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Comment on “Piezoelectricity in planar boron nitride via a geometric phase”
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Using the strain-dependent effective Hamiltonian and the geometric phase, Droth et al. [Phys. Rev. B 94,
075404 (2016)] obtain an analytical expression for the electronic contribution to the piezoelectricity of planar
hexagonal boron nitride (h-BN). Their analytical results of piezoelectric constants for h-BN are invalid because
of the mistakes in constructing the adiabatic process of the piezoelectricity. In this Comment, we reconstruct a
proper adiabatic process for piezoelectricity and formulate a general Berry phase expression for the piezoelectric
coefficients of two-dimensional piezoelectric crystals by means of the modern theory of polarization. The
corrected analytical results of the piezoelectric constants are in complete consistency with the first-principles
calculations and hence manifest the validity and generality of the Berry phase expression of piezoelectric
coefficients.
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Recently, Droth et al. analytically evaluated the electronic
contribution to the piezoelectricity of planar boron nitride
(h-BN) by means of the geometric phase of wave functions
and the strain-dependent effective Hamiltonian of h-BN [1].
The analytical value of piezoelectric constant e222 is 1.0 ×
10−10 C/m, as shown in Eq. (14) of Ref. [1]. However, the
value of e222 obtained from first-principles calculations is
3.71 × 10−10 C/m in the case of clamped-ion models [2].
Such large deviation of their analytical values from the first-
principles calculations arises from a serious mistake in con-
structing the adiabatic process of the piezoelectricity. Con-
sequently, the erroneous usage of the polarization difference
formula in Eq. (4) leads to an invalid analytical expression of
piezoelectric constant in Eq. (12) of Ref. [1]. In this Comment,
we reconstruct a proper adiabatic process for piezoelectricity
and present a general expression of the piezoelectric coef-
ficients for two-dimensional (2D) piezoelectric crystals. For
h-BN, the obtained analytical result agrees well with the first-
principles calculations.

The modern theory of polarization offers further insight
on the physical understanding of dielectricity, piezoelectricity,
and ferroelectricity of crystalline systems [3–5], by virtue
of the clear definition of the polarization difference, i.e.,
the accumulated bulk current through the crystals during the
adiabatic evolving process from an initial state to a final
state. In a quantum picture, the adiabatic current is essentially
determined by the Berry phase of wave functions, i.e., the
integral of the Berry curvature over the Brillouin zone [6].
Therefore, for the adiabatic evolving process parameterized
by a scalar λ, from the initial state (λ = 0) to the final
state (λ = 1), the polarization difference �Pi can be written
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as [4–6]

�Pi = 2e
∑

n

∫ 1

0
dλ

∫
BZ

dk
(2π )2

�n
i,λ, (1)

where factor 2 denotes the spin degrees of freedom and the
Berry curvature of valence-band wave function un is defined
by

�n
i,λ = i

[〈
∂un

∂ki

∣∣∣∣∂un

∂λ

〉
−

〈
∂un

∂λ

∣∣∣∣∂un

∂ki

〉]
. (2)

Now let us first point out the mistakes made in Ref. [1] and
then present the correct results. To explore the piezoelectricity
of h-BN, Droth et al. construct an adiabatic process parame-
terized by the band gap δ and then choose free graphene as the
initial state with δ = 0 (zero band gap) and h-BN as the final
state with δ = � (where � is the band gap of h-BN). In this
way, they write the polarization difference �Pi as [1]

�Pi = 2e
∑

τ

∫ �

0
dδ

∫
BZ/2

dq
(2π )2

�τ
i,δ, (3)

where τ denotes the K (τ = 1) and K ′ (τ = −1) valleys, and
the corresponding Berry curvature is [1]

�τ
i,δ = i

[〈
∂uτ

∂qi

∣∣∣∣∂uτ

∂δ

〉
−

〈
∂uτ

∂δ

∣∣∣∣∂uτ

∂qi

〉]
. (4)

Their chosen adiabatic process and parameter are incorrect for
the piezoelectricity, because the correct adiabatic process of
piezoelectricity should reflect the deformation-induced polar-
ization difference from the initial state of undeformed h-BN
to the final state of deformed h-BN. In fact, such an adiabatic
process for the piezoelectricity of any 2D piezoelectric crystal
can be captured by the λ-dependent strain

ε(λ) = λ�ε = λ

(
�εxx �εxy

�εxy �εyy

)
. (5)
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Obviously, λ = 0 represents the initial state of the undeformed
crystal, and λ = 1 denotes the final state of the deformed
crystal. Consequently, the polarization difference along the i

direction is contributed by all components of the strain tensor
and takes the form

�Pi = 2e

∫ 1

0
dλ

∑
n,jk

∫
BZ

dk
(2π )2

�n
i,jk�εjk, (6)

where the Berry curvature �n
i,jk of the valance band with

respect to ki and εjk is

�n
i,jk = i

[〈
∂un

∂ki

∣∣∣∣ ∂un
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〉
−

〈
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∂εjk

∣∣∣∣∂un

∂ki

〉]
. (7)

Equation (6) can be further simplified as

�Pi =
∑
jk

[∑
n

2e

∫
BZ

dk
(2π )2

�n
i,jk

]
�εjk. (8)

The piezoelectricity is generally defined as a reversible linear
electromechanical coupling effect, and the flexoelectricity is
an electromechanical response of stress and strain gradients
[7]. Consequently, the piezoelectric coefficient, i.e., eijk =
(∂Pi/∂εjk )|ε→0, can be written as

eijk = 2e
∑

n

∫
BZ

dk
(2π )2

�n
i,jk = e

π

∑
n

Cn
i,jk, (9)

where �n
i,jk is a short-hand notation of �n

ki ,εjk
|ε→0 (it will be

used hereinafter) and Cn
i,jk plays a similar role of the Chern

number but is not quantized [6]. Equation (9) is a general
Berry phase expression of the piezoelectric coefficient for any
2D piezoelectric crystal and can be further extended to the
case of three-dimensional crystals.

Next, we reformulate the analytical expression of e222 for
h-BN. Because the strain-induced pseudomagnetic vector po-
tential keeps the time-reversal invariant, the valley degenerate
remains. Therefore, we can only consider the low-energy ef-
fective Hamiltonian of h-BN at the K valley in the continuum
approximation, as follows:

HK (q, ε) = �σz + h̄vF (σxqx + σyqy )

+ h̄vF (σxAx + σyAy ), (10)

where h̄vF = 3a|t |/2, σx, σy and σz are the Pauli matrices,
and the pseudomagnetic vector potential A as a perturbation
in the Hamiltonian is given by [8](

Ax

Ay

)
= − 3tβ

4h̄vF

(
εxx − εyy

−εxy

)
, (11)

where εxx = uxx, εyy = uyy, εxy = 2uxy , and uij = (∂iuj +
∂jui )/2, with the in-plane displacement u. From the Hamil-
tonian in Eq. (10), we can obtain the energy eigenvalues and
normalized eigenstates for the conduction (+) and valence
(−) bands of h-BN without the strain perturbation, as follows:

E± = ±
√

h̄2v2
F

(
q2

x + q2
y

) + �2,

|u±〉 = 1√
2E+

(
h̄vF (qx−iqy )√

E+∓�

±√
E+ ∓ �

)
. (12)

Using the identity

〈∂u−/∂R|u+〉 = 〈u−|∂HK (q, ε)/∂R|u+〉/(E− − E+),
(13)

with R = qi or εjk , one can rewrite the Berry curvature for the
valence band of h-BN in Eq. (7) as

�i,jk = i
〈u−|∂HK/∂qi |u+〉〈u+|∂HK/∂εjk|u−〉 − c.c.

(E+ − E−)2
, (14)

where c.c. denotes the complex conjugate. To obtain the Berry
curvature �K

2,22 near the K point, we first write the partial
derivatives of Hamiltonian in Eq. (10) with respect to qy and
εyy as

∂HK (q, ε)/∂qy = h̄vF σy, ∂HK (q, ε)/∂εyy = 3tβ

4
σx. (15)

Substituting Eqs. (12) and (15) into Eq. (14), we can obtain
the Berry curvature �K

2,22 near the K point as follows:

�K
2,22 = 9at2β�

16
[
(3at/2)2

(
q2

x + q2
y

) + �2
]3/2 . (16)

Because the piezoelectric coefficient e222 of h-BN is mainly
contributed by both of the Berry curvatures in the vicinity
of K and K ′ points, the integral domain in Eq. (9) can be
replaced by two circles centered at K and K ′ points, where
the area of each circle should be equal to half of the first
Brillouin zone in order to conserve the total number of states.
Consequently, the piezoelectric coefficient e222 reads

e222 = 4e

(2π )2

∫ 2π

0
dθ

∫ qm

0

9at2β�qdq

16[(3at/2)2q2 + �2]3/2
, (17)

where the factor 4 contains both the spin and valley degen-
erates, q =

√
q2

x + q2
y , and πq2

m = SBZ/2 with the area of the
first Brillouin zone SBZ = 8π2/3

√
3a2. We simplify Eq. (17)

and finally obtain the piezoelectric coefficient

e222 = eβ

2πa

(
�

|�| − �√√
3πt2 + �2

)
, (18)

where �/|�| = 1, because the band gap of the piezoelectric
insulator h-BN is a positive constant with � = 3.0 eV, as
given in Ref. [1]. More generally, β is replaced by κβ with the
lattice correction factor κ , due to the lattice relaxation for the
distorted h-BN. However, the clamped ion model requires that
the original lattice remains, and hence κ = 1, for the clamped
ion case. We adopt the same standard values of related param-
eters used in Ref. [1] for h-BN, i.e., a = 1.44 Å, t = −2.3 eV,
� = 3.0 eV, and β = 3.3. The calculated piezoelectric coeffi-
cient e222 is 2.99 × 10−10 C/m. If we further consider that the
π -band electrons only contribute to 80% of the piezoelectric-
ity for h-BN [9], we will obtain the piezoelectric coefficient
e222 with its value 3.74 × 10−10 C/m, which agrees well with
the result (e222 = 3.71 × 10−10 C/m) obtained from the first-
principles calculations [2]. The agreement is a result of the
correct piezoelectric polarization difference expression in Eq.
(8) and the correct values of related parameters of h-BN
rather than a numerical coincidence. One can also use the
tight-binding piezoelectric approach to check the piezoelectric
coefficient e222 with the same parameter values of h-BN
[11]. Usually, the piezoelectric coefficient eijk is defined by
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eijk = ∂Pi/∂εjk in Voigt notation, where εjk is the strain
tensor component with εxx = uxx, εyy = uyy , and εxy = 2uxy

for 2D systems. For this definition of piezoelectric coefficient,
the 6̄m2 point group in hexagonal crystal system requires

e211 = −e222 = e112 = e121. (19)

However, if the piezoelectric coefficient eijk is written as
eijk = ∂Pi/∂ujk in Ref. [1], where ujk = (∂juk + ∂kuj )/2,
with u as the in-plane displacement, Eq. (19) needs to be
rewritten as

e211 = −e222 = 1
2e112 = 1

2e121. (20)

We note that recent analytical results of the piezoelectric
coefficients for h-BN and transition metal dichalcogenide
monolayers are also obtained [10,11]. It should be emphasized
that Eq. (18) in our Comment is only for the piezoelectric
insulator h-BN. In Eq. (18), � is required to be nonzero by
the definition of Berry curvature in Eq. (14). Normally, the
physical intuition tells us that the piezoelectric coefficient is

discontinuous for the transition from the semimetal graphene
with both zero band gap and piezoelectricity to a piezoelectric
insulator with both nonzero band gap and certain piezoelectric
value. If e222 is expressed as a continuous function of the band
gap �, that predicted piezoelectricity is really contrary to the
physical intuition.

In conclusion, we formulate a general expression for
the piezoelectric coefficients of 2D piezoelectric crystals by
means of the Berry phase approach. Using the effective
Hamiltonian in the continuum approximation, we analytically
derive the expression for the piezoelectric constants of h-BN.
The analytical result is in complete consistency with the first-
principles calculations.
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