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1. Introduction

A magnetic skyrmion is a topologically nontrivial spin tex-
ture. Periodic arrangement of skyrmions known as skyrmion 
lattices can be approximated by a superposition of three 
single-Q helices whose wavevectors form an equilateral tri-
angle, and is thus referred to as a triple-Q structure [1–3]. The 
existence of skyrmions in helimagnets has been theoretically 
predicted several decades ago [4, 5], while the first successful 
exper imental observation was achieved in cubic helimagnet 
MnSi in 2009 [1]. Later, other helimagnets which can host 
skyrmions were found, such as FeGe [6], FexCo1−xSi [7] 
and Mn1−xFexSi [8]. In noncentrosymmetric helimagnets, 
due to the spin–orbit coupling and the lack of inverse sym-
metry, Dzyaloshinskii–Moriya (DM) interaction arises [9]. 
Under an appropriate applied magnetic field, the competition 
between DM energy, favoring spin rotations, and ferromagn-
etic exchange energy, favoring spin alignment, induces the 
intriguing skyrmion phase [10]. As a magnetic phase, sky-
rmions have great potential in the next-generation magnetic 
storage devices because of their small size, facile current-
driven motion [11], and particle-like nature [12, 13].

Magnetic skyrmions share many properties with single 
particles. They are localized in space and have a long lifetime. 
They are topologically protected [14, 15], in the sense that 
the topological integer characterizing them is 1, different from 
other magnetic structures with topological integer 0, such as 
helical phase and ferromagnetic phase. They give rise to ele-
mentary excitations with rotational mode and breathing mode 
[16]. Moreover, the system hosting skyrmions may undergo a 
phase transition from skyrmion phase to skyrmion glass struc-
ture [17]. Here we would like to discuss another particle-like 
property of magnetic skyrmions: their surface configuration.

In helimagnets, interaction between the elastic field and the 
skyrmion phase due to magnetoelastic coupling occurs in two dif-
ferent energy scales. The strong one is phase-transition-related, 
for instance, the creation and annihilation of skyrmions in MnSi 
by uniaxial stress [18, 19] and the jump of elastic stiffnesses C11 
and C33 of MnSi [20]. The weak one is related to the elastic prop-
erty of the skyrmion phase , for example, the emergent deforma-
tion of skyrmion lattices in FeGe induced by anisotropic strain 
[21] and the periodic elastic field accompanying magnetic skyr-
mions [22]. For semi-infinite helimagnets with magnetoelastic 
coupling, the incompatibility between the skyrmion-induced 
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periodic stress field and the free surface boundary condition will 
inevitably lead to a displacement field, suggesting that the sur-
face configuration of the material is altered due to the presence 
of skyrmions.

In this paper, we derive the analytical solution of displace-
ment field for semi-infinite cubic helimagnets hosting skyr-
mions. Due to magnetoelastic coupling, the peculiar magnetic 
structure of skyrmions will induce incompatible eigenstrains and 
further lead to eigenstresses. At the surface, to meet the stress-
free requirement, a fictitious force distribution F is applied to 
balance the eigenstresses, which causes a surface-induced dis-
placement field. Therefore, the total displacement field for semi-
infinite cubic helimagnets hosting skyrmions is composed of 
a skyrmion-induced displacement field and a surface-induced 
displacement field. The former part has been derived in one 
of our previous work [22], while the latter part is to be solved 
here. The elasticity problem induced by F can be decomposed 
into several plane strain problems and several 3D problems.The 
2D plane strain problems are solved by using the Airy stress 
function and Fourier transform.The 3D problems are solved 
by taking a harmonic form of the solution. The analytical dis-
placement field is finally obtained by combining the two parts of  
solution together. For MnSi, the normal displacement field is 
found to be dominated by two triple-Q structures us1

3  and us3
3 . us1

3  
undergoes a ‘configurational reversal’ and us3

3  remains almost 
unchanged when the external magnetic field increases from  
0.1 T to 0.275 T, resulting in varying surface configuration char-
acterized by periodically arranged peaks. We further demon-
strate that the surface displacement field moves or deforms with 
the motion or deformation of skyrmion lattices. Hence, this dis-
placement field characterizes the surface configuration of skyr-
mion lattices in general conditions, and is tunable by various 
kinds of applied field.

2. Elasticity problem for semi-infinite cubic heli-
magnets in the skyrmion phase with a free surface

Following the unified theory of magnetoelastic effects in 
B20 compounds developed in [22], we write the Helmholtz 
free energy density for cubic helimagnets in the conventional 
Cartesian coordinate system O-r1r2r3 (the cartesian axes r1, r2 
and r3 are collinear with the crystallographic axes) in the form

w =

3∑
i=1

A(
∂M
∂ri

)2 − B · M + bM · (∇× M)

+ wan + wL + wel + wme,
 

(1)

where the first three terms represent respectively the 
Heisenberg exchange energy density with stiffness A, 
the Zeeman energy density with external applied magn-
etic field B and the DM interaction with Dzyaloshinskii 
constant b; wan =

∑3
i=1 BcM4

i  is cubic anisotropy term; 
wL = α1(T − T0)M2 + α2M4  are two Landau expansion 
terms. The last two terms in equation  (1) are related to the 
strains. wel is the elastic energy density and wme the magneto-
elastic energy density,

wel =
1
2

C11(ε
2
11 + ε2

22 + ε2
33) + C12(ε11ε22 + ε11ε33 + ε22ε33)

+
1
2

C44(γ
2
12 + γ2

13 + γ2
23),

 

(2)

wme =
1

M2
s
[L1(M2

1ε11 + M2
2ε22 + M2

3ε33)

+ L2(M2
3ε11 + M2

1ε22 + M2
2ε33)

+ L3(M1M2γ12 + M1M3γ13 + M2M3γ23)

+ KM2εii +

6∑
i=1

LOifOi],

 

(3)

where γij = 2εij (i, j = 1, 2, 3 and i �= j) are the engineering 
shear strains, εij (i, j = 1, 2, 3) are the strains, C11, C22 and C44 
are the elastic constants for cubic crystals, Ms is the saturation 
magnetization, Mi (i = 1, 2, 3) are the magnetization comp-
onents satisfying M2 = M2

1 + M2
2 + M2

3, Li (i = 1, 2, 3) and 
LOi (i = 1, ..., 6) are magnetoelastic coupling constants and 
fOi (i = 1, ..., 6) represent high order magnetoelastic coupling 
terms whose detailed expressions are given in [22].

In O-r1r2r3 coordinate system, we use the triple-Q representa-
tion to approximate the magnetization field of the skyrmion lat-
tice phase stabilized by applied magnetic field along [0 0 1] [1, 3]:

M(r) =




0
0

M̄cos(ϕ)


+

√
3M̄sin(ϕ)

3








0
sin(q1r)
−cos(q1r)




+



−

√
3

2 sin(q2r)
− 1

2 sin(q2r)
−cos(q2r)


+




√
3

2 sin(q3r)
− 1

2 sin(q3r)
−cos(q3r)







,

 

(4)

where M̄ satisfies M̄2 = 1
V

∫
M2dV  with V  the volume 

of a skyrmion lattice, tan(ϕ) describes the ratio of the 
periodic part to the averaged part of the magnetization, 
q1 = q[1, 0, 0]T , q2 = q[− 1

2 ,
√

3
2 , 0]T , q3 = −q1 − q2 are 

wavevectors with magnitude q.
For a bulk cubic crystal free from body forces and surface 

constrains, the incompatible eigenstrains induced by skyr-
mions leads to eigenstresses. In a semi-infinitely extended 
material (illustrated in figure B1) with eigenstresses induced 
by skyrmions, to set the surface boundary z  =  0 stress-free, 
equal and opposite surface force should be applied, the force 
needed has the components




F1

F2

F3


 = −



σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33






0
0
1


 = −



σ13

σ23

σ33


 . (5)

Due to the superposition of three triple-Q structures of the elastic 
field, σi3 (i = 1, 2, 3) can be expressed in the following form

σi3 =

3∑
j=1

σSj
i3, (6)

where the analytical expressions of the eigenstress comp-
onents σSj

i3, (i, j = 1, 2, 3) are derived as equations  (A.5)–
(A.13) in appendix A.
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We would like to stress that σS1
33, whose sign is determined 

by ϕ, undergoes a ‘configurational reversal’ [22]; while, 
σS3

33, which is linear with respect to sin2(ϕ), is almost constant 
when the applied magnetic field changes.

3. Analytical solution of surface-induced  
displacement field for skyrmion phase

In the coordinate system O-xyz (see figure B1) which is gen-
erated by rotating O-r1r2r3 system around r3-axis by θ, the 
surface forces Q(x) (with distribution along x-axis and with 
direction along x-axis) and P(x) (with distribution along 
x-axis and with direction along z-axis) cause 2D elasticity 
problems which are solved in appendix B, while the surface 
force R(x) (with distribution along x-axis and with direc-
tion along y-axis) causes a 3D elasticity problem. For the 2D 
force distribution Q(x) = Fcos(ax), the displacement field is 
derived as

u1(x, z) =
F
a

f1,θ(z)sin(ax),

u3(x, z) =
F
a

f2,θ(z)cos(ax),
 

(7)

where

f1,θ(z) = {S11β
2[cos(a1z) +

√
1 + µ′

1 − µ′ sin(a1z)]

+ S13[cos(a1z)−

√
1 + µ′

1 − µ′ sin(a1z)]}ea2z,

f2,θ(z) =
√

2(1 + µ′){ S31β√
1 − µ′2

sin(a1z)

+
S33

β
[cos(a1z)− µ′

√
1 − µ′2

sin(a1z)]}ea2z.

 (8)

Figure 1. Contour plots of displacement components at 20 K and 0.1 T. The region enclosed by the hexagon represents a skyrmion lattice. 
(a)–(c) Stand for the total displacements along r1, r2 and r3-direction ut

1, u
t
2 and ut

3; (d)–(f) show the skyrmion-induced, normal-force-
induced and shear-force-induced r1-direction displacements usky

1 , unor
1  and ushe

1 .
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Sij, β and µ′, whose expressions can be found in appendix B, 

are related to θ, a1 =
√

1−µ′

2 βa and a1 =
√

1+µ′

2 βa.

The displacement field is composed of two parts: one is 
the harmonic term having the same period as the force distri-
bution, the other is the z-related term having an exponential 

factor ea2z. a2 =
√

1+µ′

2 βa is positive; therefore, the displace-

ment decreases rapidly with decreasing z. When the distance 
from the boundary is greater than several times of wavelength 

of the harmonic force distribution, the displacement is negli-
gible. Thus, the elastic field derived in [12] is suitable for bulk 
materials.

Similarly, for P(x) = Fsin(ax), we can derive the displace-
ment field as:

u1(x, z) =
F
a

f3,θ(z)sin(ax),

u3(x, z) =
F
a

f4,θ(z)cos(ax),
 

(9)

Figure 2. Surface configuration (u3) for MnSi in skyrmion phase at temperature 20 K and magnetic field (a) 0.1 T, (b) 0.175 T, (c) 0.225 T 
and (d) 0.275 T. The size of (a)–(d) is 2πq × 2π

q .

Figure 3. Reversible surface configuration of us1
3  for MnSi in skyrmion phase at temperature 20 K and magnetic field (a) 0.1 T, (b) 0.175 T, 

(c) 0.225 T and (d) 0.275 T.

J. Phys.: Condens. Matter 30 (2018) 245001
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where

f3,θ(z) =
√

2(1 + µ′){− S13√
1 − µ′2

sin(a1z)

+ S11β
2[cos(a1z) +

µ′
√

1 − µ′2
sin(a1z)]}ea2z,

f4,θ(z) = {S31β[cos(a1z) +

√
1 + µ′

1 − µ′ sin(a1z)]

+
S33

β
[cos(a1z)−

√
1 + µ′

1 − µ′ sin(a1z)]}ea2z. 
(10)

For R(x) = Fsin(ax), we search for the displacement solution 
in the following form

u1 = u3 = 0, u2(x, z) =
F
a

f5,θ(z)sin(ax).
 

(11)

Here, f5,θ(z) = S44eaz.
The r1, r2 and r3-direction forces F1 = −σ13, F2 = −σ23 

and F3 = −σ33 are composed of nine qij (see equation  (A.3)) 

structures. For each qij structure of F1 or F2, the components in 
the direction of and perpendicular to qij are P-type and R-type 
forces, respectively. For qij structures of F3, they are Q-type 
forces. Solving the displacement field for each qij structure in 
corresponding O-xyz system and projecting it onto the r1, r2 and 
r3-axes, we can finally get the surface-induced displacement field 
in O-r1r2r3 system as in equations (12), where f ij

k (k = 1, ..., 5) 

takes the value of fk,θ(0) for θ = arccos
(

e1·qij

|qij|

)
, e1, e2 and e3 

are the unit vectors along r1, r2 and r3-axis respectively, i is the 

imaginary unit. The analytical solution given by equations (12) 
is derived upon the triple-Q representation of magnetization. For 
higher order Fourier representation of magnetization, the solution 
of ui takes a form similar to that given in equations (12), where 
the summation upper limit of i and j is more than 3. According 
to previous studies in terms of the Fourier representation [1, 3], 
the magnitudes of Fourier components of M  decrease sharply 
with the expansion order. The solution given in equations (12) 
provides an effective description of the surface configuration of 
skyrmion lattices.

Figure 4. The simplest repeating unit of surface displacement (the unit is fm). (a) uQ1
3 , (b) uQ2

3 , (c) uQ3
3  and (d) u3 for MnSi in skyrmion 

phase at 20 K and 0.1 T.

Figure 5. Maximum displacement along z-axis as a funciton of temperature at 0.1 T. Insets show the surface configurations at magnetic 
field 0.1 T and temperature 10 K, 15 K and 25 K.

J. Phys.: Condens. Matter 30 (2018) 245001
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u1 =−
3∑

i,j,k=1

(
f ij
1 (e1 · qij)

|qij|2
+

f ij
3

(
ek · qij

) (
e1 · qij

)

|qij|3
i +

f ij
5 ((qij × ek) · e3)((qij × e1) · e3)

|qij|3
i

)
σSij

k3 sin(r · qij),

u2 =−
3∑

i,j,k=1

(
f ij
1 (e2 · qij)

|qij|2
+

f ij
3

(
ek · qij

) (
e2 · qij

)

|qij|3
i +

f ij
5 ((qij × ek) · e3)((qij × e2) · e3)

|qij|3
i

)
σSij

k3 sin(r · qij),

u3 =−
3∑

i,j,k=1

(
f ij
2 (ek · e3)

|qij|
+

f ij
4 (ek · qij)

|qij|
i

)
σSij

k3 cos(r · qij).

 
(12)

4. Discussion

4.1. Tunability of surface configuration by bias magnetic field

For helimagnet MnSi, the related parameters are: C11 = 
2.83 × 1011 Pa, C12 = 0.641 × 1011 Pa, C44 = 1.179 × 1011 
Pa [23], K = −2 × 107 JA−2 m−1, L1 = −0.7 × 106 JA−2 
m−1, L2 = 0.6 × 106 JA−2 m−1, L3 = 1.646 × 106 JA−2 m−1, 
LO1 = 1.147 × 10−4 JA−2m−2, LO2 = −0.537 × 10−4 JA−2 
m−2, LO3 = −0.537 × 10−4 JA−2 m−2, LO4 = LO5 = LO6 = 0 
[24], and q = |b|

2A = 4.5 × 108 m−1 [1, 25]. According to the 
analytical expressions of surface-induced displacement field 
in equations  (12) and skyrmion-induced displacement field 
in [40], the contour maps of the displacement components at 
20 K and 0.1 T are plotted in figure 1. At the center and the 
six vertexes of a skyrmion lattice, there appear the peaks, for 
which the r1 and r2-comp onents of the total displacement, ut

1 
and ut

2, are zero; while the r3-component, ut
3, takes a maximum 

value. At the right-hand part and upper part of a peak, we have 
ut

1 > 0 and ut
2 > 0, respectively; this indicates the tendency 

of expansion of the peaks. ut
1 and ut

2 are a little deformed. To 
explain this, the skyrmion-induced, normal-force-induced and 

shear-force-induced r1-direction displacements usky
1 , unor

1  and 
ushe

1  are plotted in figures 1(d)–(f), respectively. usky
1  and unor

1  
share the same pattern with zero-value contour lines along 
r2-axis; while ushe

1  shows different behavior with zero-value 
contour lines along r1-axis. It is the shear force who causes the 

deformation of usky
1 . The surface configuration is determined 

by u1, u2 and u3, but in fact, the height change of each point 
at the surface caused by u1 and u2 can be demonstrated less 

than 0.164 fm which is 0.4% of the maximum height 41 fm. 
Therefore, u3 dominates the surface configuration.

We plot the surface configuration (u3) of skyrmions at 20 K 
and under different applied magnetic field B. Figures 2(a)–(d) 
represent the total normal surface displacement field at 0.1 T, 
0.175 T, 0.225 T and 0.275 T respectively. At 0.175 T, the sur-
face is characterized by peaks (arranged periodically like the 
triangular skyrmion lattices) with almost the same height . For 
B  >  0.175 T, the center peak is higher than the six adjacent peaks, 
while for B  <  0.175 T, the reverse is the case, indicating that the 
heights of these two types of peaks compete with each other.

To explain the competing behavior of these two patterns 
of peaks, we explore separately the two dominant parts of the 

displacement: the σS1
33-induced normal displacement us1

3  and 
the σS3

33-induced normal displacement us3
3 . Figure  3 shows 

the surface displacement us1
3  at 0.1 T, 0.175 T, 0.225 T and 

0.275 T. It can be seen that us1
3  goes through the same ‘con-

figurational reversal’ as σS1
33 when the external magnetic field 

increases. At 0.1 T, there are periodically arranged peaks on 
the surface. With the augmentation of the magnetic field, the 
height of the peaks decreases, then at about 0.175 T, when 
tan(ϕ) ≈ 2.31, the peaks vanishes, and the surface described 
by us1

3  becomes almost flat. For B  >  0.175 T, on the surface, 
there appears the valleys, the depth of which increases when 
the magnetic field augments. The ‘configurational reversal’ 
can be explained through the relation between us1

3  and σS1
33 

revealed by equations (12). As for us3
3 , equations (12) and the 

invariability of σS3
33 imply that us3

3  keeps almost unchanged 
when magnetic field changes. It is the reversal feature of us1

3  
and the invariability of us3

3  that decide the competing behavior 
of two patterns of peaks.

According to equations (12), the displacement field u3 can 
be divided into three triple-Q structures: uQ1

3 , uQ2
3  and uQ3

3 , 
corresponding to q1i, q2i and q3i (i = 1, 2, 3), respectively. To 
explore the periodicity of u3, we plot the simplest repeating 
unit of surface displacement uQ1

3 , uQ2
3 , uQ3

3  and u3 at 20 K 
and 0.1 T in figure 4. We can see that uQ1

3  and u3 share the  
same periodicity. The primitive vectors for the hexagonal lat-
tices of uQi

3  are ai1 and ai2, satisfying aij · qik = 2πδjk  where  
i = 1, 2, 3 and j, k = 1, 2, δjk is the Kronecker delta. We 
can demonstrate that a11 = 2a21 = a31 + 2a32 and a12 = 
2a22 = −a31 + a32. Thus, for arbitrary integers n1 and n2, we have 
uQ2

3 (r + n1a11 + n2a12) = uQ3
3 (r + 2(n1 + n2)a21 + 2(n1+ 

n2)a22) = uQ2
3 (r)  and uQ3

3 (r + n1a11 + n2a12) = uQ3
3 (r + (n1 − n2) 

a31 + (2n1 + n2)a32) = uQ3
3 (r). Consequently, u3 has the 

same period as uQ1
3  and the skyrmion lattices. By using the 

relations between aij, u1 and u2 can also be demonstrated to 
share the same periodicity as the skyrmion lattices.

The magnitude of magnetization changes with temper-
ature, for which the amplitude of surface configuration is also 
affected. Figure 5 shows the maximum displacement along z-
axis as a function of temperature at 0.1 T, while in the insets the 
surface configurations at three different temperature points are 
plotted. With increasing (decreasing) temperature, the shape 
of surface configuration merely changes, but the amplitude 
decreases (increases). When the magnetization is saturated, 
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the maximum displacement is about 89.5 fm. It should also be 
mentioned that, at different temperature, the corresponding us1

3  
still undergoes the ‘configurational reversal’ with increasing 
magnetic field.

4.2. Possible effects of electric current and mechanical load 
on the surface configuration

It is known that skyrmions behave like moving particles with 
stable topological structures when exposed to various kinds 
of external fields including electric current [11, 26] and 
temper ature gradient [27]. A further concern is how will the 
surface configuration change with the motion of skyrmions. 
For moving skyrmions at speed v, the magnetization can 
be described by introducing a translation transformation: 
r → r − vt. Thus, we have M = M(r − vt), where M(r) 
is expressed as equation  (4). Correspondingly, the solution 
of ui (i = 1, 2, 3) obtained in equations  (12) is changed by 
replacing r with r − vt, i.e. ui = ui(r − vt). Thus, the dis-
placement field moves together with skyrmions.

When anisotropic mechanical loads are applied to helimag-
nets, skyrmion lattices are found to undergo emergent elastic 
deformation independent of the deformation of the underlying 
atomic lattices [21]. It is shown in [28] that the deformed 
skyrmions have a triple-Q structure characterized by q1, q2 
and q3 satisfying |q1| �= |q2| �= |q3| and q1 + q2 + q3 = 0. For 
a general analysis, we can see that the periodic eigenstrains 
obtained from equation (A.1) is still composed of three triple-
Q structures. The periodic stress field, linearly related to the 
incompatible part of eigenstrains, obviously shares the same 
periodicity with the eigenstrains. From equations (12), we can 
see that for arbitrarily deformed skyrmion lattices, uQ1

3  and uQ2
3  

has the same periodicity with the deformed skyrmions, while 
uQ3

3  is a triple-Q structure with the three ‘Q’s: q1 − q2, q1 − q3 
and q2 − q3. Following the proof of the periodicity given in 
this section, we can easily show that uQ3

3  and u3 share the 
same periodicity, because q1 + q2 + q3 = 0 is the only neces-
sary condition which is still valid for any deformed skyrmion 
lattices. Therefore, the surface displacement field deforms 
together with the skyrmion lattices.

We have proved qualitatively that the surface displacement 
field moves together, and deforms together with the skyrmion 
lattices. Therefore, the various kinds of approaches discov-
ered to affect the skyrmion lattices will also be effective in 
controlling the surface displacement field.

4.3. Generality and possible technological interest.

Apart from 2D DM-induced Bloch-type magnetic skyrmion 
lattices in helimagnets, skyrmions can exist in many other 
forms: 3D skyrmions, such as hourglass-shaped skyrmions 
[29] and bobber-shaped skyrmions [30]; atomic-scale sky-
rmions induced by four-spin interaction [31], skyrmion bub-
bles induced by spin–orbit interaction [32, 33]and stabilized 
by uniaxial anisotropy [34, 35]; Néel-type skyrmions [36]; 
isolated skyrmion and skyrmion glass structure [17]. Since 

magnetoelastic coupling is intrinsic for any ferromagnets, 
these skyrmions forms are all accompanied by a surface dis-
placement field. Thus, the surface configuration is an addi-
tional particle-like property of any magnetic skyrmions.

The maximum displacement perpendicular to the surface 
is of the order of magnitude of 10−13 m for MnSi. Such a 
small displacement is difficult to detect. But as shown in form-
ulae (A.5)–(A.13), and (12), the displacement is related to 
the magnetoelastic coefficients, and the size of skyrmion lat-
tices. To get a greater displacement, one should pay attention 
to materials hosting skyrmions with bigger size and having 
stronger magnetoelastic coupling, for instance, FeGe. Even 
though the magnetoelastic coefficients are not available due to 
the technical difficulties in fabricating large FeGe single crys-
tals [37], one can expect to observe larger displacement field 
for FeGe than for MnSi. The skyrmion lattice parameter for 
FeGe is about 70 nm [38], four times larger than that for MnSi. 
Moreover, the experiment carried out by Shibata et al [21], in 
which anisotropic strain as small as 0.3% induced distortions 
of skyrmion lattices by 20%, implies large magnetoelastic 
coupling in FeGe.

5. Conclusions

To conclude, we have obtained the analytical solution of 
displacement field at the surface of cubic helimagnets in 
skyrmion phase dominated by u3. For MnSi, the normal 
displacement field is dominated by two triple-Q structures 
us1

3  and us3
3 . us3

3  is characterized by periodically arranged 
peaks having invariant height when applied magnetic field 
changes and us1

3 , undergoing a ‘configurational reversal’ 
when the magn etic field increases from 0.1 T to 0.275 T, 
distinguishes these peaks into two patterns which compete 
with each other. The surface configuration enriches the 
meaning of particle-like nature of magn etic skyrmions, it 
moves and deforms with the skyrmions lattices and can be 
therefore controlled by applied field, such as magnetic field, 
current etc.
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Appendix A. Analytical solution of the  
skyrmion-induced stress field

For a bulk cubic crystal free from body forces and sur-
face constraints, we obtain the expressions of eigen-
strains ε∗ij = ε∗ij(M) (i, j = 1, 2, 3) by solving the equations   
σIJ(ε

∗
ij, M) = 0 (I, J, i, j = 1, 2, 3), where σIJ , a function of  

εij(i, j = 1, 2, 3) and M , is obtained by σIJ(εij, M) = ∂w
∂εIJ

(for I = J)  
and σIJ(εij, M) = ∂w

∂γIJ
(for I �= J).
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ε∗11 = K∗M2 − L∗
1 M2

1 − L∗
2 M2

3 + L∗
O1(M3M1,2 − M2M1,3) + L∗

O2(M3M2,1 − M2M3,1) + L∗
O3M1(M2,3 − M3,2),

ε∗22 = K∗M2 − L∗
1 M2

2 − L∗
2 M2

1 + L∗
O1(M1M2,3 − M3M2,1) + L∗

O2(M1M3,2 − M3M1,2) + L∗
O3M2(M3,1 − M1,3),

ε∗33 = K∗M2 − L∗
1 M2

3 − L∗
2 M2

2 + L∗
O1(M2M3,1 − M1M3,2) + L∗

O2(M2M1,3 − M1M2,3) + L∗
O3M3(M1,2 − M2,1),

γ∗
2,3 =

1
C44M2

s
[−L3M2M3 + LO6M1(M2,2 − M3,3) + M2(LO4M1,2 + LO5M2,1)− M3(LO4M1,3 + LO5M3,1)] ,

γ∗
1,3 =

1
C44M2

s
[−L3M1M3 + LO6M2(M3,3 − M1,1) + M3(LO4M2,3 + LO5M3,2)− M1(LO4M2,1 + LO5M1,2)] ,

γ∗
1,2 =

1
C44M2

s
[−L3M1M2 + LO6M3(M1,1 − M2,2) + M1(LO4M3,1 + LO5M1,3)− M2(LO4M3,2 + LO5M2,3)] ,

 

(A.1)

with K∗ = −C11K+C12(K+L1+L2)
(C11−C12)(C11+2C12)M2

s
, L∗

1 = L1
(C11−C12)M2

s
, L∗

2 = L2
(C11−C12)M2

s
, 

L∗
O1 = −C11LO1+C12(−LO1+LO2+LO3)

(C11−C12)(C11+2C12)M2
s

, L∗
O2 = C11LO2−C12(−LO1+LO2+LO3)

(C11−C12)(C11+2C12)M2
s

 

and L∗
O3 = C12(LO1+LO2)−(C11+C12)LO3

(C11−C12)(C11+2C12)M2
s

.

By substituting the Hooke’s law and the geometrical equa-

tions  εij =
ui,j+uj,i

2  into the equilibrium equations, we obtain 
three partial differential equations about the displacements ui

C11ui,ii + C44(ui,jj + ui,kk) + (C12 + C44)(uj,ij + uk,ik)

= C11ε
∗
ii,i + C12(ε

∗
jj,i + ε∗kk,i) + C44(γ

∗
ij,j + γ∗

1k,k),
 

(A.2)

where i, j, k = 1, 2, 3 and i �= j �= k.
ε∗ij = ε∗ij(M) and γ∗

ij = γ∗
ij (M) are quadratic functions of 

M  [22]. By substituting the triple-Q periodic form of M  into 
the obtained eigenstrains, we can find that eigenstrains have 
a multi-Q structure with nine wavevectors qij (i, j = 1, 2, 3) 
defined as:

[
qij

]
=




q1 q2 q3

2q1 2q2 2q3

q1 − q2 q1 − q3 q2 − q3


 . (A.3)

This multi-Q structure can be seen as the superposition of 
three triple-Q structures with different magnitudes q, 2q and √

3q . Combining the geometrical equations, eigenstrains and 
Hooke’s law, we then derive the triple-Q structure stresses 
as :

σSk
ij = Re

[
3∑

l=1

σSkl
ij eiqkl·r

]
(i, j, k = 1, 2, 3) (A.4)

where


σS11

13

σS12
13

σS13
13


 =

iL3M̄2

12M2
s

sin(ϕ)(6cos(ϕ)−
√

3sin(ϕ))




0
1
−1


 , (A.5)



σS21

13

σS22
13

σS23
13


 = − iL3M̄2

4
√

3M2
s

sin2(ϕ)




0
1
−1


 , (A.6)



σS31

13

σS32
13

σS33
13


 =

iL3M̄2

4
√

3M2
s

sin2(ϕ)




1
−1
−2


 , (A.7)



σS11

23

σS12
23

σS13
23


 =

iL3M̄2

12M2
s

sin(ϕ)(2
√

3cos(ϕ)− sin(ϕ))




2
−1
−1


 , (A.8)



σS21

23

σS22
23

σS23
23


 = − iL3M̄2

12M2
s

sin2(ϕ)




2
−1
−1


 , (A.9)



σS31

23

σS32
23

σS33
23


 =

iL3M̄2

4M2
s

sin2(ϕ)




1
1
0


 , (A.10)

σS11
33 = − sin(ϕ)M̄2

12M2
s C11

{4
√

3cos(ϕ)[−C12(2K + qLO2 + C11(2K + 2L1 + qLO3)) + sin(ϕ)[C11(−6K

− 4L1 + L2 − 2qLO1 − 4qLO3) + C12(6K + 3L1 − 2L2 + 3qLO1 + 3qLO3)]]},

σS12
33 = σS13

33 =
sin(ϕ)M̄2

6CkM2
s

{−2
√

3cos(ϕ)[3C2
11(2K + 2L1 + qLO3)− C11(3C12(4K − q(LO1 + LO2))

− 10C44(2K + 2L1 + qLO3)) + C12(3C12(2K − 2L1 + q(LO1 + LO2 − LO3))− 2C44(10K

+ 6L1 − 12L2 + 2qLO2 + 3qLO3))] + sin(ϕ)[3C2
11 × (3K + 2L1 + L2 + qLO1 + 2qLO3) + C11(−3

× C12(6K + L1 − L2 + 2L3 + 2qLO1 + 3qLO2 + qLO3) + 10C44(3K + 2L1 + L2 + qLO1

+ 2qLO3)) + C12(3C12(3KK − L1 − 2L2 + 2L3 + qLO1 + 3qLO2 − qLO3)− 2C44(15K + 9L1

− 14L2 + 6qLO1 + 9qLO3))]},
 

(A.11)
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σS21
33 =

M̄2

6C11M2
s

sin2(ϕ)[−C12L2 + C11(L1 − L2 − qLO1 + qLO3)],

σS22
33 = σS23

33 =
M̄2

24CkM2
s

sin2(ϕ)× {3C2
11(4L1 − L2 − 4qLO1 + 4qLO3)

+ C11[−10C44(−4L1 + L2 + 4qLO1 − 4qLO3) + 3C12(4L1 − L2 − 4L3 − 4qLO1 + 4qLO3)]

+ 2C12[4C44(−3L1 + 4L2 + 3qLO1 − 3qLO3)− 3C12(4L1 − L2 − 2L3 − 4qLO1 + 4qLO3)]},
 

(A.12)

σS31
33 = σS32

33 =
sin2(ϕ)M̄2

6C11M2
s

{3C2
11(K + 2L1 − L2 − qLO1 + 2qLO3)− C11[3C12(2K − L1 + L2

+ 2L3 + 2qLO1 + qLO2 − qLO3)− 10C44(K + 2L1 − L2 − qLO1 + 2qLO3)] + C12[3C12(K

− 3L1 + 2L2 + 2L3 + 3qLO1 + qLO2 − 3qLO3)− 2C44(5K + 7L1 − 2L2 − 2qLO1 + 7qLO3)]},

σS33
33 =

M̄2

12C11M2
s

sin2(ϕ)[−C12(2K + L1 − 5L2 + qLO1 + qLO3)

+ C11(2K + 4L1 + L2 − 2qLO1 + 4qLO3)],
 

(A.13)

and Ck = 3C2
11 + 10C11C44 − 3C12(C12 + 2C44). Here, to 

simplify the formulae, we have set the high order magneto-
elastic coefficients LO4, LO5 and LO6 to zero.

Strictly speaking, the free energy is a functional of the 
magnetization M  and the strains εij. Due to the magne-
toelastic coupling, the elastic fields are related to M  at equi-
librium state, i.e. the elastic strains εij = εij(M) and the elastic 
stresses σij = σij(M). Thus, σij and εij have a back-action on 
M  and M  should be derived by minimizing w(M, εij(M)). In 
some cases, M  can be approximated by M′, which is obtained 
through minimizing w(M, εij = 0). The difference between the 
approximate solution M′ and rigorous solution M  depends on 

the magnitude of the relative coefficient K2

2α2(C11+2C12)M4
s
 [24]. 

For MnSi, K2

2α2(C11+2C12)M4
s
≈ 10−3, suggesting that the back-

action of strains on the magnetization can be neglected.
As mentioned in section 3 the surface-induced stress 

field is just the opposite of the skyrmion-induced stress field 
at the surface, and it fades away as |z| increases. Following 
the above discussion, such a localized elastic field will also 
have a back-action on the magnetization M . Generally 
speaking, the z-dependent surface-induced stress field will 
destroy the 2D structure of the skyrmion lattice and makes 
it a 3D texture [30, 39]. The surface-induced stress field is 
maximum at the surface, whose magnitude is equivalent to 
the skyrmion-induced stress field. According to above anal-

ysis, the back-action on M  is negligible when K2

2α2(C11+2C12)M4
s
 

is small enough. When K2

2α2(C11+2C12)M4
s
 is comparable to 1 

(e.g. for materials with strong magnetoelastic coupling), the 
back-action of the surface-induced stress field on the mag-
netization has to be taken into account. Instead of solving 
the exact 3D distribution of M , we provide here an approxi-
mate method to calculate the effect of this back-action. The 

exact solution of magnetization M  is obtained by minimizing 

w(M, εskyrmion
ij (M) + εsurface

ij (M, z)), where εsurface
ij (M, z) are 

the surface-induce elastic strains and εskyrmion
ij (M) are the 

skyrmion-induced elastic strains. Since εsurface
ij (M, z) decrease 

exponentially with z, we can overestimate the effect of sur-
face-induced elastic strains by replacing εsurface

ij (M, z) with 
εsurface

ij (M, 0). Minimization of w(M, εskyrmion
ij (M) + εsurface

ij (M, 0)) 
with respect to M  yields a 2D magnetization distribution 
where the back-action of the surface-induced elastic field is 
considered approximately.

The discussion of the back-action on the magnetization 
only applies to the internal elastic field but not the external. 
The former one refers to the elastic field induced by M  
through the magnetoelastic interaction and has a back-action 
on M . The later one is induced by external applied forces 
or misfit strains, and thus its influence on M  is not a back-
action. The magnitude of such an influence depends on the 
strength of the applied external field and usually cannot be 
ignored.

Appendix B. Two-dimensional half space elastic 
problem of cubic crystals

Consider a semi-infinite domain defined by z � 0 illustrated 
in figure B1, where O-xyz system is generated by rotating O-
r1r2r3 system around r3-axis with θ; Q(x) and P(x) represent 
respectively the normal and the shear force distributions on 
the surface z  =  0. For Q-induced 2D plane strain problem,we 
introduce the Airy stress function U so that

σ11 = U,33,
σ33 = U,11,
σ13 = −U,13,

 
(B.1)

where σij are stresses and U,ij =
∂2U
∂xi∂xj

 (x1, x2 and x3 represent 

x, y and z, respectively). The boundary condition can be then 
expressed as

(σ33)z=0 = (U,11)z=0 = Q(x). (B.2)
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By combining Hooke’s law for cubic crystals, equation of 
compatibility ε11,33 + ε33,11 = 2ε13,13, and formulae (B.1), we 
can derive

β4U,1111 + 2µU,1133 + U,3333 = 0. (B.3)

Here, μ and β are parameters related to the rotation angle θ 
and the elastic coefficients. Applying Fourier transform F , 

defined as X (λ, z) = F (X(x, z)) = 1√
2π

∫ +∞
−∞ X(x, z)eiλxdx, 

to compatibility condition (B.3) and boundary condition (B.2), 
we have

U,3333 − 2µ′λ′2U,33 + λ′4U = 0, (B.4)

−λ2(U )z=0 = Q(λ), (B.5)

where U  and Q are the Fourier integral forms of U and Q 
respectively; µ′ = µ

β2  and λ′ = βλ. According to the bound-
edness condition of U  and the boundary condition (B.5), one 
arrives at

Figure B1. Semi-infinitely extended cubic crystal subjected to 
surface normal force Q(x) and surface shear force P(x).

where t1 =
√

(1+µ′)
2 +

√
(1−µ′)

2 i, t2 =
√

(1+µ′)
2 −

√
(1−µ′)

2 i. By 

applying the convolution theorem to Fourier integral form of 
stresses, we obtain

σ11 =
1
π

∫ +∞

−∞

−β2
√

2(1 + µ′)z′(x − ξ)2Q(ξ)

(x − ξ)4 + z′4 + 2(x − ξ)2z′2µ′ dξ,

σ33 =
1
π

∫ +∞

−∞

−
√

2(1 + µ′)z′3Q(ξ)

(x − ξ)4 + z′4 + 2(x − ξ)2z′2µ′ dξ,

σ13 =
1
π

∫ +∞

−∞

−β
√

2(1 + µ′)z′2(x − ξ)Q(ξ)

(x − ξ)4 + z′4 + 2(x − ξ)2z′2µ′ dξ,

 

(B.7)

where z′ = βz. For isotropic materials and θ = 0, we have 
β = µ = 1, the solution for stresses (B.7) can be found in [40]. 

The Green’s function method, which requires firstly Q = δ0 
with δ the Dirac Delta function, is used to derive the solution 
of displacement field caused by an arbitrary Q(x). The relation 
between displacements and stresses is obtained from Hook’s 

law and geometric equations εij =
ui,j+uj,i

2 ,

u1,1 = S11σ11 + S13σ33,
u3,3 = S31σ33 + S33σ33, (B.8)

u1,3 + u3,1 = S44σ13. (B.9)

Here, S11 = C33
C11C33−C2

13
, S13 = S31 = − C13

C11C33−C2
13

, S33 = C11
C11C33−C2

13
  

and S44 = 1
C44

 with Cij the elastic coefficients in O-xyz 
system; the stresses are obtained by applying Q = δ0 into 
equations (B.7). Then we derive the displacement field from 
equations (B.8)

u1 = S11u11 + S13u12 + u13,
u3 = S31u31 + S33u32 + u33.

 (B.10)

u13 is a function of z, u33 is a function of x and

U =
Q(λ)

λ2(t1 − t2)
(t2et1|λ′|z − t1et2|λ′|z), (B.6)

u11 =
β2

4π

√
1 + µ′

1 − µ′ ln

(
z′2 + x2 + xz′

√
2(1 − µ′)

z′2 + x2 − xz′
√

2(1 − µ′)

)
− β2

2π
arctan

(
xz′

√
2(1 + µ′)

z′2 − x2

)
+

β2

2
(Hz′(2z′ − x)− H−z′(x)) ,

u12 = − 1
2π

arctan

(
xz′

√
2(1 + µ′)

z′2 − x2

)
− 1

4π

√
1 + µ′

1 − µ′ ln

(
z′2 + x2 + x′z

√
2(1 − µ′)

z′2 + x2 − xz′
√

2(1 − µ′)

)
+

1
2
(Hz′(2z′ − x)− H−z′(x)),

u31 = −β

π

√
1

2(1 − µ′)
arctan

(√
1 − µ′2z′2

x2 + µ′z′2

)
,

u32 = −
√

2(1 + µ′)

4πβ
ln(z′4 + x4 + 2z′2x2µ)− µ′

πβ
√

2(1 − µ′)
arctan

(√
1 − µ′2x2

z′2 + µ′x2

)
,

 (B.11)

where Hz′(x) is defined as Hz′(x) = H(x − z′),with 
H(x) = 1+sgn(x)

2  the Heaviside step function. The Heaviside 
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step functions are added in formulae (B.11) to ensure the con-
tinuity of displacement field on points x = z′ and x = −z′.

By substituting equations  (B.10) and (B.11) into equa-
tion (B.9), we get the following differential equation with a 
very simple form

du13(z)
dz

+
du33(x)

dx
= 0, (B.12)

which has the solution u13 = kz + m, u33 = −kx + n, with 
k, m and n constants. The meaning of k is that the material 
rotates around y-axis with an angle −arctan(k), and then 
enlarges it’s volume (1 + k2)

3
2  times. m and n represent the 

rigid body movement. Set k  =  m  =  n  =  0, we have

u1 = S11u11 + S13u12,
u3 = S31u31 + S33u32.

 (B.13)

Consequently, the displacement field for arbitrary surface 
force distribution Q(x) can be easily obtained, from eqs. 
(B.13)

u1 =

∫ +∞

−∞
(S11u11(ξ, z) + S13u12(ξ, z))Q(x − ξ)dξ,

u3 =

∫ +∞

−∞
(S31u31(ξ, z) + S33u32(ξ, z))Q(x − ξ)dξ.

 

(B.14)

By using the same method, we can derive the displacement 
field induced by the shear force distribution P(x) as:

u1 =

∫ +∞

−∞
(S11u′

11(ξ, z) + S13u′12(ξ, z))Q(x − ξ)dξ,

u3 =

∫ +∞

−∞
(S31u′

31(ξ, z) + S33u′32(ξ, z))Q(x − ξ)dξ
 

(B.15)

where

u′11 =− β2µ′

π
√

2(1 − µ′)
arctan

(√
1 − µ′2z′2

x2 + µ′z′2

)
−

β2
√

2(1 + µ′)

4π

ln(z′4 + x4 + 2z′2x2µ′), u′
12 = −u31

β
, u′

31 = −u11

β
, u′

32 = −u12

β
.

 (B.16)

We now consider a simple case when θ = 0 and the semi-infi-
nite cubic crystal is subjected to an evenly distributed normal 
force on the surface, Q  =  1. Obviously, the displacement field 
along z-axis is linear with z: u3(x, z)  =  kz (solution 1), where k 
is a constant merely related to elastic moduli. But on the other 
hand, via the formulae (B.14), one arrives at

u3(x, z) =
∫ +∞

−∞
(S31u31(ξ, z) + S33u32(ξ, z))dξ, (B.17)

(solution 2). We find that solution 1 and solution 2 are not the 
same; moreover, the integral form of solution 2 is divergent. 
In fact, the difference between those two solutions originates 
from the choice of the fixed plane: solution 1 is obtained under 
the assumption that the plane z  =  0 is fixed, while solution 2 is 
gotten with the plane z = +∞ fixed. According to the theory 
of elasticity, such difference (even though infinite) can be seen 
as a constant. To eliminate this special constant, we calculate 
the finite part of the divergent integral (B.17) by using the 

method of functional regularization of general function which 
regards the order of differential and integral as exchangeable 
[41]. We first calculate the partial derivative of solution 2 with 
respect to z, and then, integrate the obtained partial deriva-
tive with respect to z. The result, u3(x, z) = − z

C11−C12
, has the 

same form as solution 1. Thus, from a physics point of view, 
the mathematical difficulty is just due to the choice of refer-
ence system, and it can be solved by translating the reference 
system along z-axis with an infinite distance. Mathematically, 
the method is related to the calculation of the finite part of the 
divergent integral.
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