the interface position.

The PFM has been beneficial for studying the phase separation of
binary alloy systems, where the spatial-related order parameter has
been chosen as the concentration of the involved element. In 1978,
Imada [26] promoted the PFM for void evolution by choosing the
spatial-dependent vacancy concentration c x t( , ) as the order parameter,
and setting =c 1 and c 0, respectively, to denote the void phase and
the bulk phase with no interstitial involvement. While in recent years,
other phase-field models with different sets of order parameters have
been developed which also provide excellent performances in model-
ling void nucleation and growth [27–29], the former model has pro-
nounced advantages. For instance, only one differential control equa-
tion, namely the Cahn-Hilliard equation, is required to be solved. It is
simple to implement and exhibits efficiency in numerical calculations of
much more complex systems such as evolutions of void ensembles (for
more details, see [22,30]). Therefore, this paper focuses on studying the
phase-field model where the vacancy concentration is the single order
parameter.

However, these benefits come at the cost of having to deal with a
number of difficulties. For example, the definition of the vacancy
concentration inside the void, =c 1, conflicts with physical reality.
Also, to emulate the void evolution, the initial supersaturated vacancy
concentration in the matrix is usually set several orders of magnitude
above the corresponding thermal equilibrium value, e.g. c 10 3

(atomic fraction) or even higher [22,31,23], which is thus far beyond
the limit of the dilute and ideal solution. In addition, applying the
spinodal decomposition of the phase separation to describe the void
nucleation process is another problem. Some mathematical modifica-
tions are thus necessary to guarantee that the quantitative results are
consistent with the experimental observations and the predictions of
other well-established models. As such, Semenov et al. [30,32,33] re-
cently proposed an improved PFM by deriving the free energy from the
limit of the dilute solution condition based on the classical nucleation
theory, of which the static solution agrees with experimental observa-
tions. Following this PFM, Xiao et al. [15] performed a dynamic si-
mulation of a single void evolution with the same dilute vacancy con-
centration. However, their average void growth rate, which is an
essential parameter used to characterize the void evolution kinetic, had
a large relative error above 30% (several cases achieved 100%) com-
pared to the referent prediction of rate theory. A 30% relative error may
cause a 30% overestimation of the swelling rate, which in turn results in
a significant overestimation of the decrease in plasticity of irradiated
materials (for instance, more than two times for highly irradiated
austenitic steels [9,10]). This kind of numerical error can usually be
reduced by tuning the surface tension. Unfortunately, this does not
always work, particularly at relatively low temperatures where the void
evolution is only slightly affected by the vacancy emission. In this cir-
cumstance, in order to correctly and accurately reproduce the void
dynamic without tuning any material parameters, gaining a more
general understanding of the difference between the PFM and rate
theory is desired. Additionally, in the phase-field framework, the in-
terfacial energy associated with the void-matrix interface is modeled by
a Ginzburg-type gradient energy term. This term is usually character-
ized by a coefficient using the empirical value or derived from other
assumptions. However, much uncertainty still exists about the relation
between this gradient energy coefficient and the physics of the inter-
face. Hence, identifying its role and deducing a simple formula for this
quantity are further purposes of this work.

In this paper, we will first analyze the relation of the free energy

Matrix Phase
Boundary

Void Phase
Interface

cv = 0

cv = c0

ceR < cv <  c0

cv <  c0
cv = c0

cv = 1

Phase Field Model

Sharp Boundary Approach

Fig. 1. Physical model of void growth (center), with illustrations of the vacancy
concentration profile in the sharp boundary approach (top) and the phase-field
model (bottom).
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density, the coefficient of the gradient energy term and the interface
width of the former phase-field model, and then assess the factors re-
sulting in the gap of the void growth rate obtained from the PFM and
RT. The paper is organized as follows: the theoretical analysis is pre-
sented in Section 2; the numerical simulation example of BCC Mo for a
single void system is performed in Section 3 to check our conjectures;
and the conclusion is presented in Section 4.

2. Dilute phase-field model for void growth

2.1. General framework of the phase-field model

As shown in Fig. 1, the void growth in the PFM is in analogy to the
phase separation of a binary alloy where the vacancy concentration c is
regarded as a single conserved variable, solved from the Cahn-Hilliard
equation [34–36], i.e.

=r r
r

rc t
t

M F c t
c t

M µ t( , ) [ ( , )]
( , )

[ ( , )]
(3)

where F c[ ] is the free energy of the vacancy concentration and M is the
vacancy mobility, usually defined as [33]

=M D
k T

c c(1 )
B (4)

where D is the diffusivity of vacancy holding the same temperature-
dependent expression as in Eq. (1) and µ is the chemical potential,

=r r
r

µ t F c t
c t

( , ) [ ( , )]
( , ) (5)

To obtain the phase-separation in the PFM, the free energy is usually
written as

= +r rF c k T f c c[ ] [ [ ( )] ( ) ]d
V

B 2 2
(6)

where rf c[ ( )] is defined as a dimensionless reduced bulk free energy
density, and c( )2 2 is the Ginzburg-type gradient energy term, arising
from the inhomogeneous nature of the concentration distribution, re-
sulting in the so-called diffusive interface boundary between the void
and matrix phases. Substituting Eq. (6) into Eq. (3), the evolution of the
order parameter is given by

=rc t
t

k TM f
c

c( , ) d
d

2B
2

(7)

From Eq. (7), it is easy to see that the evolution of the order parameter
is mainly determined by the functional form of the bulk free energy
density rf c[ ( )] and the gradient energy coefficient . In this regard, the
void growth could be characterized by the increase in the void radius
associated with the vacancy-flux towards the void [15,30]

= rR t r c t r( ) 3 ( , )d
r

0
2

1
3min

(8)

where rmin is the spatial position of the local minimum of the vacancy
concentration. Therefore, the void growth rate t( ) is estimated by

=t R t( ) ( ). Since outside of the void, the concentration is very small,
possible alternative definitions will have little influence on such void
radius, which has been examined in Ref. [15].

2.2. Dilute formulation of the bulk free energy density

In Eq. (7), the bulk free energy density f provides the local driving
force in terms of a gradient against the order parameter in phase-space.
The functional formulation of the free energy density was not unique in
the literature, as long as some conditions were satisfied: the free energy
density profile should be a double-well potential, with two local
minima corresponding to the stable phases and one local maximum. In
the void growth problem, for example,

= > =

= < =

= > =

c c

c c c

c

0 and 0, when

0 and 0, when [ , 1]

0 and 0, when 1

f
c

f
c e

f
c

f
c m e

f
c

f
c

2
2

2
2

2
2 (9)

where =c ce corresponds to the bulk crystal phase, with ce representing
the temperature-dependent equilibrium vacancy concentration in ma-
trix and =c 1 for the void phase, where the vacancy concentration
approaches unity. f c[ ]m is a local maximum, indicating a potential
barrier for the phase separation, and cm is the location of the potential
maximum. The formulation of =f f c[ ] is generally set to obey the
conditions in Eq. (9), but its relationship with the classical nucleation
theory is not well considered, resulting in the so-called spinodal de-
composition and the requirement of a very high initial vacancy con-
centration in the matrix solution, as mentioned in Section 1. To solve
this problem, Semenov et al. [30,32] proposed the formulation of

=f f c[ ] based on the ideal dilute solution

=f c c c
c

c[ ] ln 1 [ ]
e

n
(10)

Here, the first term in rhs of Eq. (10) corresponds to the free energy
density in the dilute limit, and c( )n is the correction of f deviated from
the dilute solution limit at c ce, written as

= + +
+ + +

c n c n c c
n c n c c n

[ ] [ ln ( 1)(1 )]
[( 1)ln (1 )] ( 2)

n e
n

e
n

0

0
1 (11)

The presence of the correction term c[ ]n provides a channel to adjust
the magnitude of the local maximum, as shown in Fig. 2(a) with

=n 2.0, 2.5, 3.0, 4.0 and 5.0 plotted. As aforementioned, the functional
formulation of =f f c[ ] is not unique. For instance, Xiao et al. [15]
proposed another formulation as

= + +f c c c c c E
k T

c c[ ] ln (1 )ln(1 ) (1 )
f

B (12)

which also meets the dilute and ideal solution requirement and the
conditions in Eq. (9). Therefore, a large number of free energy density
forms can be chosen, which results in different void dynamics.

2.3. Gradient term and diffusive interface width

The gradient term in Eq. (6) describes the action of non-uniform
vacancy concentration in the phase-field model, with the coefficient
characterizing the formation of the diffusive field. In general, depends
on the void size, the metallic surface tension s, and the bulk free energy
density. However according to Ref. [30], is almost independent of the
void size, so that it could be directly expressed as

= + =
k T

f c c c
k T2

[ ] d
2

s
c e

s

B

1 1

Be (13)

where s is the effective surface tension with respect to the free energy
profile f c[ ], as

= I c/ ( )s s e (14)

and

= +I c f c c c( ) [ ] de c e
1

e (15)

In fact, the above expression is derived based on the classical nu-
cleation theory by equaling the variation of the free energy in terms of
the void nucleation to the interfacial energy. Therefore, is coupled
with the adopted free energy density in this model. However in pre-
vious studies, the coefficient is selected as an empirical constant or
obtained from Eq. (13) by assuming =I 1. This implementation may
lead to a deviation in the nucleation process from the classical nu-
cleation theory and therefore is not robust for numerical modeling. This
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expression thus needs to be discussed in detail. It is worth to note that if
the functional form of f c[ ] satisfies the former conditions expressed in
Section 2.2, e.g. Eq. (10) or (12), the term in the integral I will always
possess two roots at c ce and c 1, owing to the ideal dilute limit
where =f c c[ ]e e, and a local maximum +f cmax e around c 0.5 (see
also Fig. 2(a)), where f f c[ ]max m . Since ce is quite small, solving the
former integration could be approximately regarded as calculating the
integral of a second order polynomial,

= +

=

I f c c c

f c c c c

f

[ ] d

4 ( )( 1)d
c e

c max e

max

1

1

2
3

e

e

(16)

Substituting Eq. (16) into Eq. (13), it gives

= =
k T k T

f
2 2

2
3

s s
max

B B

1

(17)

Eq. (17) is a main result of this paper, predicting that the gradient
energy coefficient is inversely proportional to the square root of the
local maximum, independent of the free energy density’s shape. Indeed,
rather than depending on s, the f c[ ] weighted s is one key term to
characterize the vacancy emission ability of void across the void-matrix
phase boundary and thus the void growth rate. As previously discussed,
another validation of this expression is in the aspect of the void nu-
cleation characterized by the critical size of the void Rcr , which de-
termines the shrinkage or the growth of the void and corresponds to the
maximal change in the free energy during the void nucleation process.
Higher fmax induces smaller s and then results in less requirement of
the free energy variation thus smaller Rcr, which is consistent with the
classical nucleation theory. On the other hand, for the sake of clearly
identifying its effect on the void growth process, the interface width l,
which plays a vital role in evaluating the interface diffusivity, will be
analyzed as follows.

Considering a single void system with an infinite large dimension,
the evolution equation, i.e. Eq. (7) at the steady-state with =c t/ 0
could be simplified as

=f
c

c c
c

d
d

2 ln
e

2 0

(18)

where c0 is the supersaturated vacancy concentration at r . Mul-
tiplying the above equation by cd at each side then integrating from
infinity yields

=f c f c c c c c
c

[ ] [ ] ( ) ( )ln
e

0
2 2

0
0

(19)

As it has already been proved that and the interface width are weakly
dependent on the void radius, the planar interface case is assumed for
simplicity. Taking =c ce0 , it gives

= +c f c c( ) [ ] e
2 2 (20)

where = =f c f c c[ ] [ ]e e0 according to the dilute solution condition.
The readers should note that the vacancy concentration varies sig-
nificantly within the interface, which separates the matrix phase and
the void phase. The interface width l thus can be derived from the
above equation by integrating it across the diffusive field, which gives

= =
+

l r
f c c

cd
[ ]

d
c e

1

e (21)

Since is independent of the vacancy concentration, we expand Eq.
(21) in Taylor series around the site =c cm where f c[ ] reaches the
maximal fmax and assuming >f 1max , so that

= +

= +

= +

+ +

+ +
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l c
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c c
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1
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m
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m
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e
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s

1/2 3/2

1/2
2
3/2

B (22)

Based on the above equation, the interface width can be calculated
using only the material parameters and the potential height, regardless
of the vacancy concentration profiles. In addition, from Eq. (17) and Eq.
(22), increasing the potential height first results in a smaller coefficient
of the gradient energy term, and then they both contribute to reducing
the interface width. Consequently, the evolution of the order parameter

rc t( , ) and thus the void growth rate are determined by the detailed
information of the free energy density profile f c[ ], or more explicitly its
maximum value, i.e. =f f c[ ]max m .

To summarize, the validity of phase-field model implemented in the
void evolution problem requires to construct the appropriate functional
form of the free energy, expressed in terms of the bulk free energy
density and the gradient energy term, which should satisfy the fol-
lowing conditions: the dilute solution condition, the correct nucleation
process and the proper width of the diffusive interface to ensure the
accurate void dynamic. Here, the two former conditions are solved by
Semenov and the model is consistent with the classical nucleation
theory. The latter could be solved by adjusting the barrier value fmax of
the bulk free energy density. Moreover, the above expressions provide
solutions to another problem mentioned in Section 1: (1) instead of
using the empirical value or any other complicated expressions, the
gradient energy coefficient can be easily calculated from Eq. (17); (2)
the pre-estimated interface width from Eq. (22) helps to design the
numerical code and to select the optimal grid size.

In the following, a numerical simulation example is performed by
considering the single void growth in BCC Mo to further validate the
aforementioned approach.

3. Numerical simulation: void growth in BCC Mo

In this section, for the sake of gaining a direct comparison with the
results from Ref. [15], the identical simulation cell, i.e. a spherical
domain with radius of =L 11.8 nm is adopted and the coordinate
system origin lies at the center of the cell. A single spherical void with
the initial radius Rinit is then placed at the position of =r 0, which
corresponds to the typical void number density ( 10 m23 3) for mo-
lybdenum [37,38]. As such, modelling the void evolution reduces to
one-dimensional problem along the radial direction of the simulation
cell.

To emulate the real experimental condition, the homogeneous su-
persaturated vacancy concentration in the Mo matrix is initially set at c0
(10 108 7), and the initial conditions are written as

= = = =<c r t c r t c( , 0) 1, ( , 0)r R R r L 0init init (23)

Eq. (7) is fourth order in the spatial coordinates, and therefore four
boundary conditions are taken as

= =
= =

= =

= =

c r t c r t c
c r t c r t

( , ) 0, ( , )
( , ) 0, [ ( , )] 0

r r L

r L r L

0 0

(24)

Please note that the vacancy concentration at the volume boundary
is assumed to be fixed and the last two conditions in Eq. (24) mean that
far away from the void, both the chemical potential of the vacancies
and their flux are independent of the void-matrix interface character-
istics. Therefore, by introducing the diffusive interface in PFM, the void
and the matrix can be uniformly treated through the continuous dis-
tribution of the vacancy concentration.

The temperature T is set around 1100 K to ensure that the void
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evolution is not affected by the vacancy emission from the void.
Consequently, in considered case, the void growth rate of PFM cannot
be modified by varying the surface tension as in other studies [15,29]. It
is well known that the phase-field approach is a continuum mesoscale
modeling apparatus that discards the discrete atomic nature of mate-
rials [39,40]. Accordingly, the equations of SBA and Eq. (7) (the PFM)
are numerically solved in the spherical domain discretized along the
radial direction with a uniform grid size l 1 Å [18,28,39,41]. Taking
a time step , single void evolution herein is emulated to a duration of
t 10 4 s with t tR, where t R D/2R init

2 is the characteristic time (or
relaxation time) required for the formation of the steady diffusion field.
All of the simulation and material parameters are listed in Table 1
[15,42].

In current phase-field model, the vacancy concentration will sig-
nificantly vary across the interface. For the sake of accuracy and the
convergence, an explicit second order finite-difference approach with a
second order backward time-stepping technique is used in numerical
solving process. The difficulty of selecting the optimal grid size arises
then, which requires including at least one grid point located inside the
interface field. The minimal interface width is therefore pre-evaluated
using Eq. (22), which helps selecting the grid size used in all the sub-
sequent cases. In this work, we have studied the effect of the grid size
on the void dynamic first (not shown). Three values of l are selected out
based on the estimation from Eq. (22) which are 0.147 nm (from Ref.
[15]), 0.1 nm and 0.065 nm. It is found that if the grid size satisfies the
former condition, the steady growth rates become independent of the
grid size (within 0.5%). A smaller grid size l can contribute to obtaining
more details in the diffuse interface however. In this case, a smaller
time-step is required, which leads to a large computational load. In the
following, only the results with l= 0.1 nm are presented.

Various reduced bulk free energy densities f c[ ] used in the sub-
sequent simulations are shown in Fig. 2(a), under conditions of

=T 1100 K and =c 100
7. It is seen that all of the curves show the

double-well shape, i.e. two local minima at c c c, 1e and one max-
imum. Moreover, they overlap at low vacancy concentration in the
small window, which means that these densities deviate from the
condition of the ideal dilute solution at a relatively high vacancy con-
centration. Therefore the initial vacancy concentration in studied cases
remains far away from the spinodal point, where the solution becomes
intrinsically unstable. For free energy density types of Eq. (10), the
amplitude of the potential height fmax significantly varies as functions of
n. For example, fmax for =n 5.0 is almost three times of that in =n 2.0
case. In order to furthermore study the density’s shape effect on the
void evolution, one case using the formulation of Eq. (12) but scaled by
a factor of 1.4 (= =f n( 4.0)max / fmax(Eq. (12))) is also shown and called
‘Mod. Eq. (12)’, which has an identical fmax with the case =n 4.0
whereas their shapes and the positions of the local maximum are dif-
ferent. The corresponding values of and l are listed in Table 2, re-
spectively, computed from Eqs. (17) and (22) for different fmax. In order
to exactly reproduce the results of Ref. [15], special care is paid on the
case using Eq. (12) where we assume the integration term =I 1 in the
calculation of quantity . Accordingly, substituting the functional form
of f c[ ] and the corresponding into the phase-field frameworks, the
evolution of the vacancy concentration profile can be solved, from

which the temporary void radius can be estimated using Eq. (8). And
after a fast relaxation regime, the steady-state void growth rate can be
obtained from the increasing rate of the void radius.

Fig. 2(b) shows the steady-state growth rate ratio / RT of the
aforementioned cases as well as the sharp boundary approach to the
prediction of the rate theory (see Eq. (1)) as functions of reduced initial
(and boundary) concentrations c c/ e0 with =T 1100 K and

=R 1.02init nm. First, quantitative matching of the void growth rate
between the SBA and RT can be clearly seen for all conditions. Re-
garding the PFM, the case using Eq. (12) has successfully reproduced
the results of Ref. [15], of which the void growth rates present con-
siderable errors compared to the predictions of RT, especially at low
initial vacancy concentration. Then the error generated by using Eq.
(10) reduces with increasing parameter n, namely fmax (see Table 2).
More importantly, such error between the PFM and RT is vanished
while n 4.0 whatever the initial vacancy concentration.

The effect of the free energy density’s shape can then be dis-
tinguished from the case Mod. Eq. (12). It is hereby recalled that the
potential height of Mod. Eq. (12) is the same with that of =n 4.0 case.
And likewise, the corresponding steady void growth rate of Mod. Eq.
(12) is consistent with the RT prediction and the error is within only 1%
for all of the initial vacancy concentration cases. According to the data
in Table 2 and the above results, the local maximum of the bulk free
energy density and thus the interface width has a first order contribu-
tion on the void dynamics, regardless of the free energy density’s shape.
Back to the case using Eq. (12), although fmax(Eq. (12)) is close to

=f n( 3.0)max , their growth rates present large differences. This de-
monstrates that the gradient energy coefficient also plays an essential
role, and in this regard, the interface width seems to be the most ap-
propriate criteria to characterize the void dynamic. Further evidence is
that the steady growth rate obtained using Eq. (12) is between those
obtained in the cases of =n 2.0 and =n 2.5, while its corresponding
interface width exactly falls in a range of these two cases.

Examinations are also performed on the variation of the initial void
radius and temperature. In the following, two typical values of n (2.0
and 4.0) for the density form of Eq. (10) are selected out, which cor-
respond to cases exhibiting the largest interface width and the critical
interface width, respectively. All of the curves in Fig. 2(c) present a
similar trend, where the growth rate is inversely proportional to the
void radius as predicted by Eq. (1) for L R. And then within the
studied temperature range, the vacancy emission from the void is
limited. Hence, the temperature dependency of the void growth rate
shown in Fig. 2(d) is entirely determined by the vacancy diffusion
coefficient, which agrees again with the prediction of Eq. (1). Inter-
estingly, regardless of the simulation conditions, the results of the PFM
with smaller l present better agreements with the predictions of the
SBA and RT. In conclusion, despite the shape of f c[ ], the desired void
growth rate can be obtained while l 1.5 Å. More generally, to ac-
curately reproduce the void dynamic as predicted by the SBA and RT,
an appropriate potential barrier must be selected at first and then the
corresponding gradient energy coefficient need to be determined
using Eq. (17) to ensure that the estimated interface width is smaller
than a critical value, e.g. l 1.5 Å for the studied example.

And to obtain details of the diffuse interface, the vacancy con-
centration profiles c r( ) after the formation of the steady diffuse field are
plotted in Fig. 3 at =T 1100 K with =c 100

7 and =R 1.02init nm, as well
as the result of SBA for comparisons. The shaded region highlights the
interface area. It should be noted that unlike the PFM, the SBA does not
have a diffuse interface and the vacancy concentration inside the void is
zero. Therefore, the comparison can be done only outside of the void. It
is seen that out of the diffuse field, all of the vacancy concentration
distributions of the PFM perform well the characteristic r 1 behavior,
which is consistent with the SBA profile.

With a global view of PFM profiles, c r( ) decreases from unity in the
void to almost zero in the matrix through a narrow diffuse region. It is
obvious that a relatively wider interface is formed in the cases of Eq.

Table 1
Simulation and material parameters for molybdenum.

Vacancy formation energy (E f ) 3.0 eV
Vacancy migration energy (Em) 1.62 eV
Vacancy diffusivity (D0) 13 nm2/ps
Surface tension ( s) 2.05 J/m2

Lattice constant (a0) 3.1 Å
Atomic volume ( ) 14.9 Å3

Grid size (l) 1.0 Å
Time step ( ) 10 15 s
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(12) and =n 2.0. Whereas in =n 4.0 and Mod. Eq. (12) cases, c r( )
profile yields a sharp interface similar to the SBA, with a characteristic
width less than one lattice constant, despite its diffuse character.
Compared to the interface width estimated from Table 2 that is derived
from the static planar condition, the relative data is in good agreement
with the graphical observation. For instance, 5 grid points can be ob-
served in the diffusive field of the case =n 2.0, which corresponds to

=l 4.01 Å listed in the table. In =n 4.0 and Mod. Eq. (12) cases, only
2.5–3 grid points are present in each diffuse field.

The precise evaluation of the interface width from the simulations is
generally difficult. A simple method ==c r l( )| 1/c 0.5 is alternatively
adopted in this work. The results of the interface width estimated from
c r( ) as functions of fmax

1 are shown in Fig. 4 and compared to the
analytic predictions based on Eq. (22), where the linear relation con-
firms our analysis in Section 2. Indeed, the sharpness of the diffuse
interface is a direct result of the behavior of the thermodynamic po-
tential in the ideal dilute solution limit [32]. A smaller fmax will ac-
celerate the deviation of the potential from this limit (deviating at lower
vacancy concentration), and thus induces a wider interface. Then a
wider interface is achieved by introducing more material into such field
to decrease the contribution of the gradient energy term, which makes
the interface more diffuse. Therefore, changing the barrier of the free

energy density will affect the diffusivity of the interface and then the
void dynamic.

It is known that the successful development of the phase-field
models for the phase transition dynamic requires the numerical
matching of their results to the SBA or RT predictions. As widely
adopted in other studies, adjusting some material parameters such as
the surface tension [15] and the interface mobility [43,44] or even
roughly tuning the gradient energy coefficient can help to bring about
the desired results. However, the fidelity of those methods must be
further justified. Especially for the problem of void nucleation and
growth, the introduction of the diffuse interface in the PFM only
slightly affects the interfical tension because of the low vacancy con-
centration in the matrix [45], even under in-reactor conditions, which
is always far away from the spinodal point (see Fig. 2(a)). Moreover, as
discussed in Ref. [33], directly fitting the gradient energy coefficient
may cause discrepancies in the void nucleation probability deviating
from the classical nucleation theory. Fig. 4 thus presents its potential in
validating the characteristic parameters of the void nucleation and
growth process, where the obtained interface width should follow the
linear relation with respect to fmax

1 , and at the same time is smaller than
a critical value. In this regard, based on Eq. (22), using the appropriate
free energy density coupled with the gradient energy coefficient always
provides an available and reliable path to correctly and accurately
model the void dynamic.

Finally, the above results also demonstrate that for a fixed tem-
perature, it is reasonable to treat the gradient energy coefficient as a
constant independent of void size under the real experimental condi-
tions, regardless of the bulk free energy density forms. Although the
void dynamic needs to be performed in an ultrafine spatial scale, this
phase-field model is still beneficial for studying the void nucleation and
growth problem, where some theoretical analysis can be alternatively

Fig. 2. (a) The dimensionless bulk free energy density for =T 1100 K and =c 100
7, with details near ce inserted. (b) Steady growth rate ratio / RT, with RT

representing the result of rate theory, as functions of the reduced initial (and boundary) concentration c c/ e0 for =T 1100 K and =R 1.02init nm. (c) Steady growth rate
as functions of the initial void radius for =T 1100 K and =c 100

7. (d) Steady growth rate as functions of the temperature for =c 100
7 and =R 1.02init nm.

Table 2
Characteristic parameters with different bulk free energy density formulations
for =T 1100 K and =c 100

7.

Eq. (12) Mod. Eq. (12) =n 2.0 =n 2.5 =n 3.0 =n 4.0 =n 5.0

fmax 7.32 10.25 4.11 6.10 7.63 10.25 12.23

(Å) 10.05 4.72 8.13 5.82 5.21 4.43 4.02

l (Å) 3.71 1.47 4.01 2.35 1.89 1.38 1.15
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done in the planar interface case. Moreover, a possible method for
modelling the evolution of void ensembles in such fine spatial scale is
matched asymptotic expansion to relate the PFM to the SBA by
smearing out the interface [19]. The findings reported here, for instance
the expressions of -coefficient and the interface width, may thus be
applied to simplifying the corresponding matched asymptotic analysis.

4. Conclusion

An improved phase-field model using the vacancy concentration as
the single order parameter is developed in this work to treat the pro-
blem of void nucleation and growth. The purpose of this study is to
obtain the accurate void growth rate benchmarked by the value cal-
culated from the sharp boundary approach and rate theory. Based on
the quantitative analysis and the simulation example of a single void
evolution, we found that:

• The expression of the gradient energy coefficient is simplified
without any other assumptions against the classical nucleation
theory. The expression of the interface width as functions of the
gradient energy coefficient and the local maximum is then analyti-
cally derived from the planar interface case, which can be used to
adjust the void dynamic;

• The interface width has a first order contribution on the void dy-
namic. Using the former relation, the accurate void growth rate can
be obtained by tuning fmax to satisfy that the interface width is
smaller than a critical value.

This work will not only help to construct the appropriate formula-
tion of the bulk free energy density, but also provide an easy path to
compute the corresponding gradient energy coefficient and to select the
grid size and time step according to the pre-estimated interface width.
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