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Periodically driven nontrivial quantum states open another door to engineer topological phases in
solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly
and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-
metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken
time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological
quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the
photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-
controlled spintronics and optoelectronics based on 2D MOFs.

Once discovered in materials, quantum states, with extra degrees of freedom, unconventional conical bands or
nontrivial topological features, could yield entirely new physics and device paradigms in nanoelectronics and
information technology. The first example is the half-metallic state with 100% spin polarization near the Fermi
energy, where the spin degree of freedom can be used as information carriers in spintronics'. The second example
is the semimetallic state in graphene with linear electronic band dispersion associated with the Dirac physics® As
a counterpart of the electronic spin, the extra valley degree of freedom used as information carriers in graphene,
silicene or monolayer transition metal dichalcogenides could lead to the exotic valleytronics®*. The third example
is the topological insulators (TIs), where fully spin-polarized currents carried by the robust conducting edge or
surface states inside the insulating bulk gap allow TIs for applications in spintronics and quantum computation®®.
In addition, more exotic quantum states have also been explored recently, such as Weyl semimetals’~?, axion insu-
lators and three-dimensional Dirac semimetals'®!!. Besides searching for materials with these exotic quantum
states, engineering these states in condensed matter or nanostructures by external fields also has aroused tremen-
dous attention during the past few years.

Via photon-dressed band structures and properties in Floquet-Bloch picture, light-matter interaction not only
offers novel experimental and theoretical platforms for engineering Floquet topological insulating phases!?-3
and semimetallic phases®-¢ in solid systems, but also sparks the same interest in photonic crystals and optical
lattices®”~*2. These Floquet quantum states not only display similar behaviours as their counterparts in static sys-
tem but also exhibit additional features, which require the extension of the classifications'**-%” and are directly
manifested by their unique nonequilibrium transport properties'®-1348-53 In general, the Floquet-Bloch theory,
which describes the interaction of light with Bloch states in solids, can be divided into two classes in view of two
distinct physical mechanisms. The first is based on the zeroth static Floquet Hamiltonian in the off-resonant
regime, where the driving frequency w is larger than the bandwidth A of the undriven system. In this case, the real
absorption and emission for a photon with frequency w between the uncoupled Floquet sidebands are unlikely,
but the virtual photon absorption and emission!” can incorporate with the Bloch electrons and renormalize the
electronic structures. The second is governed by the truncated Floquet Hamiltonian in the on-resonant regime
(w< A), where the overlapped Floquet sidebands and the photon resonances are responsible for these exotic
Floquet quantum states!>20-2443,
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Figure 1. Photon-dressed topological band structures of M;C,,S,,. (a) Schematic of light-irradiated M,;C,,S,
on a back gate controlling the Fermi energy Ey. Infrared light with the incident wave vector k,_, travels along the
negative z axis (perpendicular to the M;C},S,, plane) and induces the time-dependent vector potential

A(f) = (Asin(wt), A sin(wt + ¢), 0) with the frequency w. (b) 2D kagome lattice of M;C,,S;,. Here, a; = (1, 0)a,
a, = (1/2, J/3/2)a, and a;=a,—a, are the lattice vectors with the lattice constant a, d;; (i, j= A, B or C, i.e., the
sublattlces) is the nearest-neighbor vector, and D; is the next-nearest-neighbor vector (c) The photon-dressed
topological band structures of M;C,,S,, with a group of spin chern numbers (—1, 0, 1) from bottom up, for
Aa=15Aa=15¢=0,and \; =0.14t,.

In this work, we focus on the coherent interaction of light with the recently discovered two-dimensional
Metal-organic frameworks (2D MOFs)>*~%7, in both of the off-resonant and on-resonant Floquet-Bloch pictures.
Owing to the numerous combinations of different metal ions and organic ligands, 2D MOFs have various chem-
ical structures and versatile physical and chemical functionalities®®, such as topological electronic properties®®-°,
Dirac semimetals®, half-metallicity®® and chemiresistive response®. The dominant nearest-neighbor hopping
(0.01eV < £, <0.1eV)* in 2D MOFs is much less than that in graphene (¢, ~ 2.8 eV)? and hence only needs
the coupling light with a lower frequency (w < 1.2 x 104 Hz) in infrared, which is experimentally accessible®.
Consequently, the infrared sensitivity opens a door to engineer quantum states in 2D MOFs by light. Herein,
we report the effects of infrared light on the quantum phases and topological properties of M;C,,S;, (M is a
metal ion, such as Ni, Cu, Pt, Au and others)®, a kind of 2D MOFs with kagome lattice (Fig. 1a and b), within
the framework of the Floquet-Bloch physics. It is shown that photoinduced quantum phases in M;C,,S,, can be
attributed to the Floquet-Peierls (FP) substitutions, which allow the effective lattices to be engineered through the
renormalized hoppings as well as the spin-orbit couplings (SOC) and permit the Floquet quantum phases to be
customized by the photon-dressed band structures and topological properties. Under the off-resonant light irra-
diation, the nonzero FP substitutions maintain the kagome lattice but with modified strengths, which can reverse
three energy bands of M;C,,S,, with different spin chern numbers and hence trigger a topological quantum phase
transition. Single zero FP substitution transforms the kagome lattice into the topologically equivalent Lieb lattice,
which supports the semimetals with the Pseudospin-1 Dirac-Weyl fermions. Under the on-resonant light irra-
diation, the circularly polarized light with frequency (A/2 < w < A) induces robust Floquet half-metal by virtue
of the broken time-reversal symmetry, but the linearly polarized light with lower frequency (f, < w < A/2) brings
in the exotic Floquet quantum spin Hall state with the gapless helical edge states protected by the time-reversal
symmetry. These results demonstrate that Dirac semimetals, Floquet half-metal and Floquet topological insulat-
ing states can be engineered in the same 2D MOFs by tuning the driving parameters (frequency, amplitudes and
polarization) of light, and therefore open a new way to design light-controlled spintronics and optoelectronics
based on 2D MOFs.

Results

The zeroth static Floquet Hamiltonian. First, let us consider the effects of light on M,C,,S,, (Fig. 1a) in
the off-resonant regime (w > A). In this case, the Floquet sidebands are uncoupled, and the photon-dressed band
structures can be captured by the zeroth static Floquet Hamiltonian (see Methods in details)

~0,0
- EOZCID' io tl Ef 111;' ]a + IT; Z f,J (dk] X dzk) Saﬂczacjﬂ’
(ij)o (ij)aB (1)

where ¢, and c;, are the creation/annihilation operators for an electron with the spin a on site r;, $ is the spin
Pauli matrix, and dy; is the nearest-neighbor (denoted by (i, j)) vector pointing from site r; to r; (see Fig. 1b). The
constant on-site energy E, just shifts the whole energy spectrum, and hence is usually set to the zero energy?. The
nearest-neighbor hopping energy ¢, and the intrinsic SOC strength ), are modified by these FP substitutions
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Figure 2. Phase diagram of light-irradiated M;C,,S,,. (a) Phase diagram in the (A,, A,) plane for linearly
polarized light (¢ =0 or ). (b) Phase diagram in the (A,, A) plane for circularly polarlzed light (¢ =7/2).
(c,d) Phase diagrams in the (¢, A,) plane for elliptically polarlzed light with A_ = -/3 Ajand A=A,
respectively.
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where A, and A, are the amplitudes, ¢ is the phase difference reflecting the polarization of light, and J(x) is the
zeroth Bessel function of the first kind. The zeroth static Floquet Hamiltonian in equation (1) shows that the
effects of the off-resonant light on the electronic properties of M;C,,S,, are decided by the FP substltutlons, which
allow us to design effective lattices by tuning the driving parameters (A,, A, and @) of light: (1) If f iy =0 the
hopping lattice of the irradiated M;C,,S,, remains the kagome lattice but w1th modified real hoppings that keep
the time-reversal invariant, and hence M;C,,S,, maintains the topological insulating phases (Fig. 1¢) because of
the SOC; (2) If single FP substitution is zero, the hopping framework will become topologically equivalent to the
Lieb lattice, which directly supports the semimetals with the pseudospin-1 Dirac-Weyl fermions near the Dirac
points”®7% (3) If two or three FP substitutions are zero, the driven hopping lattice will be correspondingly equiv-
alent to a quantum wire or some discrete lattice points such that 2D MOFs are always semimetals because of the
touched conduction and valence bands with zero band gap.

Phase diagram and topological quantum phase transitions. We consider the phase diagrams of
M;C,,S,, subjected to the light irradiation with linear, circular and elliptical (arbitrary) polarizations, respectively.
In Fig. 2 we construct the phase diagrams in the (A,, A,) plane for linearly and circularly polarized light and in the
(¢, A,) plane for elliptically polarized light. In the case of the off-resonance that keeps the time-reversal symmetry,
the topological insulating phases can still be characterized by a group of spin Chern numbers (C,)*"7>7¢ or
Kane-Mele invariants’” for the three distinct energy bands. From these phase diagrams, we can see that the
off-resonant light induces two different topological insulating phases with the spin Chern numbers (—1, 0, 1) and
(1,0, —1), respectively. The topological phase transition occurs at the boundaries between the two different top-
ological insulating phases, where the band gap is closed and the semimetal appears. In addition, the phase distri-
butions are symmetrical owing to the symmetries of f ; ? with respect to the amplitudes A, and A, as well as the
phase difference ¢ (see equation (2)). On the other hand, the edge state is a powerful tool to reveal the topological
features of energy bands and search for the topological phase transitions, because of the bulk-edge correspond-
ence. For TIs, fully spin-polarized gapless helical edge states protected by time-reversal symmetry are directly
responsible for the spin Hall conductance (o} ). Therefore, the change of the spin Hall conductance can provide a
signature of topological phase transitions. We calculate the edge state spectrum, the density of state and the spin
Hall conductance for the two distinct TIs with A, = 0.14¢, (Fig. 3), on a cylindrical geometry, i.e., a 34-unit-cell
open boundary condition in the y direction and a periodic boundary condition in the x direction. As expected,
the three bands of M;C,,S,, for the two different topological insulating phases are reversed, and a pair of robust
spin-filtered gapless states inside each bulk gap leads to the contrary values of the quantized spin Hall conduct-
ance. As a result, the off-resonant light triggers the topological quantum phase transition between the two phases
(-=1,0,1)and (1,0, —1).

Pseudospin-1 Dirac-Weyl fermions and flat band. In the above section, we concentrate on the topolog-
1cal 1nsulat1ng phases and phase transitions. Here we focus on the semimetals 1nduced by the three cases: (i)

fAB—O fBC =0, andeC = 0, 11)fAB =0, ch =0, andeC = 0, (iii) fAB = 0, fBC¢0 and
70 0 _ - Weelucidate the analytical expressions of photon-dressed energies ¢, (k) and Hamiltonians H. (k) for

A,C
the semimetal phases in the three cases (see Supplementary Note 1). The obtained energy band structures of the
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Figure 3. Edge state spectra of light-irradiated M;C,,S,, on a cylindrical geometry. For topological
insulating phases (—1, 0, 1) with light parameters (A,a=2, Ap=2, and ¢ =m/2) and (1, 0, —1) with light
parameters (A,a=6, A,a=6, and ¢=7/2), respectively: The spin-up (green) and spin-down (cyan) edge state
spectra in (a,d), the density of state in (b,e) and the spin Hall conductance in (c,f).

Figure 4. Light-induced semimetals with pssuglospin—l Di~ra(<): Weyl fermions in M;C,,S,,. (a) The photon-
dressed band structure for case (i): f A’ =0 f B’ c=0 and f © = 0with llght parameters Aa=2,Aa=44,

and ¢ =0. (b) The photon-dressed band structure for case (ii): f g = o f BC = = 0, and f ac = 0w1th light

palz)ametersA a= 6181 Aja=2,and ¢=7/2. (c) The photon- dressed band structure for case (iii): f ap =0
fB c=0 andf = 0w1th light parameters A,a=2, A,a=6.71, and ¢ =0.

semimetals for the three cases with \; = 0.2¢, are shown in Fig. 4. Distinct from the light-induced extra Dirac
cones at the surface of a topological insulator?! or in graphene?, two conical bands touch at the Dirac points, and
an additional flat band exists. This band structure is the typical energy spectrum of the pseudospin-1 Dirac-Weyl
fermions”®74. In this case, the spin degeneracy of the energy band is not lifted because of the time-reversal sym-
metry for the off-resonant light and the space-inversion symmetry of the light-engineered Lieb lattice in M;C,,S,,
(Supplementary Note 1). The obtained effective Hamiltonians near the Dirac points (D,, D ,) in the three cases can
be rewritten as the general form of the pseudospin-1 Dirac-Weyl fermions: Hy ., =v,S,.p, +v,5S, P, (see
Supplementary Note 2) with the anisotropic group velocities v, and v,, a new wave vector p= (px, py, 0) and the
pseudospin vectors S, = (S,.., S,,. Sz,), which satisfies [S,, ., S, .| = ie,,,,S; . with the Levi-Civita symbol
€mn- The expressions of these quantities are given in Supplementary Table 1, where p= Aq with A, as a corre-
sponding deformation operator similar to the manipulation of the in-plain strain’®. Recently, searching for flat
band has been particularly interesting, because the dispersionless state in the presence of Coulomb interactions
can induce correlated quantum states, including ferromagnetism, superconductivity and fractional quantum Hall
effect’®-82. Recent experiments have shown that the localized flat band occurs in a photonic Lieb lattice that con-
sists of an array of optical waveguides®®. However, the flat band in real material has not been observed, since few
2D materials have the desired Lieb lattice. Here we predict the localized flat band that results from the destructive
interference of electron hoppings rather than disorders or impurities by means of the light-engineered Lieb lattice
in 2D MOFs.

Truncated Floquet Hamiltonian, Floquet half-metal and Floquet quantum spin Hall insulator.
In the above sections, the zeroth static Floquet Hamiltonian predicts the light-induced topological phase transi-
tions and the pseudospin-1 Dirac-Weyl fermions in 2D MOFs, but with the decrease of driving frequency
(t; <w< A) the Floquet sidebands overlap such that the resonant absorptions or emissions of photons cannot be
captured by the zeroth Floquet Hamiltonian. In this case, the Floquet Hamiltonian with infinite dimensions
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Figure 5. Quasienergy spectra of truncated Floquet Hamiltonian for light-irradiated M;C,,S;, on a
cylindrical geometry. Quasienergy spectrum for linearly (a) and circularly (b) polarized light with A,a=2.5,
Aja=2.5,and w=3t,. Quasienergy spectrum for linearly (c) and circularly (d) polarized light with A,a=6.5,
A,a=6.5, and w=2t,. Quasienergy spectrum for linearly polarized light: (e) A,a=1.5, A,a=1.5, and w=2.4t;;
(f) A,a=0.5, Aya =2.5,and w=2t;(g) A,a=6, Apa=0, and w=2t;;and (h) A,a=3, Apa=2, and w=2t,. Here
E, =0, the spin-up and spin-down quasienergy spectra are denoted by green and cyan lines, respectively, and
the electron densities for the edge states 1, 2, 3 and 4 in Fig. 5e are shown in Supplementary Fig. 2.

(—o0 <m, n <+ 00) should be considered in principle. However, the Floquet indexes m and n can be truncated
to a finite order M, because the FP substitution T?jM vanishes with the Bessel function of the first kind J,, <;/(x) ~0
(where M is a positive integer greater than x)®> and makes the Floquet states ¢, ,, decay rapidly if m and n are
beyond the finite range M in frequency domain. The truncated Floquet Hamiltonian of 2D MOFs, with 3M x 3M
dimensions in the Sambe space®, includes the resonant processes of few and multiple photons beyond the weak
intensity limit, which only takes the single-photon absorption or emission into account. Based on the truncated
Floquet Hamiltonian, we calculate the quasienergy spectra (Fig. 5) of M5C,,S,, irradiated by the on-resonant light
with A\, =0.2t,, on the same cylindrical geometry as in Fig. 3. Unlike the harmonic driving of electric field always
with the time-reversal symmetry®, the on-resonant light driving keeps the time-reversal invariant for the linear
polarization, i.e., e, (k,a)=¢_(—k,a)% but breaks the time-reversal symmetry for the circular polarization, i.e., e,
(k) =e_(—k,a)'*1%, As a consequence, the on-resonant linearly polarized light only induces the dynamical
gap near +w/2, and has few influences on the spin-polarized gapless helical edge states inside the two native bulk
gaps of the undriven M;C,,S;, (Fig. 5a and c). However, the on-resonant circularly polarized light induces a
dynamical gap for one spin but metals for the other spin (Fig. 5b and d), which results in the 100%
spin-polarization, i.e., the typical half-metallicity, owing to the broken time-reversal symmetry. The driven
half-metal near the boundary (+w/2) of the quasienergy Brillouin zone is without an analog in the undriven
system, and hence is here named as Floquet half-metal. In addition, no matter the driving intensity is strong or
weak, the Floquet half-metal can remain inside a limited frequency range (A/2 < w < A) before the dynamical gap
for both spins closes. Therefore, the Floquet half-metal is robust against the deviations of the optical parameters
and the SOC intensity (see Supplementary Fig. 1). On the other hand, when the driving frequency of the linearly
polarized light decreases further and becomes lower than A/2, some new gapless helical edge states protected by
the time-reversal symmetry appear in the dynamical gap, which first closes and then reopens (Fig. 5e-h). In this
case, M5C,,S,, is converted into the Floquet quantum spin Hall insulator*”#” if the Fermi level is inside the
dynamical gap. These new and initial gapless helical edge states exhibit well localizations at the two open
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boundaries of the ribbon, and can coexist inside the same system with few couplings because of the big energy
difference between each other (Supplementary Fig. 2).

Discussion

In this section, we first comment on the experimental feasibility to probe the predicted pseudospin-1 Dirac-Weyl
fermions and the light-induced novel topological quantum phases in 2D MOFs. The Angle-resolved photoemis-
sion spectroscopy (ARPES) is a useful tool to map the electronic band dispersions of topological materials>®,
by virtue of its important information on the kinetic energy and the emission angle of emitted photoelectrons.
Recently, ARPES not only has been applied to acquire the Floquet-Bloch bands of TIs (Bi,Se;) irradiated by
the monochromatic infra light with tunable intensity, frequency and polarization'®, but also has been used to
distinguish the Floquet-Bloch states from the Volkov states, i.e., the photon-dressed free-electron states near
the surface of TIs%. Besides, both of the occupied and unoccupied energy bands near and far away the Fermi
level can be resolved by the one-photon and two-photon ARPES®. Other methods are also proposed to check
the Floquet-Bloch states in Floquet TIs. For instance, the mean orbital magnetization, as a result of the Floquet
topological edge currents, has been suggested as a hallmark signature of the light-induced Floquet topological
quantum states®’. In addition, various 2D MOFs have been synthesized in recent experiments by the bottom-up
method®~*7, and the Fermi level of the single-atom-layer material can be well controlled by the back gate®.
Therefore, we believe that the predicted light-induced pseudospin-1 Dirac-Weyl energy spectrum and the
Floquet-Bloch topological band dispersions in 2D MOFs can be probed by a combination of the ARPES and the
gate-controllable Fermi level.

Next, we summarize our results and present an outlook for future investigations. We explore the effects of light
on the quantum phases and the topological properties of 2D MOFs with kagome lattice (M;C,,S,,) within the
framework of the off-resonant and on-resonant Floquet-Bloch physics. It is shown that unusual Floquet quan-
tum states can be engineered in the same 2D MOFs by virtue of highly tunable parameters of light. For instance,
the claimed nontrivial Floquet quantum spin Hall states in the driven 2D lattice system*” as well as the cold
atom system®” and the theoretically predictable’%7* and experimentally observable®*3! pseudospin-1 Dirac-Weyl
fermions with flat bands in the photonic Lieb lattice are realized in the light-irradiated 2D MOFs. Moreover,
we also observe that a new Floquet half-metallic state can be engineered in 2D MOFs by the on-resonant circu-
larly polarized light that breaks the time-reversal symmetry. These results not only facilitate the developments of
Floquet-Bloch physics in condensed matter, but also open a new path towards light-controlled spintronics and
optoelectronics based on 2D MOFs. On the other hand, as a starting point, light-irradiated 2D MOFs also raise
many interesting subjects, which deserve further explorations in future. Firstly, in the presence of interactions,
periodically driven system exhibits novel Floquet many-body states?®*-%’, such as the fractional Chern insulator
states®, which generically support the fractional quantum Hall states”-*2. Our results has demonstrated that the
expected topological flat band with a large flatness ratio, which is a crucial condition for the occurrence of the
fractional quantum Hall effect’?-%2, can be engineered by the off-resonant light in 2D MOFs (see Figs 3a,d and 4).
In addition, the strong electronic correlations can be introduced by choosing the different combinations of
metal ions and organic ligands. Therefore, the light-irradiated 2D MOFs may offer theoretical and experimen-
tal platforms to realize the fractional Chern insulator states in real materials. Secondly, a spatial modulation of
light allows for remarkably tuning the Floquet topological properties of semiconductor quantum wells?? and
the surface states of three-dimensional topological insulators®®. However, how about the situation in 2D crystal
materials, i.e., the 2D MOFs with the kagome lattice under the spatially nonuniform irradiations? Thirdly, the
temperature-dependent 2D topological phases have been characterized by the Uhlmann geometric phase®!'%. It
remains unclear, however, how to characterize the Floquet topological phases at finite temperature in 2D MOFs
and other materials. Finally, after the above question of the temperature-dependent Floquet topological phases
is addressed, and the experimental measurements on the Floquet topological quantum states in light-irradiated
2D materials are completed, Further experiments are required to explore the coupling mechanism between the
Floquet TIs and the external reservoirs®, the electron occupations of the nonequilibrium Floquet states!*"1%2 and
the dc Hall conductance of the driven Floquet TIs*.

Methods

Tight-binding (TB) model on the kagome lattice in 2D MOFs. The equivalent single-orbital TB
Hamiltonian of the kagome lattice’>!%, describing the interactions between the 7 orbitals of the ligands and the
d orbitals of the metal ions in 2D MOFs>5-%, should in principle involve the nearest-neighbor and next-near-
est-neighbor interactions, and can be written as

8\
H, = Eozcilcia — 4 Z Ciivcfa + ITI Z (dy < dy) - saﬂcilciﬁ
i (irf)scr (irj),08

8\ ¥
—t 3 et é > Dy x Dy) - S,ucicis
(1) (1)) 3)
Here the first term is the on-site energy. The second and third terms are the nearest-neighbor (denoted by (i, j))
hopping and intrinsic SOC with energy parameters ¢, and A, respectively. The last two terms are the
next-nearest-neighbor (denoted by ( (i, j))) hopping and intrinsic SOC with energy parameters ¢, and \,, respec-
tively. § is the spin Pauli matrix. d;; and Dy; are the nearest-neighbor and next-nearest-neighbor vectors pointing
from site r; to ry, respectively (Fig. 1b). The factors 8/ /3 and 8/3+/3 correspondingly ensure the vectors di;and Dy
normalized to the unite vectors, similar to that in graphene” or silicene?. In fact, owing to t,>>t, and A, > \,*%,
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the nearest-neighbor interactions are the main components, and hence the quite weak next-nearest-neighbor
interactions are usually not considered in 2D MOFs*-¢!.

Floquet-Bloch theory in the light-irradiated M;C,,S,.

In the presence of monochromatic infrared

light with its spatially slowly varying electromagnetic potential A(t) = (A,sin(wt), A sin(wt+ ¢), 0) (Fig. 1a), the
time-dependent TB Hamiltonian as a result of the Peierls substitution has the following form:

Ozcm Cion —

<lJ>

f Al)-dr

m }a

i
. i[ A@-dr
+ IT; Z efi (dkj x dy) - Saﬂcizcjﬁ. @
(i) B 4
We further perform the following Fourier transforms®
il ik
Cka = W Zl(CA Jja Cg]a CC]a)e‘ Y
i=
N " ’
Cka = Z(CAJQ CBja cha) e ket
4_ ®)

where N is the number of sites with periodic boundary conditions, T denotes the transpose operation, k is the
wave vector defined in the Brillouin zone, and A, B and C are the three sublattices of a unit cell in kagome lattice
(Fig. 1b). Then we can rewrite the time-dependent Hamiltonian in momentum space as

Cip
H(t) =Y (¢ o )H(K, t)[ ]
; kT k| Ckl (6)
where ¢, = (CZ S ka) and ¢, = (Caka CBka CCka)' are the creation/annihilation operators for an
electron with the spin a (T and | denote spin up and down, respectively) in momentum space. Due to
[S., H(t)] =0, the 6 x 6 matrix H (k, t) can be decoupled into two 3 X 3 spin-dependent Hamiltonians:

0 fL@®) +fr 0™ f(0) + fr (1)
Hy(k t) = EJ —tf f+(6) + f, (e * 0 £+ frme™
fr®) +f,0e ™ frt) +f, ()™ 0
0 £, + 0 —f, 1) — fr 0e's]
N —fr () — f, (e 0 £, + fr (e ™

fr®+f,0e —fr () - f,(He" 0

)

where k;=k-a; Iis the 3 x 3 unite matrix, +(—) refers to spin-up (spin-down), and the time-dependent Peierls
substitutions are

fl (t) _ e—iAxa sin(wt)/4e—iﬁA},a sin(wt+¢)/4
f (t) _ eiAxa sin(wt)/2
() =
f3 (t) _ eiAxa sin(wt)/4e—iﬁA},a sin(wt+¢)/4 (8)
Employing the Floquet theorem, we can write Floquet-Bloch ansatz as
ok, 1)) = e WP (K, 1)) = e WD (K, t + T)) = e =W Z D, (K))e™, o)
m=—00 9

with the period T, the spin-dependent quasienergy ..(k) and the Floquet-Bloch states |9, (k, t)). The Floquet
operator Hy, . (k, t) = H(k, t) — zat yields the time-independent Floquet energy eigenvalue equation in the
Sambe space as

+00 ~mon
Z (H. (k) + nwd,,,]|P,. (k) = e, (k)|P.(K)),

n=-—0oc

(10)

where the time-independent Hamiltonian ﬁ:’n(k) with the Floquet indexes (m, n) includes the emissions or
absorptions of g photons (g =m — n) and takes the form:

f 71(m n)th (k t
0

~~vm,n

Hy (k) =

—f ¢ H (K, 1)dt. an
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Substituting equations (6) and (7) into equation (10), we find that ﬁi’n(k) takes the same forms as the undriven
static Hamiltonian but with new hopping integrals and SOC strengths modified by the time-averaged Peierls
(Floquet-Peierls) substitutions:

~m,n 1

T
_ - —i(m—n)wt
fij = Tfo ¢ fiy Ot (12)

Spin chern number and spin Hall conductance. The absence of Rashba SOC in M;C,,S,, conserves the
spin rotational symmetry, and hence the spin-dependent chern number C.. of the energy band i can be directly
calculated using the Kubo formula

1
Tl w

dzl—c‘lmz(ii‘ox,iji)(ji‘f/y,i ip) = (ilPy,4li ) G [Px elin)

v i il
i#j (€j: — Ej:) (13)

cl=

where +(—) refers to spin-up (spin-down), e (/) is the spin-dependent eigenvalue of the energy band i (j), and
¥, (y) 1s the velocity operator. The chern number of band i is C ' = C, + C! and the spin chern number of band i
is C; = (C, — C!)/2. From the spin Chern number, we can further write the spin Hall conductance as

oy, (E) = (e/2m) %1 4C/-
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