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A B S T R A C T

Due to the thermal mismatch between layers and the free-edge effect, interfacial peeling and shear stresses are
generated locally around the edges of cooling holes in a thermal barrier coating (TBC)–film cooling system.
These interfacial peeling and shear stresses may lead to modes I and II edge delamination, resulting in TBC
spallation around the cooling hole. In this study, analytical and numerical models were built to study the stress
and interfacial cracking behaviors of TBCs near the cooling hole. Analytical solutions for interfacial peeling
moment and shear force at each layer were obtained to analyze the free-edge effect on the stress distributions in
TBCs, and they were verified by the finite element calculations. The results showed that interfacial peeling
moment and shear force were functions of the hole radius and thicknesses of top coat and oxide layer. The
increase of interfacial peeling moment and shear force raised the likelihood of edge cracking around the hole.
Derived by the local stresses, the interfacial cracks in TBCs initiated and propagated from the hole edge upon
cooling.

1. Introduction

Although thermal barrier coatings (TBCs) have been applied in high
temperature components of gas turbines as thermal protection techni-
ques for decades, the premature failure greatly shortens their service
lifetimes [1]. The complex multilayered structure leads to huge thermal
stresses in the TBC system during thermal cycling, resulting in dramatic
interfacial delamination [2]. The stress behavior in TBCs could be more
complicated around the cooling hole in the TBC-film cooling system
under operating conditions. The steep temperature gradient associated
with the mix of hot and coolant gases and the geometry constraint make
the cooling hole to be another major source of TBC failure [3–6]. The
effect of three-dimensional temperature gradient on the stress evolution
of TBCs near the cooling hole has been numerically studied in our
previous research [4]. However, some researches pointed out that even
regardless of the spatial temperature gradient, the cooling hole could
still be regarded as a stress concentrator to derive TBC cracks [7,8]. Due
to the free-edge effect, the interfacial peeling stresses (normal to the
interface) and shear stresses could be locally generated around the
cooling hole, which may aggravate the local stress state and even
promote interfacial crack initiation of TBCs. Therefore, investigation of
the stress field and stress-induced interfacial cracking behavior of TBCs
adjacent to the cooling hole is required to evaluate the reliability and

durability of TBCs.
A TBC system typically consists of four layers: the ceramic top coat

(TC), the thermally grown oxide (TGO), the metallic bond coat (BC),
and the underlying superalloy substrate. Upon cooling, large residual
stresses are generated by thermal mismatches in the multilayered TBC
system [9]. To this end, Hsueh [10] and Zhang et al. [11] established
analytical solutions to calculate the residual stresses in the multilayered
TBCs. These solutions were generally based on the classic beam bending
theory and were exact for positions far from the free edges. However, at
the free edges of the thin plate/disk, the in-plane residual stresses could
be converted to peeling (normal to the interface) and shear stresses at
the interface because of the free-edge effect. This phenomenon is dif-
ficult to describe with the above-mentioned solutions [12]. Thus, con-
siderable efforts have been devoted to identification of analytical so-
lutions for the interfacial peeling and shear stresses in multilayered
systems [13–16]. However, the exact closed-form solutions for the
distributions of the peeling and shear stresses were quite difficult to
derive, and only some approximate solutions were obtained. It is worth
noting that Moore [17] and Hsueh [18] found that the interfacial
peeling moment and shear force were also able to characterize mode I
and mode II edge cracking. The peeling moment and shear force are
derived from the localized peeling and shear stresses, respectively, and
solutions for them were relatively easy to obtain. In Hsueh's solutions
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[10,18], only three constant unknown parameters (i.e., the uniform
strain component c, the position of the bending axis tb, and the curva-
ture 1/ρ) required solution, and only three boundary conditions needed
to be satisfied. The solutions were exact for the outside free edges of
multilayered structures, but they may not be suitable for the free edges
of the cooling hole. In the model of a thin plate/disk with a hole, these
three parameters (i.e., c, tb, and 1/ρ) are functions of the radii of the
disk and hole instead of constants, and the boundary conditions differ
from those without holes. Therefore, equations for the three parameters
should be reconstructed, and the analytical solutions for the interfacial
peeling moment and shear force at the free edges of the cooling hole in
a TBC system must be improved. Furthermore, derived by the complex
local stresses around the hole, interfacial crack may initiate and pro-
pagated from the hole edge, thus a reliable model to predict the in-
terfacial cracking behavior of TBCs is highly desirable.

This study was performed to investigate the stress distributions and
stress-induced interfacial cracks at the edges of the cooling hole in a
TBC system under a uniform temperature change. To this end, a model
of an infinite elastic multilayered disk with a round center hole was
constructed without consideration of peeling at the outside edges.
Analytical solutions for the interfacial peeling moment and shear force
at each interface were established based on the mechanics of elasticity
and the thin plate bending theory. Furthermore, the stress distributions
in double- and four-layered coating systems were analyzed by the
analytical solutions and finite-element (FE) calculations. The effects of
the hole radius and thicknesses of TGO and TC layers on the interfacial
peeling moment and shear forces were further investigated. Finally,
stress-induced interfacial cracking behaviors in TBCs near the cooling
hole were numerically studied by the cohesive zone model (CZM).

2. Theoretical formulation

2.1. Problem description

Fig. 1a presents a model of an infinite elastic TBC-substrate thin disk
with a round cooling hole. The disk undergoes uniform temperature
loading without other external loadings. Considering the symmetric
geometry and thermal loading, the three-dimensional model is simpli-
fied into a two-dimensional axisymmetric model (Fig. 1b). The thermal
mismatch under temperature change leads to in-plane tensile/com-
pressive stresses in each layer and thus bending of the system. As illu-
strated in Fig. 1c, near the edges of the hole, the free-edge effect leads to
interfacial peeling and shear stresses that are represented by the peeling
moment, Mp, and the shear force, V, per unit circumferential length,
respectively. For analytical solutions, thermal stresses are first calcu-
lated based on the thin plate bending theory, and Mp and V are then
calculated with the equilibrium equations of moment and force.

Fig. 2 shows a sketch of the two-dimensional axisymmetric multi-
layered disk model for analytical calculation. The n layers of coating
with individual thicknesses of hi are bonded sequentially to the sub-
strate with a thickness of hs, so the total thickness of the disk htotal is
calculated by

∑= +
=

h h htotal s
i

n

i
1 (1)

The subscript i represents the number of layers of the coating,
ranging from 1 to n, and layer 1 represents the layer in direct contact
with the substrate. In addition, the interfaces between the layers are
also sequentially numbered by k=1 to n, and interface 1 lies between
layer 1 and the substrate. A straight hole with a radius of a is located in
the center of the disk with a radius of b. Note that b≫a and b≫ htotal,
and the outside edge (right edge) of the disk is allowed to deform in the
radial direction but must remain in-plane and vertical. These settings
allow the assumption that the disk is infinite. A cylindrical coordinate
system is defined to parameterize positions within the disk such that the

z-axis is collinear with the center line of the hole and the r-axis is
collinear with interface 1. Hence, interface k (k= i+1) between layers i
and i+1 is located at z= ti, and the free surfaces of the coating and
substrate are located at z= tn and z=-ts, respectively. Based on these
definitions, the relationship between hi and ti can be expressed as

∑= =
=

t h i to n( 1 )i
j

i

j
1 (2)

2.2. Governing equations

The thin plate bending theory is used to obtain closed-form solu-
tions for thermal stress in the region remote from the free edges. The
disk is assumed to be thin, such that htotal/b is less than 0.2, and the
deflection of the disk is assumed to be small. Under uniform tempera-
ture change TΔ , all layers of the disk will expand (upon heating) or
shrink (upon cooling) and then bend due to the thermal mismatch.
Based on the study by Hsueh and Evans [19], the radial strain of the
multilayered disk, εrr, can be decomposed into a bending component, εb,
and a uniform strain component, c, such that

= + = − +ε ε c z t
ρ

crr b
b

(3)

where ρ is the radius of the curvature and z= tb is the location of the
bending axis, where the bending strain component is zero (Fig. 2).
Because its solution is difficult to obtain directly, the curvature,

ρ
1 , is

expressed as the function of the deflection, w, of the disk based on the
bending theory, namely

= −
ρ

d w
dr

1 2

2 (4)

Fig. 1. Models of a coating-substrate system with a cooling hole: (a) three-di-
mensional model; (b) two-dimensional axisymmetric model; (c) sketch of in-
terfacial peeling moment Mp and shear force V after cooling to room tem-
perature.
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By substituting Eq. (4) into Eq. (3),

= − − +ε z t d w
dr

c( )rr b
2

2 (5)

Similarly, the hoop strain, εθθ, can be expressed as

= − − +ε z t
r

dw
dr

cθθ
b

(6)

For all layers, the stress-strain constitutive equations are

= − + +ε
E

σ v σ σ α T1 [ ( )] Δrr rr θθ zz (7a)

= − + +ε
E

σ v σ σ α T1 [ ( )] Δθθ θθ rr zz (7b)

where E is the elastic modulus, α is the thermal expansion coefficient,
and σrr , σθθ, and σzz are the stress components in the r, θ, and z direc-
tions, respectively. In the thin plate bending theory, the stress compo-
nent, σzz, is negligibly small. Thus, combining Eqs. (5)–(7), the stress
components are expressed as

⎜ ⎟= − −
−

⎛
⎝

+ ⎞
⎠

+ −
−

σ E z t
v

d w
dr

v
r

dw
dr

Ec Eα T
v

( )
1

Δ
1rr

b
2

2

2 (8a)

⎜ ⎟= − −
−

⎛
⎝

+ ⎞
⎠

+ −
−

σ E z t
v r

dw
dr

v d w
dr

Ec Eα T
v

( )
1

1 Δ
1θθ

b
2

2

2 (8b)

The equations for the in-plane stress distribution are suitable for all
layers of the disk, and only three unknown parameters, i.e., c, tb and w,
must be solved.

The parameters c and tb are calculated from the following boundary
conditions. First, the resultant force derived from the uniform strain
component is zero, such that

∑
−

− +
−

− =
=

E
v

c α T h E
v

c α T h
1

( Δ )
1

( Δ ) 0s

s
s s

i

n
i

i
i i

1 (9)

thus,

=
+ ∑

+ ∑
− = −

− = −

c
E h α T

v i
n E h α T

v
E h

v i
n E h

v

Δ
1 1

Δ
1

1 1 1

s s s
s

i i i
i

s s
s

i i
i (10)

Eq. (10) indicates that the uniform strain component c is irrelevant
to the radii of the disk and the hole (i.e., c =constant). Second, the
resultant force derived from the bending strain component is zero, such

that

∫

∫∑

⎜ ⎟

⎜ ⎟

− −
−

⎛
⎝

+ ⎞
⎠

+ − −
−

⎛
⎝

+ ⎞
⎠

=

−

= −

E z t
v

d w
dr

v
r

dw
dr

dz E z t
v

d w
dr

v
r

dw
dr

dz

( )
1

( )
1

0

t
s b

s

s

i

n

t

t i b

i

i

0

2

2

2

1
2

2

2

s

i

i

1 (11)

where −ti 1 (namely t0) is defined as zero when =i 1. Thus, tb can be
determined as a function of w.

The above-mentioned variables, such as the strain/stress compo-
nents and tb, are functions of w. Based on the bending theory, the dif-
ferential equation for the symmetrical bending of a thin disk under only
uniform thermal loading can be expressed as [20].

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

=d
dr r

d
dr

r dw
dr

1 0
(12)

For the case of a disk with a circular hole at the center, the general
solution for w is

= + +w c r c ln r b c( / )1
2

2 3 (13a)

with

= +dw
dr

c r c
r

2 1
2

(13b)

= −d w
dr

c c
r

2
2

2 1
2
2 (13c)

where b is the radius of the disk and c1, c2, and c3 are constants of
integration that can be determined from the following boundary con-
ditions:

i) At the hole edge, the resultant radial bending moment per unit
circumferential length, Mr , is zero, such that

= =M when r a0,r (14)

For the multilayered disk, Mr is defined as

∫ ∫ ∫∑= − = − + −
− − = −

M σ z t dz σ z t dz σ z t dz( ) ( ) ( )r
t

t

rr b
t

rr
s

b
i

n

t

t

rr
i

b

0

1s

n

s i

i

1 (15)

with

⎜ ⎟= − −
−

⎛
⎝

+ ⎞
⎠

+ −
−

σ E z t
v

d w
dr

v
r

dw
dr

E c E α T
v

( )
1

Δ
1rr

s s b

s

s s s

s
2

2

2 (16a)

Fig. 2. A two-dimensional axisymmetric multilayered model for analytical calculation.
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⎜ ⎟= − −
−

⎛
⎝

+ ⎞
⎠

+ −
−

σ E z t
v

d w
dr

v
r

dw
dr

E c E α T
v

( )
1

Δ
1rr

i i b

i

i i i

i
2

2

2 (16b)

where the superscripts s and i denote the substrate s and layer i of the
coating, respectively. Substituting Eqs. (15) and (16) into Eq. (14), we
obtain

+ − +

+ ∑ ⎡⎣
+ + − + ⎤⎦

− +

= +

− ∑ + −

−
−
+

= − − −
=

−
−
+

−
−

=

=
−
− −

=

=( )( )
( )( ) ( )

( )
( )

c

t t h t t c

t

t t

2

2

E h
v

h t v
v

c
a

i
n E h

v i i i
h

b
r a

i
h i v

v
c
a

E h c α T
v

h
b
r a

i
n E h c α T

v i
h

b
r a

1 3 2 1
1
1

1 1 1
2

1 3 1 2 1 1

( Δ )
1 2

1
( Δ )
1 1 2

s s
s

s b
r a

s
s

i i
i

i i i
i

s s s
s

s

i i i
i

i

2
2
2

2
2

(17)

ii) According to the assumptions mentioned above, the outside edge of
the disk is allowed to move radially but must remain in-plane and
vertical, which means that the deflection w is constant and that
dw dr/ is zero. For simplification, w is assumed to be zero. As a re-
sult,

= = =w and dw
dr

when r b0, 0,
(18)

from which

+ =c b c 01
2

3 (19)

and

+ =c b c2 01
2

2 (20)

Substituting Eqs. (13) and (20) into Eq. (11), the location of the
bending axis, tb, is expressed as the function of r

=
+ + ∑ +

+ + ∑ +

−
−

−
+ =

+
−

−
+

−
−
+ = −

−
+

−( ) ( )
( ) ( )

t
1 1

1 1
b

E h
v

v
v

b
r i

n E h t h
v

v
v

b
r

E h
v

v
v

b
r i

n E h
v

v
v

b
r

1
1
1 1

(2 )
1

1
1

2
1

1
1 1

2
1

1
1

s s
s

s
s

i i i i
i

i
i

s s
s

s
s

i i
i

i
i

2 2
2

1 2
2

2
2

2
2 (21)

Combining Eqs. (17), (19) and (20), we obtain

=
− + + ∑ + −

+ +

+ ∑ ⎡
⎣

⎛
⎝

+ + ⎞
⎠

− + ⎤
⎦

+

−
−

=
=

−
− −

=

−
−
+

= − − −
=

−

−
+

=( )( )

( )

( ) ( )

( )

c
t t t

t t h t t

1

1

E h c α T
v

h
b
r a

i
n E h c α T

v i
h

b
r a

E h
v

h t v
v

b
a

i
n E h

v i i i
h

b
r a

i
h

v
v

b
a

1

( Δ )
1 2 1

( Δ )
1 1 2

2
1 3 2

1
1

1
2
1 1

2
1 3 1 2

1
1

s s s
s

s i i i
i

i

s s
s

s b
r a

s
s

i i
i

i i

i
i

2 2
2

2

2
2

(22)

Combining Eqs. (13a), (19) and (20), and (22), the deflection w can
be calculated by

= ⎡
⎣

− ⎛
⎝

⎞
⎠

− ⎤
⎦

w c r b ln r
b

b21
2 2 2

(23)

By now, the general solutions for the stress/strain distributions in all
layers of the disk are complete. The stresses both in layers of coating
and substrate are functions of r and z. The above solutions are exact for
positions remote from the free edges.

2.3. Interfacial peeling moments Mp and shear forces V

Around the free edges of the hole, the in-plane thermal stresses are
converted to peeling stress, σzz, and shear stress, τrz, at the interface.
Since exact solutions for the distributions of σzz and τrz are quite difficult
to derive, the interfacial peeling moment and shear force derived from
the localized σzz and τrz are chosen to characterize mode I and mode II
edge cracking [17,18]. At interfacek ( ≤ ≤k n1 ), the peeling moment,
M̂p

k, induced by the peeling stress, σzz
k , is expressed as

∫ ∫ ∫= − ⋅ = − ⋅M σ r a rdrdθ σ r a πrdrˆ ( ) ( ) 2p
k

π

a

b

zz
k

a

b

zz
k

0

2

(24)

and the shearing force, V̂ k, induced by the shear stress, τrz
k , is expressed

as

∫ ∫ ∫= ⋅ = ⋅V τ rdrdθ τ πrdrˆ 2k
π

a

b

rz
k

a

b

rz
k

0

2

(25)

Therefore, the peeling moment, Mp
k, and the shear force,V k, per unit

circumferential length in the region of the hole edge are calculated by

∫= = −M
M
πa a

σ r a rdr
ˆ

2
1 ( )p

k p
k

a

b

zz
k

(26)

and

∫= =V V
πa a

τ rdr
ˆ

2
1k

k

a

b

rz
k

(27)

Since exact solutions for σzz
k and τrz

k are hardly to obtain, the inter-
facial peeling moments and shear forces at the hole edge can be cal-
culated by σrr according to a superposition procedure [18,21]. The free-
surface condition at the hole can be determined by the following two
steps: first, the stresses of σrr

s and σrr
i (exactly calculated in Subsection

2.2) are assumed to be distributed throughout the system; second,
imaginary tractions equal and opposite to the stresses at =r a (i.e.,
− =σrr

s r a, and − =σrr
i r a, ) are applied at the corresponding locations along

the hole edges. In this way, a stress-free state is achieved at the hole
edges, and the stress in regions far from the hole remains unchangeable
due to Saint-Venant's principle. The stress field near the hole area is the
superposition of fields of σrr

s and σrr
i and a field induced by the ima-

ginary tractions, and only the latter leads to interfacial peeling and
shear stresses. Therefore, M̂p

k and V̂ k are equivalent to the peeling
moment and the shear force, respectively, derived from the imaginary
tractions applied above interface k, namely

∫∑= − − ⋅
=

=
−

−

M σ z t πadzˆ ( ) 2p
k

i k

n

t

t

rr
i r a

k
,

1

i

i

1 (28)

and

∫∑= − ⋅
=

=

−

V σ πadzˆ 2k

i k

n

t

t

rr
i r a,

i

i

1 (29)

Thus, Mp
k, and V k are calculated by

∫∑= − −
=

=
−

−

M σ z t dz( )p
k

i k

n

t

t

rr
i r a

k
,

1

i

i

1 (30)

and

∫∑= −
=

=

−

V σ dzk

i k

n

t

t

rr
i r a,

i

i

1 (31)

Substituting Eqs. (13), (16) and (20) into Eqs. (30) and (31), we
obtain

= − ∑ ⎡
⎣

−⎛
⎝

+ + ⎞
⎠

+ + +

− ⎤
⎦

+

− ∑ − − +

= − − − −
=

−

=
−

−
+

= − − −

( )
( )

( )

M t t h t t t

t t c

c α T t t

( )

1

( Δ )

p
k

i k
n E h

v i i i
h

k b
r a

i
h

b
r a

k
v
v

b
a

i k
n E h

v i i k
h

2
1 1

2
1 3 1 1 2

1
1
1 1

1 1 1 2

i i
i

i i

i
i

i i
i

i

2

2
2

(32)

and
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∑ ⎜ ⎟= −
−

⎡
⎣⎢

− ⎛
⎝

+ − ⎞
⎠

⎛
⎝

+ −
+

⎞
⎠

+ − ⎤
⎦⎥=

−
=V E h

v
c t h t v

v
b
a

c α T
1

2
2

1 1
1

Δk

i k

n
i i

i
i

i
b
r a i

i
i1 1

2

2

(33)

where c, =tb
r a, and c1 are given by Eqs. (10), (21) and (22), respectively.

The solutions for the interfacial peeling moment and shear force at each
interface are now complete and are independent of the number of
coating layers.

3. Numerical modeling

Numerical models are built in ABAQUS to i) confirm the accuracy of
the analytical solutions and ii) study the stress field and interfacial
cracking behavior of TBCs near the cooling hole. To this end, two two-
dimensional axisymmetric FE models of double- and four-layered
coating-substrate systems with cooling holes are constructed as ex-
amples, and their geometries and boundary conditions are illustrated
schematically in Fig. 3. The double-layered model in Fig. 3a consists of
a ceramic coating (i.e., the TC) layer and a super-alloy substrate layer,
and the four-layered model in Fig. 3b consists of a TC layer, a TGO
layer, a BC layer, and a substrate layer. All of the layers are well-bonded
together. The radius of the hole, a, was varied from 0.1 to 3mm to
study the influence of the cooling hole's geometry on the edge dela-
mination. The radius of the model, b, is set as 25mm to maintain b≫a
and b≫ htotal. Multiple FE calculations prove that the results of stress
fields, peeling moments, and shear forces around the hole are nearly
unchanged for b > 25mm.

The models undergo uniform cooling-down periods from stress-free
states at high temperatures to room temperature (i.e., TΔ =-1200 °C)
in 20min. The outside edges of the models are restricted by the mul-
tipoint constraint (MPC) method so that they are allowed to move ra-
dially but must remain in-plane and vertical. The bottoms of the outside
edges are restricted to move in the z direction to ensure that their de-
flections are zero. The top and bottom edges of the models and the
edges of the holes are free from any constraints. The eight-node ax-
isymmetric thermally coupled quadrilateral elements (CAX8T) are
generated for FE meshing. The meshes in regions adjacent to the hole
and all interfaces are refined to obtain sufficient accurate results, and
the minimum mesh sized reaches 0.01μm.

All layers are treated as elastic materials, and their material prop-
erties and thicknesses are listed in Table 1. Because the TGO layer can
grow during application, its thickness is set to range from 0.001 to
0.01mm to examine its influence on edge delamination. In addition,
because a thicker TC layer brings about higher thermal insulation
properties but a more severe thermal mismatch, the thickness of the TC
layer is also set to vary from 0.05 to 0.3 mm. Unless otherwise noted,
the thicknesses of the TGO and TC layers are set as 0.005mm and
0.2 mm, respectively, for these calculations.

When the simulated distributions of interfacial peeling and shear
stresses, σzz k, and τrz k, , are achieved, M̂p k, and V̂k can be respectively

calculated by Eqs. (24) and (25), and Mp k, and Vk can be respectively
calculated by Eqs. (26) and (27). The FE results are then compared with
the analytical results calculated by Eq. (28)~(33).

Finally, to simulate the interfacial cracking behaviors in four-
layered TBCs during the cooling period, the four-node axisymmetric
cohesive zone elements (COHAX4) in nearly zero thicknesses are lo-
cated at the TC/TGO/BC interfaces. Since the BC/substrate interface
generally has good bonding performance, the interfacial crack between
the BC and substrate is not considered. The interfacial cohesive zone
model (CZM) in the FE calculation is characterized by a bilinear trac-
tion-separation law (TSL). It is assumed that the interface in the cohe-
sive zone before crack tip has a linear elastic behavior before damage,
and once the initiation criterion is satisfied, damage begins to initiate.
Under continuous loadings, the damage accumulates until final failure
occurs. Detailed description of CZM and their constitutive equations
can be found in our previous research [22]. Under mixed-mode thermal
loadings, a maximum minimal stress criterion is chosen for damage
initiation, which can be expressed as [23].

⎧
⎨⎩

⎫
⎬⎭

=max σ
σ

σ
σ

, 1n

n

s

s
0 0 (34)

where ⟨⋅⟩ is the Macaulay bracket representing that damage cannot
initiate under pure compressive stress, and σn

0 and σs
0 are the critical

stresses in normal and shear directions, respectively. In the FE models,
the TC/TGO and TGO/BC interfaces are assumed to have same inter-
facial properties. The acquired interfacial fracture parameters are listed
as follows: the initial stiffness K=200 GPa, the mode I and model II
critical energy release rates (fracture toughness) Gn

c =Gs
c =20 J/m2,

and the critical stresses σn
0 = σs

0 =200MPa [22].

4. Results and discussion

4.1. Double-layered system

The analytical solutions for the double-layered system can be ob-
tained by degenerating the relevant solutions presented in Sections 2.2
and 2.3. Detailed solutions are displayed in Appendix A. Fig. 4 shows
the results of the deflection w and curvature

ρ
1 along the r direction with

a hole radius a of 1.5mm. The analytical solution for w agrees well with

Fig. 3. Geometries of FE models with boundary conditions: (a) double-layered model; (b) four-layered model.

Table 1
Material properties and thicknesses of the thermal barrier coating–substrate
system for finite element (FE) calculation.

Materials E (GPa) v α (× °−10 / C6 ) h (mm)

TC 20 0.1 10 0.05–0.3
TGO 400 0.2 8 0.001–0.01
BC 150 0.3 15 0.2
Substrate 200 0.25 18 1.5
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the FE solution. Clearly, the curvature is the function of r, which differs
from Hsueh's solution [10] for the system without a hole that the cur-
vature keeps as a constant. The curvature reaches 0.75m at the hole
edge and sharply decreases along the radial direction to zero for r= b.
This tendency can be explained by Eqs. (A. 5) through (A. 7). The in-
crease of curvature near the hole will lead to high local strain and stress
based on Eq. (3). Because excellent agreement was obtained between
the analytical and FE solutions for deformations, the stress/strain fields
remote from the hole edges calculated by analytical formulas also agree
with the FE calculations.

Fig. 5 shows the FE results of the stress component distributions in
the regions around the interface and hole edge. Due to thermal mis-
matching, the radial stress σrr is in a compressive state for the coating
layer and in a tensile state for the substrate layer. The magnitude of σrr
decreases near the free-edge of the hole (see Fig. 5a). Both the stress
normal to the interface, σzz, and the shear stress, τrz, are zero in regions
far from the hole edge. In the hole edge region, interfacial peeling and
shear stresses (i.e., σzz and τrz) are induced by the thermal mismatch and
free-edge effect.

Attention is now focused on the stress distribution along the inter-
face. Fig. 6 shows the distributions of interfacial peeling and shear
stresses, σzz and τrz, along the radial direction for various radii of the
hole. Both σzz and τrz are found to be concentrated near the hole edge
and then decay to negligible values in positions far from the hole
(r>~1.0mm for σzz and r>~1.2mm for τrz). Near the hole region, σzz
always changes sign from negative to positive. Because no external
loadings are applied normal to the interface, the resultant force derived
from the compressive peeling stresses is equivalent to that from the
tensile peeling stresses. In the FE results, σzz and τrz are affected by the
hole radius, especially for lower values of a. Although the tendencies for
both σzz and τrz remain consistent, their magnitudes increase as the hole
radius increases. However, when the radius of the hole is sufficiently
large (for instance a>1.5mm), the stresses can hardly continue to
increase, which indicates that they are nearly independent of the hole
radius. Both σzz and τrz reach their minimum values (i.e., the maximum
magnitudes) at the hole edge, and both σzz min, and τrz min, decrease as the
hole radius increases. It worth noting that the stresses at the hole edge
may be subject to errors because of the free-edge stress singularity
problem [24]. The resultant force induced by interfacial peeling stress
should be as close to zero as possible, and mesh refinement near the
hole edge is required to minimize the errors.

Fig. 7 displays the results of the interfacial peeling moments and

shear forces induced by σzz and τrz for various hole radii. The analytical
and FE results show excellent agreement for a hole with a large radius
(a>1.5mm); however, differences appear for those with a small ra-
dius. Both peeling moments M̂p and shear forces V̂ increase almost
linearly as the hole radius increases in the analytical and FE solutions.
The analytical solutions are slightly larger than the analytical solutions
for smaller holes. For the peeling moments Mp and shear forces V per
unit circumferential length, the analytical results remain constant as the
hole radius increases. This can be explained by Eqs. (A. 11) through (A.
13) that Mp andV are not functions of a and b. During the cooling-down
period, Mp reaches 4 N and V reaches 40 N/mm at the interface. In the
FE results, Mp and V both have positive correlations with the hole ra-
dius for smaller values of a; however, they also remain constant when a
is greater than 1.5mm.

In Fig. 7, a smaller hole radius leads to a larger difference between
the analytical and FE solutions. When a=0.1mm, the relative error is
50.9% for Mp and 42.5% for V . The cause of the significant difference is
that for smaller holes, the effects of the stress component σzz and the
transverse shearing stress τrz near the hole on the deformation of the
thin disk are ignored in the applied bending theory [20]. A future study
has been planned to solve this problem. The hole radius is set as 1.5mm
in the following subsection to avoid the calculation deviations that
occur in cases with smaller holes.

Furthermore, the signs for the peeling moments and shear forces in
Fig. 7 merit attention. The changes in the peeling stresses along the
interface from compressive at the hole edge to tensile in the in-board
region give rise to closing modes of moments (i.e., M̂p and Mp are po-
sitive), which may prevent mode I edge cracking. In addition, the signs
of the shear stresses in Fig. 6 indicate the shear directions, and only
their magnitudes are concerned for mode II edge cracking; thus V̂ andV
in Fig. 7 are written as positive to represent their magnitudes. There-
fore, during the cooling period, the system is prone to mode II inter-
facial delamination from the hole edge promoted by interfacial shear
stresses/forces. However, the situation may be different during the
heating period. From Eqs. (A. 11) and (A. 13), M̂p has linear relation
with TΔ , which indicates that during the heating up period ( TΔ is
positive), M̂p and Mp are negative (i.e. in opening modes) and mode I
edge cracking will be promoted. In this case, mix-mode (including both
modes I and II) edge cracking may occur near the hole of the system.

Fig. 4. Results of the deflection w and curvature
ρ1/ of the disk along the radial direction.
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4.2. Four-layered system

The multilayered TBC system experiences more complicated stress
distributions than the double-layered system. Fig. 8 shows the inter-
facial peeling and shear stresses along each interface of the four-layered
TBC system with a hole radius of 1.5mm. At each interface, σzz and τrz
along the interface vary rapidly and significantly near the hole edge and
then reach zero far from the hole edge. Generally, the shear stresses
require a greater distance from the hole edge to reach zero than the
peeling stresses. Near the hole edge, σzz and τrz each have their own
variation trends from the hole edge at each interface. The σzz at the BC/
substrate interface changes from a compressive state to a tensile state
near the hole edge, like that in a double-layered system, whereas the σzz
at the TC/TGO and TGO/BC interfaces change from tensile states to
compressive states and then back to tensile states. The tensile stresses at
the TC/TGO and TGO/BC interfaces near the hole edge appear only in
very small regions, and it is unclear whether they promote model I edge
cracking. The TGO/BC interface has a larger magnitude of τrz at the hole

edge than the TC/TGO and BC/substrate interfaces, which may be more
likely to cause mode II edge cracking.

Figs. 9 and 10 display the corresponding peeling moments and shear
forces at three interfaces, and the respective effects of the TGO and TC
thickness are considered. For all cases, the analytical solutions are in
good agreement with the FE results. In Fig. 9, both Mp and V at the BC/
substrate interface are larger than those at other interfaces. With TGO
thickening, the Mp and V at the BC/substrate and TGO/BC interfaces
increase, but they decrease slightly at the TC/TGO interface. The Mp is
always positive (i.e., in closing mode) with TGO thickening, which may
impede mode I edge cracks at all interfaces. As the TGO grows, mode II
edge cracks is more likely to occur at both the BC/substrate and TGO/
BC interfaces as a result of the increasing interfacial shear forces.

In Fig. 10, both Mp andV at the BC/substrate interface reach greater
magnitudes than those at other interfaces as the TC thickness increases.
At all interfaces, Mp and V increase as the TC thickness increases. Mode
I edge cracking is impeded at all interfaces because the interfacial
peeling moments are always positive (i.e., in closing mode), and mode

Fig. 5. FE results of the stress component distributions near the interface and hole edge in a double-layered model with a hole radius of 1.5 mm.
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II edge cracking is promoted at all interfaces as a result of the increasing
interfacial shear forces. Furthermore, based on Eqs. (10), (22) and (32),
the interfacial peeling moment in each layer is negative (i.e., in opening
modes) during the heating period (i.e., TΔ is positive), which could be
the driving force for mode I edge cracking. In this case, mixed-mode
edge delamination (including both modes I and II) may occur at the
interfaces near the hole. Although a thicker TC leads to better thermal
insulation properties, it also increases the risk of edge delamination in
the TBC system near the cooling hole.

4.3. Interfacial cracking in TBCs at the hole edge

The above sections analyzed the stress distribution in TBCs around
the hole, andMp and V were chosen to predict the likelihood of the edge
crack initiation from the hole. Now initiation and propagation of in-
terfacial cracks from the hole edges during cooling-down periods
modeled by CZM are presented. Fig. 11 and Fig. 12 display the patterns,
lengths and initiation times of the interfacial cracks for different hole
radii, a, when the TGO thickness is 5 μm. Note that SDEG in Fig. 11
represents the damage value in the interfacial cohesive elements

Fig. 6. FE results of the interfacial peeling stresses σzz and shear stresses τrz along the interface in a double-layered model with different hole radii. Note that r begins
from the hole edge.

Fig. 7. Comparison of analytical and FE results of interfacial peeling moments and shear forces in a double-layered model with different hole radii.
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Fig. 8. FE results of the peeling stresses σzz and shear stresses τrz along different interfaces in a four-layered model. Note that r begins from the hole edge.

Fig. 9. Effect of TGO thickness on the interfacial peeling moments, Mp, and shear forces, V, at different interfaces in a four-layered model (lines: analytical solutions;
symbols: FE results).

Fig. 10. Effect of TC thickness on the interfacial peeling moments, Mp, and shear forces, V, at different interfaces in a four-layered model (lines: analytical solutions;
symbols: FE results).
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ranging from 0 to 1. When SDEG=0, there is no damage in the co-
hesive element; when SDEG is accumulated to 1, failure occurs and the
element is deleted to represent the crack surface. As shown in Fig. 11,
edge cracks initiate and propagate only at the TGO/BC interface in all
cases. This is because the shear stress at the TGO/BC interface at the
hole edges is prominently larger than that at the TC/TGO interface, see
Fig. 8b for instance, which makes the crack prone to initiate at the
TGO/BC interface. Besides, once the crack occurs at the TGO/BC in-
terface, the local stress near the TC/TGO interface will be relaxed to a
low level, impeding the crack initiation at the TC/TGO interface.

In Fig. 12, as the hole radius becomes larger, the crack initiation
time is shorter, namely the edge crack is more easily to initiate, which is
consistent with the prediction by evaluating the magnitudes of Mp and
V , see Fig. 7 for instance. However, the final crack length does not have
a positive correlation with the hole radius. With the increase of hole
radius, the crack length increases rapidly first and then decreases gra-
dually to reach a certain value. The crack length reaches a maximum
value of 27 μm when a=0.4mm. The results indicate that crack pro-
pagation cannot be accurately predicted by evaluating the stresses or
Mp and V in models without considering damages. Once the interfacial
crack appears, the stress field near the hole is redistributed, and the
local stresses around the crack tip continuously prompt the crack

propagation.
Fig. 13 shows the effect of both hole radius and TGO thickness on

the interfacial crack length. When a≤0.4mm, the interfacial crack is
generated when the TGO layer is thick enough (> 3 μm), but when
a>0.4mm, it can be generated with relatively thinner TGO layer (> 1
μm). For all cases, the interfacial crack propagates longer with TGO
thickening. When the TGO thickness increases to 10 μm, the crack
length for a=0.5mm reaches a maximum value of 69.2 μm. The re-
sults indicate that, under long-time thermal loadings, interfacial cracks
in TBCs may initiate from the hole edge, and then propagate along the
interface with the continuous TGO thickening. When the thermal
loadings continue, the edge cracks may coalesce with the interfacial
micro-cracks in regions remote from the hole to form a macro one,
eventually resulting in local spallation of TBCs around the cooling hole.

5. Summary and remarks

The stress field and stress-induced interfacial cracking in TBCs near
the cooling hole under uniform thermal loadings were investigated by
analytical and numerical models. Analytical solutions for the interfacial
peeling moment and shear force acting as the driving forces for mode I
and mode II edge delamination were derived based on the mechanics of
elasticity and the thin plate bending theory, and they were verified by
the finite element calculations of the two- and four-layered coating-
substrate systems with cooling holes. Furthermore, the interfacial
cracks in TBCs initiated from the hole edges were simulated by the
cohesive zone model. The results are as follows:

1) Because of the free-edge effect, both peeling and shear stresses at
each interface are concentrated near the hole edge and then decay to
negligible values in positions far from the hole. The TGO/BC in-
terface in the four-layered system experiences the largest shear
stresses at the hole edge, which is more likely to induce mode II edge
cracking.

2) The interfacial peeling moment and shear force increase as the hole
radius increases; however, for larger holes (i.e., hole radius greater
than 1.5mm), they can hardly increase and tend to remain constant.
A TBC system with a larger cooling hole is more likely to initiate
edge crack around the hole.

3) Upon cooling, the peeling moments in all layers are positive (i.e., in
closing modes), which may impede mode I edge crack around the
hole. Mode II edge crack is prone to be driven by the interfacial
shear forces. However, upon heating, the peeling moments are

Fig. 11. Interfacial crack patterns near the hole for different hole radii, a, at room temperature when the TGO thickness is 5 μm: (a) a=0.1mm; (b) a=0.25mm; (c)
a=0.5mm; (d) a=1.0mm. Note that SDEG represents the damage value ranging from 0 to 1. When SDEG=0, there is no damage in the cohesive element; when
SDEG=1, failure occurs and the element is deleted to represent the crack surface.

Fig. 12. Interfacial crack lengths and crack initiation times for different hole
radii when the TGO thickness is 5 μm.
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negative (i.e., in opening modes). In this case, mixed-mode edge
crack driven by both interfacial peeling moments and shear forces
may occur at the interfaces near the hole.

4) Both the peeling moments and the shear forces increase at the TGO/
BC and BC/substrate interfaces with TGO thickening, whereas they
increase at all interfaces as the TC thickness increases. Greater TGO
and TC thicknesses may increase the likelihood of interfacial mode II
edge crack around the hole during the cooling period.

5) Derived by local stresses, interfacial crack between the TGO and BC
initiates from the hole edge and then propagates along the interface
during the cooling-down period. With the increase of hole radius,
the crack length increases rapidly first and then decreases gradually
to reach a certain value. The crack length reaches a maximum value

of 27 μm when the hole radius is 0.4mm for TBCs with TGO
thickness of 5 μm. Furthermore, the edge crack propagates longer
with TGO thickening, eventually resulting in local spallation of TBCs
around the cooling hole.
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Appendix A. Detailed analytical solutions for a double-layered system

The solutions for a double-layered system can be derived from the solutions presented in Sections 2.2 and 2.3 by letting the number of coating
layer n= 1. Thus, the parameters c, tb, and c1 are calculated by
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When b≫a, → +∞b
a

2
2 , then tb for =r a is calculated by
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The deflection w can then be calculated by substituting Eq. (A. 3) into Eq. (23). The curvature,
ρ
1 , is expressed as
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Considering b≫a,
ρ
1 for =r a is calculated by

Fig. 13. Effect of hole radius and TGO thickness on the interfacial crack length.
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and for =r b,
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The in-plane stresses σrr
s for substrate and σrr

1 for coating (i.e., TC) in regions remote from the hole edges are calculated as
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From Eqs. (A. 8a) and (A. 8b), σrr
s and σrr

1 are functions of r and z. The interfacial peeling moment Mp and the shear force V are calculated by,
respectively,
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Considering b≫a and substituting Eq. (A. 3) into Eqs. (A. 9) and (A. 10), Mp and V can be simplified as
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From Eqs. (A. 11)-(A. 13), Mp and V are independent of a and b. In other words, by the presented analytical solutions, the interfacial peeling
moment Mp and the shear force V remain unchanged regardless of the size of the cooling hole.
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