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Introduction

Radially polarized (RP) and azimuthally polarized (AP) beams 
have drawn much attention due to their unique properties [1], 
which can be used in many laser applications, such as optical 
manipulation [2], material processing [3–5] and vacuum laser 
acceleration [6]. Several methods are proposed to generate 
continuous wave (CW) RP and AP beams, including coherent 
superposition [7], linearly polarized beam transforming [8], 
intra-cavity mode selection with a conical Brewster prism [9], 
and photonic crystal mirrors [10]. In practice, there is a simple 
and effective method to produce RP and AP beams in solid-
state lasers by using the thermal bipolar lensing effect in uni-
formly pumped isotropic solid-state rods [11]. Based on the 
fact that RP and AP beams focus differently in the laser rod, 
RP or AP beams can be easily obtained by using a specially 

designed cavity operating near the edge of the stable region. 
Another effective approach is to insert a c-cut crystal into the 
cavity to separate the RP and AP modes by using the large 
birefringence of the c-cut crystal; RP or AP beams can be 
obtained by simply adjusting the length of the cavity [12, 13].

Recently, RP and AP laser pulses were achieved via 
mode-locking or Q-switching [14–22]. By utilizing fiber 
Bragg gratings as the mode-selecting elements, all-fiberized 
lasers emitting RP and AP pulses were demonstrated with 
active mode-locking by a Mach–Zehnder intensity modula-
tor [15], and passive mode-locking by a nonlinear amplify-
ing loop mirror [16]. The minimum pulse duration was ~2 ns 
and the peak power was several hundred milliwatts in those 
all-fiber configurations. Nd:YAG-based RP and AP lasers 
mode-locked by acousto-optic modulators [17], semiconduc-
tor saturable absorber mirrors [18] and graphene [19] were 

Laser Physics Letters

J Guo et al

Printed in the UK

055801

LPLABC

© 2018 Astro Ltd

15

Laser Phys. Lett.

LPL

10.1088/1612-202X/aaa6b3

5

Laser Physics Letters

High-energy azimuthally polarized  
laser beam generation from an actively  
Q-switched Nd:YAG laser with c-cut  
YVO4 crystal

Jing Guo1, Baofu Zhang2, Zhongxing Jiao2, Guangyuan He1 
and Biao Wang1,2

1 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, 
People’s Republic of China
2 School of Physics, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China

E-mail: jiaozhx@mail.sysu.edu.cn and wangbiao@mail.sysu.edu.cn

Accepted for publication 10 January 2018
Published 14 March 2018

Abstract
A high-energy, azimuthally polarized (AP) and actively Q-switched Nd:YAG laser is 
demonstrated. The thermal bipolar lensing effect in the Nd:YAG laser rod is used as a 
polarization discriminator, and a c-cut YVO4 crystal is inserted into the laser cavity to increase 
the mode-selecting ability of the cavity for AP mode. The laser generated AP pulses with 
maximum pulse energy as high as 4.2 mJ. To the best of our knowledge, this is the highest 
pulse energy obtained from an actively Q-switched AP laser. The pulse energy remained 
higher than 1 mJ over a wide range of repetition rates from 5 kHz to 25 kHz.
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also demonstrated, with their pulse duration less than 150 ps 
and average power higher than 2 W at a repetition rate of 
45–120 MHz. Compared to mode-locked lasers, Q-switched 
RP and AP lasers are more suitable for generating high-aver-
age-power beams with high pulse energy at kHz repetition 
rate. RP and AP beams passively Q-switched with Cr4+:YAG 
crystal were demonstrated in Yb-doped fiber lasers [20, 21], a  
c-cut Nd:GdVO4 laser [22] and Nd:YAG lasers [23, 24]. The 
maximum pulse energy was 0.12 mJ, as described in refer-
ence [24]. Through active Q-switching by an acousto-optic 
modulator, RP and AP beams were produced in a Nd:YAG 
laser with a photonic crystal grating as the mode selector. 
The pulse energy was 0.2 mJ at a repetition rate of 500 Hz 
[25]. Higher pulse energy was produced based on thermally 
induced birefringence in an actively Q-switched Nd:YAG 
laser; the maximum pulse energy reached 3 mJ at a repetition 
rate of 1.56 kHz [3].

In this paper, we present a high-energy actively Q-switched 
AP Nd:YAG laser based on the thermal bipolar lensing effect 
in the laser rod. A c-cut YVO4 crystal is inserted into the laser 
cavity to increase the mode-selecting ability of the cavity for 
AP mode. A high-average-power AP laser with maximum 
pulse energy up to 4.2 mJ is obtained. The laser maintains sta-
ble operation over a wide range of repetition rates from 5 kHz 
to 25 kHz with pulse energy higher than 1 mJ.

Experiment design

The experimental setup is shown in figure 1; the laser cavity 
consisted of two flat mirrors, M1 and M2, an acousto-optical 
Q-switch, a Nd:YAG module, a c-cut YVO4 crystal, and a 
mode-selecting aperture. M1 and M2 formed a plano–plano 
resonator, and M2 also acted as an output coupler with trans-
mission of 30% at lasing wavelength. The distance between 
M1 and the left surface of the laser rod is labelled L1, and 
the distance between right surface of the rod and M2 (output 
coupler) is labelled L2. The Nd:YAG rod was [1 1 1]-oriented 
and its doping concentration was 0.9 at.%, with a size of 
4 mm in diameter and 120 mm in length. It was packaged in 
a five-laser-diode side-pumped module (Northrop Grumman, 
RD40-1C2 module) with a maximum pump power of 500 W. 
The c-cut YVO4 crystal (CASIX Inc.) was 15 mm in length 
and 6 mm  ×  6 mm in aperture.

The key to achieving AP laser beams here is mode select-
ing through the aperture and bifocal effect of the Nd:YAG rod 
induced by the thermal bipolar lensing effect in the uniformly 
pumped isotropic solid-state rod. Due to the bifocal effect of 
the laser rod, the RP and AP beams have different mode-radii, 

and they can be separated by inserting the aperture at the 
right position in the cavity. The AP beam is generated at the 
edge of the stability zones with high pump power, where the 
mode-radius of the RP beam becomes infinite and can be sup-
pressed by the aperture. In order to obtain high-power AP 
beams, the stability zones of the AP mode operated under 
high pump power. According to the measured thermal lens 
of the Nd:YAG rod under different pump power, we obtained 
an optimum resonator with L1  =  800 mm and L2  =  350 mm, 
which gave the highest power with best beam quality. The 
stability diagrams for fundamental RP and AP beams (beam 
quality factor M2  =  2) are shown in figure 2.

As shown in figure 2, the mode-radius of RP beam at the 
principle plane of the laser rod will become larger than the 
aperture of the laser rod when the pump power is over 320 
W; the RP modes will be restrained, so only a high-power 
AP laser will be obtained. Under this case, the mode radius 
of the AP beam is smaller than the radius of the laser rod, 
thus high-order transverse modes may be generated. The 
aperture inserted near M1 is to suppress the higher-order AP 
modes. However, too small an aperture will weaken the mode-
selecting ability for AP beams because the radius of AP mode 
is larger than that of the RP mode at M1, which is shown as 
dashed lines in figure 2. Therefore, an aperture with 2 mm in 
diameter was chosen in our experiment. An acousto-optical 
Q-switch (Gooch & Housego, QS27-6.5D-B) was inserted 
into the laser cavity to produce Q-switching operation and 
pulse output. When the laser is in Q-switched operation, the 
rod suffers from a process with thermal load changing period-
ically. It makes the thermal lensing become unstable and dis-
turbs the AP mode operation. To obtain pure Q-switching AP 
beams, a c-cut YVO4 crystal was inserted into the resonator, 
located 500 mm away from M1. Due to the birefringence of the 
c-cut YVO4 crystal, the RP and AP modes had different opti-
cal path lengths in the crystal, and hence the distribution of RP 
and AP beams in the cavity was changed [12]. This method 
further increased the separation of stability zones between RP 
and AP beams, which increased the mode-selecting ability of 
the cavity, and stable AP pulses were achieved.

Figure 1. Experimental setup.

Figure 2. Stability zones of the resonator (wa: the mode radius of 
the AP beam; wr: the mode radius of the RP beam).
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Experiment results and discussions

Figure 3(a) shows the output power (measured by a Coherent 
Inc., PM300F-19) as a function of the pump power at differ-
ent repetition frequency. In CW operation, the threshold was 
230 W. When pump power reached 323 W, the output power 
began to decrease because the laser was getting out of the sta-
bility zone of the RP modes. The output power decreased to 
a local minimum average power of 23 W at the pump power 
of 335 W when RP modes were totally suppressed. When the 
pump power increased from 335 W to 360 W, AP laser beams 
with a doughnut-shaped cross section were obtained with a 
maximum average power of 32 W. These phenomena were 
consistent with the stability diagram shown in figure 2. The 
situation of Q-switching operation was similar to that of the 
CW operation. AP modes were also obtained at the local mini-
mum point of the curve. The pump power of the minimum 
points became smaller at lower repetition frequency. The 
thermal lensing effect intensified due to the heavier thermal 
load of the rod at low repetition frequency, leading to stabil-
ity zones moving towards the low pump power direction. The 
beam quality of the CW AP beam at pump power of 360 W 
was measured by a beam profiler (Thorlabs Inc., BP209); data 
are shown in figure 3(b). The M2 factors were 2.04 and 2.37 
in x- and y-directions, respectively. Both of them were close 

to the theory value of a fundamental AP beam (TE01 mode) of 
M2  =  2.0.

Figure 4(a) shows the output power and pulse energy ver-
sus the repetition frequency (fr) at the pump power of 350 W. 
When fr  >  5 kHz, the output power tends to saturate at about 
25 W, and the beams appear as AP modes with a doughnut-
shaped pattern. However, the output pulses become unstable 
when fr  >  25 kHz, and the output power decreases rapidly 
when fr  <5 kHz. At low repetition rate fr  =  3 kHz, the ther-
mal load-induced periodic fluctuations of the laser rod became 
obviously larger, and the polarization of the transverse mode 
became random. Thus, the proper repetition rate to generate 
stable AP beams here was between 5 kHz and 25 kHz. The 
pulse energy curve in figure 4(a) shows that the pulse energy 
decreases with increasing the repetition frequency. The maxi-
mum pulse energy of the stable AP laser was 4.2 mJ at the rep-
etition frequency of 5 kHz. Even at a high repetition frequency 
of 25 kHz, the pulse energy of the AP beam was still larger 
than 1 mJ. The high pulse energy obtained here mainly ben-
efited from the large volume of gain medium (4 mm in diam-
eter), large beam mode-radius (larger than 1 mm as shown in 
figure 2), and the high working pump power (larger than 300 
W) owing to our optimum resonator design.

The pulse width at different repetition frequencies was 
measured by using a fast detector (Thorlabs Inc., DET08CL), 

Figure 3. (a) Output power as a function of the pump power. (b) 
Beam quality of the CW AP beam.

Figure 4. (a) Output properties at different repetition frequency 
(inset shows the pulse width at different repetition frequency). (b) 
Pulse shape at fr  =  10 kHz (inset is the pulse train).

Laser Phys. Lett. 15 (2018) 055801
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and it is shown in the inset of figure  4(a). The pulse width 
increased with increasing the repetition frequency. The rela-
tively large pulse width (several hundred nanoseconds) was 
due to the overall low net gain and long cavity round-trip time 
in the resonator. Figure 4(b) shows a typical pulse shape at 
fr  =  10 kHz with the pulse train shown in the inset. The pulse 
duration is 336 ns, and multiple spikes emerged in the ampl-
itude. The modulation depth of the pulse is over 50%. The 
time interval between the sub pulses is 8–12 ns, which agrees 
well with the intermode beat frequency (104.9 MHz) of the 
resonator.

The far-field beam profiles at different pump power and 
repetition rates were captured by a CCD (COHU Inc., 4812-
7000/0000). Figure 5 shows a typical profile of the beam at 
pump power of 335 W and repetition frequency of 10 kHz. 
The beam profile had a doughnut shape; the intensity distribu-
tions in horizon and vertical axes are shown in figures 5(b) 
and (c), respectively. The experimental data is denoted by 
dashed lines, and the theory fitting of the profile of TE01 mode 
is denoted by solid lines. As shown in these two figures, the 
experimental results are in good agreement with the theor-
etical ones. Figures 5(d)–(g) show the beam profiles after a 
linear polarizer; the arrows indicate the direction of the polar-
izer. The two-lobe patterns are perpendicular to the directions 
of the polarizer. The polarization purity of the AP beam can be 
defined as the ratio between the intensity of azimuthally polar-
ization and that of full beam at several positions of the cross 
section according to the data of the beam profiles [26]. The 
degrees of purity of the AP beam shown in figure 5 are ~86%, 
which indicates that the beam was a TE01 mode exactly.

The polarization purity of the AP beams at repetition 
frequency of 10 kHz under different pump power were cal-
culated from the measured data and shown in figure 6. The 
pump power range from 323 W to 347 W corresponds to the 
AP operation region as shown in figure 3(a) (red line). When 
the pump power increased, the AP output increased from 
10.5 W to 21 W, but the polarization purity degenerated from 
94% to 80%, as shown in figure 6. Comparing to the stabil-
ity diagram in figure 2, we can see that the highest pure AP 

beam was achieved at the outside edge of the RP stable region 
with a pump power of 323 W. This phenomenon was possibly 
caused by the aberrations of the thermal lens of the laser rod. 
In the ideal case of a perfectly uniform pumped laser rod, the 
thermal lens is spherical. However, the thermal lens is actu-
ally aspheric because of strong pump power in the center of 
the rod and non-radially symmetry of the arrangement of the 
pump sources. When increasing the pump power, the mode-
radius of AP beam, which suffers serious influences from the 
aberrations of the thermal lens, enlarges as shown in figure 2 
and deviates from paraxial. Thus, the polarization purity of 
AP beams degenerates, and the polarization purity of AP 
beams with smaller mode-radius is high at a relatively low 
pump power.

Conclusion

In summary, we have demonstrated a high-energy actively 
Q-switched AP Nd:YAG laser. The thermal bipolar lensing 
effect in the Nd:YAG laser rod was used to separate the RP 
mode and AP mode. By using a c-cut YVO4 crystal, the mode-
selecting ability of the cavity for AP mode was increased. 

Figure 5. Beam profiles of far field. (a) Full beam profile. (b) and (c) Intensity distributions in horizontal and vertical axis. (d)–(g) Beam 
profiles after a linear polarizer; the arrows indicate the direction of polarizers.

Figure 6. Polarization purity of AP beams at different pump power 
at 10 kHz repetition frequency.

Laser Phys. Lett. 15 (2018) 055801
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Benefiting from the large volume of gain medium and the high 
pump power, we achieved high-pulse-energy AP radiation. At 
repetition rates from 5 kHz to 25 kHz, stable AP beams were 
obtained with pulse energy higher than 1 mJ. Moreover, an 
AP laser with maximum pulse energy up to 4.2 mJ and aver-
age power of 21 W was obtained at a repetition rate of 5 kHz. 
To the best of our knowledge, this is the highest pulse energy 
performance in an actively Q-switched AP laser.
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