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ABSTRACT: A quantum spin Hall insulator, i.e., topological
insulator (TI), is a natural candidate for low-power electronics
and spintronics because of its intrinsic dissipationless feature.
Recent density functional theory and scanning tunneling
spectroscopy experiments show that the mechanical strain
allows dynamic, continuous, and reversible modulations of the
topological surface states within the topological phase and
hence opens prospects for TI straintronics. Here, we combine
the mechanical strain and the giant magnetoresistance (GMR)
of a ferromagnet−TI (FM−TI) junction to construct a novel
TI GMR straintronics device. Such a FM−strained-FM−TI
junction permits several energy spectral ranges for 100% GMR and a robust strain-controllable magnetic switch. Beyond the
100% GMR energy range, we observe a strain-modulated oscillating GMR, which is an alternative hallmark of the Fabry-Peŕot
quantum interference of Dirac surface states. These strain-sensitive GMR responses indicate that FM−strained-FM−TI
junctions are very favorable for practical applications for low-power nanoscale strain sensors.
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1. INTRODUCTION

A three-dimensional (3D) topological insulator (TI) belongs
to a new quantum state of matter characterized by the
nontrivial Z2-order parameter with an insulating bulk state and
the protected metallic surface states.1−5 One of the most exotic
features for TI is that the combination of strong spin−orbit
coupling and time-reversal symmetry allows the spin-
momentum locked helical surface Dirac fermions, which are
responsible for many exotic physical properties of TI. The
striking second generation of TI, including Bi2Se3, Bi2Te3, and
Sb2Te3, provides an ideal platform for the research of
fundamental topological phenomena at room temperature6−9

because of its high purity and simple surface band structure,
i.e., large bulk band gap and single Dirac cone, which are
confirmed by angle-resolved photoemission spectroscopy and
scanning tunneling microscopy.
The interaction between magnetism and surface states of TI

has attracted considerable attention for the fundamental
interests including the topological magnetoelectric effect,10−12

quantized anomalous Hall effect,13−15 massive Dirac fermion,16

geometrical phase,17 and chiral edge currents,18 where the
ferromagnetism is spontaneous in a magnetically doped TI. In
addition, experiments demonstrate that the external magnetic
proximity effect can also enable a remarkable ferromagnetic
exchange field on the surface of TI at ambient temperature.19,20

In this regard, both the ballistic and diffusive magnetotran-
sports (especially, tunneling and giant magnetoresistance
(GMR) effects) in various ferromagnet (FM)/TI junctions

have been highly investigated,21−37 for the potential
applications in information processing and storage. Recent
works on the controllability of magnetoresistance through a
FM/TI junction concern gate voltage,21−27 magnetization
direction,28−30 superlattice effects,31 magnetic field magni-
tude,32 domain-wall modulation,33 and impurity scatterings.34

A mechanical strain can induce the topological phase
transition between a common insulator or semimetal and TI
(e.g., Bi2Se3,

38,39 Sb2Se3,
39−41 InSb,42 Li2IrO3,

43 TiTe2,
44

BiTeI,45−47 trigonal tellurium,48 HgTe,49 HgSe,50 KNa2Bi,
51

NaBaBi,52 and Na3Bi).
53 Therefore, a strain offers an

alternative way to realize TI. A strain can also tune the surface
electronic structure and electronic transports of both 3D TI
and topological crystalline insulator (TCI) with keeping the
topological phases.38,39,54−63 For 3D TCI, the lattice mismatch
induces strain, which shifts the Dirac points in the surface
Brillouin zone like an effective magnetic vector potential.59,60

For 3D TI, a typical hydrostatic pressure allows a uniaxial
compressive strain, which makes a monotonic downshift of the
Dirac points with respect to energy like a negative electrostatic
potential.38,39,55−57 Compared with doping, the mechanical
strain permits dynamic, continuous, and reversible modula-
tions. Therefore, strain modulation is favorable for practical
applications. Herein, we report the GMR response to strain in
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a FM−strained-FM−TI junction (see Figure 1). On the basis
of the energy spectrum analysis of propagating states, we

obtain several types of energy spectral ranges for 100% GMR.
By virtue of the magnetotransport calculations, we find a
strain-controllable magnetic switch effect with a conversion
between an insulating state with no GMR signal and a
conducting state with 100% GMR response. We also find that a
strain-modulated Fabry-Peŕot resonance renders a remarkable
oscillating GMR effect in the FM−TI nanostructure. These
results show that the TI GMR straintronics is suitable for low-
power nanoscale strain sensors.

2. THEORY
We consider a FM−strained-FM junction on the top surface of
a 3D TI (layered Bi2Se3), as shown in Figure 1, where a bias is
applied in the x direction, a top gate in the middle region (II)
with the width d supplies a voltage Ug and transfers a uniform
hydrostatic pressure to the TI, and the planar magnetizations
denoted by the white arrows in the left region (I) and right
region (III) are parallel (P) or antiparallel (AP) to the applied
bias. In this work, we focus on the magnetotransport response
to the longitudinal ferromagnetic exchange field.35 To capture
the main physical picture, it is usually assumed that the
proximity-effect-induced ferromagnetism region has a step
boundary.22−24,26−29,37 Therefore, we write the ferromagnetic
exchange field profile as M x M x x d e( ) ( ) ( )x xη⃗ = [Θ − + Θ − ]÷◊÷ ,
where Θ(x) is the Heaviside step function and η is 1 and −1
for P and AP configurations, respectively. Similarly, the
potential profile of the junction is approximately expressed
by V(x) = (Ug − Us)Θ(x)Θ(d − x), with the gate voltage (Ug)
and the strain-induced negative potential (−Us). In this regard,
the effective low-energy Hamiltonian of the surface states for
the system under consideration reads

H v k e M x V x( ) ( ) ( )zF 0σ σ σ̂ = ⃗ × ⃗ · + ⃗· ⃗ +÷◊÷
(1)

where vF = 4.08 eV Å is the Fermi velocity of the surface states
for Bi2Se3, σ⃗ is the vector of Pauli spin matrices, k ⃗ is the
electron momentum, and σ0 is the 2 × 2 identity matrix.

Considering the y-direction momentum conservation, we write
the wave functions in the region j (j = I, II, and III) along the
±x directions as ψj

± (x,y) = ψj
±(x)eikyy, where ψj

±(x) is obtained
from eq 1 and takes the form as
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For the three regions, we have ky,I = Mx/vF + ky, kx,I =
sgn(E)(E2/vF

2 − ky,I
2 )1/2, kx,II = sgn(E − V)((E − V)2/vF

2 −
ky
2)1/2, ky,II = ky, kx,III = sgn(E)(E2/vF

2 − ky,III
2 )1/2, and ky,III =

ηMx/vF + ky. The incident angle is defined by θ = arcsin(vFky,I/
E), and the group velocities in the three regions take the forms
as vx,I = vF

2kx,I/E, vx,II = vF
2kx,II/(E − V), and vx,III = vF

2kx,III/E,
respectively. To guarantee the current conservation with a
normalized incident probability density, we write the total
wave functions in the three regions as
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where r is the reflection coefficient, t is the transmission
coefficient, and a and b are the unknown complex coefficients.
Using the continuity of two-component wave functions in real
spin space at the left (x = 0) and right (x = d) boundaries, we
can obtain the corresponding transmission probability for P (η
= 1) and AP (η = −1) configurations, as follows

T E V M k
k

k
( , , , )

( )( )
e ( )( ) e ( )( )
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x

x

k d k d

,III
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i i

2

x x,II ,II

α α β β
β α β γ β α β γ

=

− * − *
* − * − − − * * −

η

η η
−

(4)

where the upper index asterisk denotes the complex conjugate,
α = (vFky,I − ivFkx,I)/E, β = (vFky − ivFkx,II)/(E − V), and γη =
(ηMx + vFky − ivFkx,III)/E. We focus on the ballistic transport
system with few impurities. For this case, the conductance for a
small bias at finite temperature reads

G E V M G E T E V M k
f

E
k( , , ) d ( , , , ) dx x y y0 ∫ ∫=

−∂
∂η η

(5)

where G0 = e2Ly/πh is the conductance unit with the y-
direction width Ly = 400 nm and f(E) = 1/(e(E−EF)/kBT + 1) is
the Fermi−Dirac distribution function. If a very low temper-
ature is considered, the above formula is further written as

G E V M G T E V M k k( , , ) ( , , , ) dx x y yF 0 F∫=η η (6)

Then, the GMR is defined as

G GGMR (1 / ) 100%AP P= − × (7)

3. RESULTS AND DISCUSSION
3.1. Energy Spectral Range for Strain-Dependent

100% GMR. Before we discuss the strain-dependent energy
spectra, let us comment on the strain effects on the Dirac

Figure 1. Setup for topological insulator GMR straintronics. The
device consists of a FM−strained-FM junction on the top surface of
3D TI (layered Bi2Se3). In the left (I) and right (III) FM regions, the
longitudinal magnetizations can be parallel (P) or antiparallel (AP) to
the applied x-directional bias for GMR. In the middle (II) region with
width d, the top gate supplies a voltage Ug and transfers a uniform
hydrostatic pressure to the TI. The inset shows the top view of the
top x−y surface of TI.
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surface states of Bi2Se3. According to the first-principles
calculations,38,55,56 it can be summarized that the topological
insulating phase for layered Bi2Se3 remains if the strain is less
than 6.4%38 and that the negative electrostatic potential (−Us)
induced by the compressive uniaxial strain can be roughly
approximated as two linear piecewise functions of strain: For 0
< ε ≤ 3%, Us = 2ε, and for 3% < ε ≤ 6.4%, Us = 3.5ε − 0.045,
in units of eV.55 If a compressive strain larger than 6.4% is
applied, the bulk gap will be closed, and the phase transition

for layered Bi2Se3 from TI to a common insulator happens.
Consequently, the Dirac bands are broken by the large strain.56

Therefore, in this work, the applied strain is limited to 6.4%
and Us is correspondingly less than 0.179 eV.
Now we begin to perform energy spectrum analysis. The

definition of GMR in eq 7 shows that the positive 100% GMR
occurs if there exists an energy spectral range with GAP = 0 and
GP ≠ 0. In general, both the propagating and nonpropagating
(evanescent) states in middle region II contribute to the

Figure 2. Energy spectra of propagating states through the FM−strained-FM−TI junction in the (ky, E) space. Type A with Mx = 50 meV, Us = 60
meV, and Ug = 0 meV for (a) P and (b) AP configurations. Type B with Mx = 50 meV, Us = 10 meV, and Ug = 0 meV for (c) P and (d) AP
configurations. Type C with Mx = 50 meV, Us = 10 meV, and Ug = 100 meV for (e) P and (f) AP configurations. The overlapped yellow areas by
the energy spectra of all of the three regions, i.e., I + II + III, allow the propagating waves across the entire junction.

Table 1. Three Types of GMR Energy Spectral Range for the FM−Strained-FM−TI Junction

type V vs Mx range of E for 100% GMR range of ky for 100% GMR

A V < −Mx 0 ≤ E ≤ Mx −2Mx ≤ vFky ≤ 0
B −Mx ≤ V ≤ Mx (V + Mx)/2 ≤ E ≤ Mx V − Mx ≤ vFky ≤ 0
C V > Mx 0 ≤ E ≤ Mx −(V + Mx)/2 ≤ vFky ≤ 0

Figure 3. Contour plots of transmission probability through the FM−strained-FM−TI junction as a function of ky and E for (a) P and (b) AP
configurations of type A, (c) P and (d) AP configurations of type B, and (e) P and (f) AP configurations of type C, with the same corresponding
parameters as in Figure 2. Conductance GP and GAP and GMR as a function of energy EF for (g) type A, (h) type B, and (i) type C. For all cases, d
= 100 nm.
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conductance. However, the tunneling of evanescent surface
Dirac states in region II rapidly vanishes with the increase of
the width d, as demonstrated in eq 4. Thus, if a relatively large
width d is adopted in region II, the contribution to
conductance by evanescent mode is well negligible. Then, we
can approximately use the energy spectra of propagating states
to determine the energy range of 100% GMR. Figure 2 shows
the energy spectra of propagating states in the (ky, E) space for
both P and AP configurations of the FM−strained-FM−TI
junction. As we can see, in the (ky, E) space, the in-plane
magnetic exchange field Mx shifts the original Dirac point (0,
0) to the new position (−Mx/vF, 0) in magnetic regions I and
III for P configuration, but for AP configuration, the exchange
field shifts the original Dirac point (0, 0) to (Mx/vF, 0) in
region III. The total potential V involving the gate voltage Ug
and the compressive-strain-induced negative potential (−Us)
moves down or up the Dirac cone in middle region II.
Therefore, to determine the GMR energy spectral range, we
should further make clear the interplay among Mx, Ug, and Us.
By comparing the sizes between V andMx and taking the range
of ky into account, we classify the GMR energy spectral range
into three types, as demonstrated in Table 1.
For type A in Figure 2a,b, V < −Mx, GP ≠ 0 for the positive

energy, GAP = 0 for 0 ≤ E ≤ Mx and hence the energy range for
the 100% GMR is from 0 toMx. For type B, as shown in Figure
2c,d, −Mx ≤ V ≤ Mx, GP = 0 for 0 ≤ E ≤ (V + Mx)/2, GAP = 0
for 0 ≤ E ≤Mx, and GP ≠ 0 for E > (V +Mx)/2. Therefore, the
energy range of the 100% GMR for type B is from (V + Mx)/2
to Mx. For type C in Figure 2e,f, V > Mx, GP ≠ 0 for the
positive energy, GAP = 0 for 0 ≤ E ≤ Mx and hence the energy
range for the perfect GMR is from 0 to Mx. We note that there
exists a forbidden energy range for both P and AP
configurations in type B and the energy ranges for the 100%
GMR in both types A and C are consistent, but the ranges of ky
are different, as demonstrated in Table 1.
To demonstrate the 100% GMR energy range determined

by the energy spectrum analysis of propagating states and the
features of the three types, we further numerically calculate the
transmission (Figure 3a−f), conductance, and GMR (Figure
3g−i), where the width d is taken as 100 nm such that the
contribution of conductance is almost entirely attributed to the
propagating states. As predicted above, the transmission energy
and angle ranges of the propagating states, the zero and
nonzero conductance areas, and the 100% GMR energy range
agree well with the energy spectrum analysis. Beyond the
perfect GMR energy range, the oscillating GMR related to the
transmission resonance occurs, and it will be studied later.
Since the three types depend on the relation among Mx, Ug,
and Us, the three types with the 100% GMR can be tuned by
strain if Ug and Mx are fixed. Although the compressive strain
acts as a negative potential, the strain-sensing effect rather than
a negative voltage is necessary for a TI strain sensor. For type
B, we also indeed observe a forbidden energy range for both P
and AP configurations, where the GMR does not exist. The
cutoff value between the forbidden and 100% GMR energy
ranges is determined by (Ug − Us + Mx)/2. Such a sharp
strain-modulated GMR response from no GMR signal to 100%
GMR is very suitable for strain (pressure) sensors and strain-
controllable magnetic switches.
3.2. Strain-Controllable Magnetic Switch. As figured

out above, for type B, the applied strain can change the zero-
conductance cutoff value for the P configuration, but the zero-
conductance cutoff value for the AP case is unchangeable by

strain, as shown in Figure 3h. This property motivates us to
construct a novel strain-controllable magnetic switch. To
illustrate the features of the magnetic switch, we define two
states: the insulating state with no GMR (ISNG) and the
switched state with perfect GMR (SSPG). The conductance as
a function of strain is presented in Figure 4, where the light

green and yellow backgrounds denote the strain ranges for
ISNG and SSPG, respectively. Using the cutoff value E = (Ug
− Us + Mx)/2 for type B, we obtain the cutoff strain from
ISNG to SSPG

U U M E(ISNG SSPG) 2xs g→ = + − (8)

From Figure 4a, we can observe the magnetic switch with only
single strain cutoff value Us(ISNG→ SSPG) and its converting
route ISNG→ SSPG with increasing the strain. If a larger Ug is
given by the top gate with Ug > Mx, the GMR energy range
belongs to type C for a small strain. However, with the
enhanced strain, the GMR energy range is changed from type
C to B. Therefore, one can also realize a magnetic switch with
double strain cutoff values. The other cutoff value is given by

U U M(SSPG ISNG) xs g→ = − (9)

From Figure 4b, we can see the strain-controllable GMR
switch with double cutoff values and its converting route SSPG
→ ISNG → SSPG. In an actual system, thermal fluctuations
and contact resistance may slightly reduce the switch effect.54

However, the large energy intervals and accessible value of GP
make the strain-manipulated magnetic switch practical in
experiments.

3.3. Strain-Modulated Fabry-Peŕot Resonance and
Oscillating GMR. Because of the Dirac linear dispersion for
the surface states, the unique Fabry-Peŕot quantum interfer-
ence of the surface states has attracted considerable attention
in both fundamental interest and practical applications in
TI.64−69 For the considered FM−strained-FM−TI junction,

Figure 4. Conductance GP and GAP as a function of strain-induced
potential Us. (a) Mx = 50 meV, Ug = 40 meV; (b) Mx = 40 meV, Ug =
70 meV. For all cases, EF = 25 meV and d = 100 nm. The state ISNG
is represented by the light green areas, and the state SSPG is
represented by the light yellow areas. The strain-controllable magnetic
switch has a single cutoff value in (a) for the conversion ISNG →
SSPG and double strain cutoff values in (b) for the conversion SSPG
→ ISNG → SSPG.
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the magnetic confinements of exchange fields in the left and
right regions serve as two barriers and the strain-induced
negative potential in the middle region acts as a well.
Therefore, this strained FM−TI junction is a natural resonant
cavity and hence the Fabry-Peŕot resonance should happen.
We numerically calculate the transmission probability as a

function of the strain-induced potential Us and the incident
angle θ for both P and AP configurations, as demonstrated in
Figure 5a−f, where we have chosen the values of EF beyond
the 100% GMR energy range. A remarkable strain-modulated
Fabry-Peŕot resonance occurs, but the transmission angle
ranges for P and AP configurations are quite different because
of the different magnetic confinements for different combina-
tions.
However, an observation of the angle-dependent trans-

mission resonance is challenging in experiments. We argue that
GMR can be used to probe the Fabry-Peŕot resonance in
experiments because GMR is essentially determined by the
conductance, which is related to the angular average of the
transmission probability. Therefore, we further calculate the
conductance and GMR as a function of the strain-induced
potential for both P and AP configurations. As shown in Figure
5g−i, the conductance and GMR oscillate with the increasing
strain, as a result of the Fabry-Peŕot resonance. In addition, the
oscillating GMR peaks and valleys are corresponding to the
peaks of GP and GAP, respectively. Therefore, the oscillating
GMR offers an alternative hallmark of the strain-modulated
Fabry-Peŕot interference for TI surface states.

4. CONCLUSIONS

In conclusion, we have investigated the strain effect on GMR
in a FM−strained-FM−TI junction. The energy spectrum
analysis of propagating states for this junction indicates that
the spectral distribution of 100% GMR involves three types as
a result of the interplay among the magnetic exchange field, the
gate voltage, and the strain-induced potential. The magneto-
transport calculations, including the transmission, conduc-
tance, and GMR, not only confirm the energy spectrum
analysis but also predict a novel strain-controllable magnetic
switch, where the applied strain with single or double cutoff
values can switch between an insulating state with no GMR

signal and a conducting state with 100% GMR. Beyond the
energy range of the 100% GMR, the strain-modulated GMR
displays a periodic oscillation and the oscillating peaks and
valleys are corresponding to the Fabry-Peŕot resonances for P
and AP configurations. Therefore, via an experimental
measurement of the strain-modulated oscillating GMR, one
can probe the Fabry-Peŕot quantum interference of the Dirac
surface states. These strain-controllable GMR responses
indicate that the proposed TI GMR straintronics is quite
practical for low-power nanoscale strain sensors.
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