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Abstract

A magnetic skyrmion is a spin whirl with topological protection and high mobility to electric current.
Intrinsic magnetoelastic coupling in chiral magnets permits the manipulation of magnetic skyrmions
and their lattice using mechanical loads, which is essential for developing future spintronics devices. It
is found in experiments that the stability and deformation of skyrmions are sensitive to stresses, while
the appearance of magnetic skyrmions in turn has a significant effect on the mechanical properties of
the underlying material. However, a theory which explains these related phenomena within a unified
framework is not seen. Here, we construct a thermodynamic model for B20 helimagnets incorporating
amagnetoelastic functional with necessary higher-order interactions derived by group theory. Within
the model, we establish the methodology to calculate the phase diagram and equilibrium properties of
helimagnets under a coupled temperature-magnetoelastic field. Applying the model to bulk MnSi, we
calculate the temperature-magnetic field phase diagram under stress-free condition and its variation
when uniaxial compression is applied. We also calculate the variation of all the elastic constants with
the magnetic field. The results obtained agree quantitatively with corresponding experiments. Our
model provides a reliable basis for further theoretical studies concerning any magnetoelastic related
phenomena in chiral magnets.

1. Introduction

Recent years have witnessed a revival of interest in chiral magnets such as MnSi, Fe, 5Coy 5Si, and FeGe, due to
the experimental observation of a new chiral modulated magnetic state, commonly referred to as the skyrmion
lattice phase [1-3]. The skyrmion lattice phase can be understood as the crystallization of isolated skyrmions, the
latter of which are stabilized by the antisymmetric Dzyaloshinskii-Moriya (DM) interaction [4—6]. A skyrmion is
attractive for its emergent electromagnetic properties such as spin motive force [7-9] and topological Hall effect
[10, 11]. The stability and appearance of skyrmions are sensitive to material size, shape [12—16] and various kinds
of external fields [17-19]. Since the critical current density required to drive the motion of skyrmions is much
lower than that for a magnetic domain wall [20, 21], magnetic skyrmions are a promising candidate for the
realization of the next generation spintronic devices.

Magnetoelastic coupling in chiral magnets permits interaction between skyrmions and the elastic fields of
the underlying material, which leads to the occurrence of profound magnetoelastic phenomena. First, the
application of mechanical loads can affect or even stabilize the skyrmion lattice. Through a theoretical model
developed upon the Landau—Ginzburg functional, Butenko et al[22] find that uniaxial distortion stabilizes the
skyrmion lattice in a broad range of thermodynamical parameters in cubic noncentrosymmetric ferromagnets,
and further argue that this mechanism is responsible for the formation of skyrmion states observed in thin layers
of Fey 5Co0q 551 [2]. The stabilization of the skyrmion lattice is also observed in epitaxially grown FeGe thin films
[23] and MnSi thin films [24], where the magnetoelastic effects should be significant due to the misfit strains
exerted by the substrate. Later, it is observed in bulk MnSi that uniaxial tension affects the stability area of the
skyrmion lattice phase in the temperature-magnetic field phase diagram [25]. Second, the existence of magnetic
skyrmions in turn affects the elastic behavior of the material. Through ultrasonic studies [26, 27], it is found that
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the appearance of the skyrmion lattice in chiral magnets is accompanied by a jump of elastic stiffness. Finally,
deformation of the skyrmions and their lattice is strongly coupled with the deformation of the underlying
materials. It is proved theoretically that the presence of skyrmions leads to nontrivial localized elastic fields
[28, 29] when the materials are free from external forces. And when uniaxial tension is applied, the skyrmion
lattice in FeGe thin film [30] undergoes dramatic distortion two orders of magnitude larger than that of the
underlying material.

To clarify the physical mechanism behind this, it is significant to establish a theory that can treat these
different aspects of magnetoelastic phenomena within a unified framework. Previous theoretical studies on
magnetoelastic coupling in MnSi or other chiral magnets mainly fall into two categories: one part is developed
upon the magnetostriction theory constructed for ferromagnets with cubic symmetry (hereafter referred to as K
theory) [31], while the other part is developed upon a Landau type mean-field model constructed for the specific
spin-density-wave phase of MnSi (hereafter referred to as P theory) [32]. After thorough investigation, we find
both theories to be oversimplified to explain skyrmion-related magnetoelastic phenomena; the variation of the
elastic constants with the magnetic field examined for MnSi [26, 27] in the skyrmion lattice phase cannot be
understood within both theories. Recently, we became aware of a paper by Zhang and Nagaosa [33] addressing
the ultrasonic elastic responses in a monopole lattice using an extended spin-wave theory concerning magnon—
phonon interaction. While such a microscopic model provides a deeper understanding of the origin of
magnetoelastic coupling in chiral magnets, it is found that their model is more applicable to MnGe than MnSi. A
possible reason is that the magnetoelastic Hamiltonian used in the model is constructed in a most simple form
instead of a comprehensive description derived upon symmetry consideration. Besides, the effect of transverse
acoustic waves is not taken into consideration in the model, with the result that it cannot be used to analyze the
variation of the shear elastic constants Cy4 and Cgg with the magnetic field.

In this paper, we formulate a thermodynamic model for B20 helimagnets incorporating a comprehensive
magnetoelastic functional. The magnetoelastic functional is derived for the first time based on symmetry
consideration of B20 helimagnets, where all necessary higher-order interactions are incorporated, so that variation
of all the elastic constants of MnSi with the magnetic field observed in experiments can be quantitatively explained.
The model is fundamental for studying any skyrmion-related magnetoelastic phenomena. Here, we explain two
basic utilities of the model: (a) calculation of temperature-magnetic field phase diagram of any B20 compounds at
any applied mechanical loads; (b) calculation of equilibrium properties for helimagnets at any given temperature,
magnetic field, and mechanical loads. We apply the theory to bulk MnSi to evaluate the effect of magnetoelastic
coupling on the temperature-magnetic field phase diagram, the equilibrium magnetization, and the elastic
constants. By doing so, a complete set of thermodynamic parameters is determined for MnSi.

2. Formulation of the magnetoelastic free energy density functional

The space group of B20 compounds is denoted by P2,3, which corresponds to point group T or the tetrahedral
group. According to the symmetry requirement of point group T, we propose the following magnetoelastic
energy density functional for B20 compounds, which is written in a rescaled form as

1’T/me(gijy M, ml,n) - wme() + 1"‘u/mel + 1’T’meZ) (1)
where
Wimeo = Km?e;; + Li(mia + mien + myess) + Ly(mian + mien + msess)
+ Ly (mmyyay + mymsyis + mymsa3), (2)
6
Winel = Z Lo, fo,') ©)]
i=1
3 ~ ~
Wmez = Z L2if2,') 4)
i=1
and

f01 = ai(myms — my3my) + exn(myzmy — my1msz) + e33(mz my — mzmy),
foz = en(ms my — my1m3) + en(myams — msomy) + e33(my3my — my3my),
fo3 = gumy(my3 — Mm3p) + enmy(ms; — my3) + e33ms(nmyy — mMy)),

fou = va3(misms — myomy) + yis(mymy — mysms) + Yia(msomy — mymy),
fog, = Yp3(ms1mz — mymy) + Yiz(mamy — mzoms) + yip(myzmy — myzmy),

fos = Yasm(ms s — ma2) + Yisma(myy — ms3) + yams(myy — myy), )
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fy = Y23y2mims 4 Y3zt + Y23 s,
o2 .2 2.2 22
foo = Y23mi + Yiams + yizms,

fos = m*(¥3s + 5 + 1) (©6)

In equation (1), the rescaled magnetoelastic energy density Wy, is expressed as a functional of the normal
elastic strains €1, &), €33, the engineeringshear strains T Nm» Y the rescaled magnetization
m = [my, my, ms]T andits first-order partial derivatives mjj, (i,j =1, 2, 3).Inequations (2)—(4),

m? = ml2 + mzz + m32, and K, L), L5, L5, Lo, =1, 2,...,6)and L,;, (i =1, 2, 3)are thermodynamic
parameters characterizing different orders of magnetoelastic interactions. One should note that the engineering
shear strains are related to the shear strainsby v, = 2&,, v; = 243, andy,; = 2.

Putting L, = K = 0in equation (2), Wy, reduces to the magnetoelastic interactions defined in the K
theory. Changing the first term on the right-hand side of equation (2) to
Li[mPe; — (mie + miey, + mies) — (mfe + mis, + mies)]and merging similar terms, Wi reduces
to the functional used by the P theory. The discrepancy between the K theory and the P theory in describing
magnetoelastic interactions derives from the symmetry requirement of different point groups in cubic systems,
which was well summarized long ago [34].

Neither the K theory nor the P theory is sufficient to explain the complex variation of elastic coefficients with
the external magnetic field discovered in the experiments of MnSi [26, 27], for which higher-order interactions
Wine1 and Wi are introduced in equation (1). Wiy, is needed when explaining the discrepancy between the
elastic constants C; and Cs; in the skyrmion phase observed in an ultrasonic experiment of MnSi. On the other
hand, Wi, is needed when explaining the variation of Cyy and Cgg with the magnetic field [27]. One should note
that the two parts of the functional have already been simplified, where the details are described in appendix A.

3. Extended micromagnetic model incorporating magnetoelastic interaction

The Helmholtz free energy density for cubic helimagnets suffering coupled temperature-magnetoelastic field
can be derived by incorporating the magnetoelastic functional developed in section 2 in the Ginzburg-Landau
functional for chiral magnets with cubic symmetry[1, 4, 5, 35, 36]. We present the Helmholtz free energy density
of the system in a rescaled form as
3 (0m )’
w(m, ;) = Z(E) +2m - (V xm)—2b -m+tm?+ m* + Wy + Wl + Wine 7)
i=1\ UTi

where

3 2
Wan = Z[Ae(%mf) + Acm;*], ®)

i=1 Ti
- 1~ -
Wel = ECH(EIZI + €% + €33) + Cua(aien + 1633 + €22633)
1 ~
+ EC44(7122 + V5 + 735 9

denote, respectively, the rescaled anisotropic energy density and the rescaled elastic energy density, and Wy, is
obtained by rescaling the magnetoelastic free energy density developed in section 2. In equation (7), w is given as
afunctional of the rescaled magnetization vector m and the elastic strains ¢;; at given rescaled temperature ¢ and
rescaled magnetic field b. Such a rescaled form reduces the number of effective thermodynamic parameters, and
provides a material-independent theoretical framework to discuss the effect of magnetoelastic coupling. The
rescaling process and the definition of all quantities with a wavy overline are given in appendix B. Equation (7) is
fundamental to study various kinds of phenomena that occur in chiral magnets suffering coupled temperature-
magnetoelastic field. Here, we discuss two kinds of basic utilities as follows.

3.1. Temperature-magnetic field phase diagram calculation for helimagnets suffering mechanical loads
To proceed, the first step is to solve the elastic strains at a given temperature, magnetic field, and mechanical
loads, which differ for different kinds of mechanical boundary conditions. For the displacement boundary
condition where the displacements are fixed at the boundaries as u;y, the elastic strains are fully determined by
the boundary condition as €;; = €;;(u;p). For the stress boundary condition, the stresses oj; are determined by
solving an elasticity problem using stress methods (e.g. the method of Airy stress function). Then the elastic
8W(m, E,‘j) as

861']‘

strains &;; can be solved from the constitutive equations &; =

3
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~ ~ * ~ * *
o1 = Guan — ey + Galen — &3 + €33 — €33),
~ ~ * ~ * *
G2 = Gulen — &) + Calar — & + &3 — €33)5

- ~ * ~ * *
F33 = Cui(ess — &53) + Calan — &1 + €22 — €3)s

023 V23 — 7?3
o3| = D vs — ’Yiﬁs g (10)
12 Y2 — Vs

where ot denotes the rescaled stress components, and 5}? and 7?;, the eigenstrains, are related to the rescaled
magnetization by
* _ k2 %2 %, 2 * * *
e = K*m* — Lim{ — Lymy + Lg(mzmyy, — mymy3) + Loy(masmy — myms ) + Losmy(myz — m;3 ),
X _ k2 * 2 %2 * * *
&y = K*m* — Limy — Lym{ + Lg(mymy s — mamy ) + Loy(mymsy — mamy o) + Loymy(msy — my3),

¥ _ k2 %, 2 %, 2 * * *
€33 = K™m* — Limy — Lymy + Loy(mams; — mymsz ) + Loy(mamy 3 — mymy3) + LosMs(my, — my)),

* *
V23 023
x| — p-1f =
3| = D7 a5 |
* *
N2 O12
(11)
and
~ 5k ~ 2 ~ o~
(Cyq + 2Lomy) Lyymym, Lyymym;
_ p =% p 2 =
D= Lyymym, (Cyq + 2Lyymy) Lyymyms >
Lyymyms Lyymyms (Cyq + 2Lpom3)
X - ~ - ~ ~ -
053 = —Lsmyms + Logmy(myy — m33) + my(Loatmip + Losty) — ma(Loamz + Losms ),
" - - - - - -
o3 = —Lsmyms + Losmy(ms3z — my1) + m3(Loamys + Losmsp) — my(Losmy + Losmy ),
" - - - - N -
o1, = —Lsmymy + Losms(my; — myp) + my(Loams; + Losmy3) — my(Loamsy + Losmy ). (12)
. . . —CuR+Chr(R+IL,+L
In equations (11) and (12), the parameters with a superscript “*’ are defined as K* = 5+ p(B bt L)
~ B o B ~ ~ N o o ~(Cniclz)(cn+2C12)
L* — Ly * L, * _ —Culoi+ Ga(=Loi+ Loz + Lo3) * _ Culoy— Ga(Loi — Lo + Los)
L7 @i-C 72 7 (Gi-Cp 0! (Cn-C)(C+2Gy 02 (G — G (G +2G)

CoCor+ L) — (G + C)los 2% = ~ . . . . .
L3 = GallortLod) — (Cut Golos Cyy = Cyy + 2L,3m? For chiral magnetic states, the solution of elastic strains
(G — G (G + 2Gi)

contains a homogeneous part and a periodic part: €;; = &;(m, &;) + &;(m, &;), where

gi(m, ;) = % j; g;jdV. Here, g;(m, &;) canbe solved by taking the volume average of equation (10), while
&;j(m, &;) canbe derived by solving an eigenstrain problem [29]. For a mixed boundary condition, we generally
have after deduction €;; = €;(ujp, m, &), where uj is the displacement prescribed at part of the boundary and
&y are the stresses solved using the stress boundary condition prescribed at the other part of the boundary. In all
three cases, the elastic strains can generally be written as functions of the rescaled magnetization m: g;; = ¢;;(m).

In the second step, we substitute ;; = ¢;;(m) derived above into equation (7), which expresses the rescaled
free energy density as a mere functional of m. Then, we consider a specific magnetic phase, which describes m by
a certain mathematical expression. For chiral magnets, the known magnetic phases include: (i) the general
conical phase

%(cose—k 1) %(cos&— 1) %sin@
m, cos(q - r
s 1 V2 1€05(a )
Mgconical = E(cosH -1 E(cosG—i— 1) Tsm@ mg sin(q - r) |> (13)
ms
—g sin 6 —g sin 6 cos 0

T
where 0 denotes the angle between the direction of gand[0 0 1]7,q = q[g sin 6 g sinf cosf| .
Here, it is pre-assumed that q always lies in the (110) plane, which is determined by the easy axis of the material
[1 1 1]7 and the direction of magnetic field[0 0 1]7.Itreduces to (ii) the conical phase when & = 0, which
gives

M conjcal = [mq COS(qT3) my Sin(‘]@) mS]T . (14)
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Equation (13) reduces to (iii) the general helical phase mgcjics when m3 = 0. Equation (14) reduces to (iv)
the helical phase my,jic; when 113 = 0, and it reduces to (v) the ferromagnetic phase mgr, when m, = 0. (vi)
The skyrmion lattice phase is described within the nth order Fourier representation [37] as:

non;
Mg, = mg + Zquﬁe‘qij‘r, (15)
i=1j=1
where|q;)| = |q;,| = |q;5|= ... =siq,|Imq,| = [my | = [my |= ... =my;, |q1j| < |qu| < |q3j| < ...,andn;
denotes the number of reciprocal vectors whose modulus equals to s;g. Here, s; is a positive sequence of numbers
that increase with 7, and mg, can be expanded as

mg, = ciiPj + ciPyjs + cisPyjs, (16)
where

1 . . 1 1 . .
Pir = g =y o sial's P2 = g dye OF Pio = 2 lidy, — gy sial A7)

1 1
and q; = [q,-jx 9y 0]T. Equation (15) is constructed upon the hexagonal symmetry of the skyrmion crystal.
When distortion of the skyrmion crystal is considered, the emergent elastic strains have to be introduced in the

Fourier representation [38]. By setting n = 1and g, = g3 = 0, equation (15) reduces to the triple-Q
representation which can be written without loss of generality as

. sin(q) —% sin(q,,r) —% sin(q,;r)
Myipleq = | 0 | + V2my 0 +1V3 . +|1 V3 . ) (18)
mo cos(q, 1) T sin(q,,1) _T sin(q,51)
cos(qy,1) cos(q,;1)

After specifying a magnetic phase, one solves the magnetization that minimizes the averaged free energy
density W (m, €;) = v f w(m, €;)dV. For example, if we consider the skyrmion lattice phase within the triple-

Q representation, we minimize W (myipleq) = W (g, Mg, q), which determines the independent variables
mg, Mg, qandthe minimized averaged free energy density Wyipleq-

In the third step, we repeat the free energy minimization process mentioned above for all possible magnetic
phases. The equilibrium magnetic state is the one that yields the smallest averaged free energy density.

In the last step, we change the temperature and magnetic field, and then repeat the process mentioned above to
determine the equilibrium magnetic state at the new condition. The temperature-magnetic field phase diagram is
obtained after all points in the phase diagram are considered. A phase diagram of any two parameters can be
derived in the same way if we change the temperature and magnetic field to two new parameters of interest.

3.2. Equilibrium properties for helimagnets concerning magnetoelastic coupling

To proceed, the first step is to determine the equilibrium magnetic state at a given temperature, magnetic field,
and mechanical loads, using the method introduced above in part A. By doing so, we obtain the value of all
independent variables at the given condition.

The second step is to decide which kind of equilibrium propertie{:}s are to be discussed and clarify their
& o*w
65:1 = OgjjOen
conjugates of all independent variables of the equilibrium magnetic state. The equilibrium property of interest is
to be calculated at a given temperature and corresponding work conjugates of the independent variables.

The third step is to solve the analytical expression of the equilibrium properties from the averaged free
energy density by using the method of Jacobian transformation in thermodynamics [39]. The analytical
expressions are generally lengthy and symbolic computation programs are needed for the deduction. When the
analytical expressions are derived, we substitute the values of all independent variables obtained in the first step
to calculate the values of the equilibrium properties.

Finally, we change the magnetic field and repeat the process above. The variation of the equilibrium
properties of interest with the magnetic field is then obtained. Here, the magnetic field can be replaced by
another parameter, and the variation of the equilibrium properties with the parameter can be obtained in the
same way.

As an example, we derive for the first time the elastic stiffness in the skyrmion lattice phase at a given temperature,
magnetic field and mechanical loads. At rescaled temperature ¢, rescaled magneticfield b = [0 0 b]T ,and elastic
constrains €;; = 0, the equilibrium magnetic state is found to be the skyrmion lattice phase, described within the nth
order Fourier representation m = mg,(19, A1, €25 A3 G G2 G3--->Cnl> Cn2> Cn3)- The work conjugate of m, is
found to be b, while the work conjugates of a1, 62, a3 G1> G2 G3»--->Cnl> Cup> a0 ¢,y3 are denoted by

thermodynamic definition, e.g. the rescaled elastic stiffness C,jkl = . Then we determine the work
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Table 1. Thermodynamic parameters for bulk MnSi.

The first group of parameters:

G = 283.3 GPa, Gy, = 64.1 GPa, Cyy = 117.9 GPa [40],

A=127 x 1053JA2m[5,24,41], D = 1.14 x 10~ JA2[24,42], M, = 1.63 x 10° A m~'[24]
Q=644 x 107JA2m 'K, =353 x 10°6JA4m, Ty = 26K, A, = —0.05 A, [36]

The second group of parameters:

K=-2x10JA?m ™, L; = —0.70 x 10°JA?m™~}, L, = 0.60 x 10°JA?>m~}, L3 = 1.65 x 10°JA?m},
Loi = —0.57 x 107#JA2m™2, Loy = 1.15 X 107*JA?m™2, Loz = —0.57 X 107*JA?m2,

Ly = —1.01 x 108JA2m™!, Ly; = 2.03 x 107 JA2m~, B, = 0.

b1, b1z, bis, bay, bya, 23, but, by, and by3. The elastic constants at given condition can be derived from

|:8((~71]) b) bll’ b121 bl.’n bZl) b22) b23)---)bn1’ n2> nS)]
8(8](1) Mo, Q1 C2> G35 Q1 Q2 O35---5Cn1> Cns Cn3)

8(5]([, b> bll) b12> b13: bZl: b22) b237~~'>bn1) bn27 bnS):| ’
O(ews Moy Q1o €25 A3 Qb G2 Q3eeosCiuts Euds E3) 1], 4

(19)

(CiikDt, b, b, bis, bigye=0 = [

which is verylengthy for n > 2. If we described the skyrmion lattice phase within the triple-Q representation, we
have m = my;p1eq(m0, M1, q), where q is found to be invariant, and the work conjugate of 1, is denoted by
by Inthis case, equation (19) reduces to

=~ 6(5') b: b )/8(6]([, mop, m )
(Cidr, b, b0 = [ 5 d . ;1 > Sl L : (20)
(Ekl) 5 ql)/ (Ekl’ mo, mql) 1, b, by =0
Substituting &; = g:_ b= 6 - and by, 1nto equation (20), after manipulation we have
ij
~ o*w 1 0*w o*w o*w
(Ciik)r, b, byyei=0 = + 7 X
Oeij Oy 2w 0w 9% OeijOmg\ OmyOmy Oy Omy
dmg Omy, OmgOmy
0w 9w o*w 0w orw_ Ow 0w 1)
e Omy 8mq21 OeijOmg \ OeOmy OmgOmy  Omg Oeydmy | |

4, Results for bulk MnSi

MnSi is a prototype material for us to understand the interaction between magnetic skyrmions and mechanical
loads. In this section, we apply the theory established above to bulk MnSi. Within a unified theoretical
framework, we are able to quantitatively explain four different aspects of the experimental results, including the
temperature-magnetic field phase diagram for materials free from any mechanical loads, the variation of
magnetostriction with magnetic field, the variation of elastic stiffness with magnetic field, and the temperature-
magnetic field phase diagram for materials suffering uniaxial pressure. By doing so, a comprehensive set of
thermodynamic parameters for MnSi is obtained and listed in table 1, describing its magnetic, elastic, and
magnetoelastic properties. The parameters are divided into two groups. The first group contains the parameters
that can be directly obtained or have already been fitted from the experiments, while the second group contains
the parameters that are fitted in this work.

We briefly introduce the method and the experimental data used to fit the second group of parameters. From
the magnetostriction experiment of bulk MnSi [28], Ly, L,, Lzand Lo;, (i =1, 2, 3)canbefitted, where
experimental results when the magnetic field is applied along three different directions (001), (110), and (111)
areused. K, L,;and L,j are fitted from ultrasound measurements of the variation of the elastic coefficients with
external magnetic field [27].

Using this set of thermodynamic parameters, extensive investigation is done concerning the magnetoelastic
effects in MnSj, including the calculation of magnetostriction in the skyrmion phase and comparison to
corresponding experiments, the calculation of the periodic elastic field in the skyrmion phase [29], the bumpy
surface configuration of the skyrmion lattice [43], and the emergent elastic properties of the skyrmion lattice
[38]. Here, we present three parts of the calculation results for bulk MnSi.
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4.1. Temperature-magnetic field phase diagram concerning magnetoelastic coupling when the material is
free from any mechanical loads

Due to the magnetoelastic coupling, the elastic strains are related to the magnetization. Even when the system is
free from any mechanical loads, we have nontrivial elastic strains from equation (10). This nontrivial €;; has an
effect on the phase diagram as well as the solution of the equilibrium magnetization through , and W, in
equation (7). In the phase diagram calculation of chiral magnets based on micromagnetic models [1, 35, 36], this
back-action on the magnetization due to magnetoelastic coupling is usually neglected due to its smallness
compared with other dominant terms in the free energy functional. To examine the applicability of such an
assumption, we provide here a general analysis of the effect of magnetoelastic coupling on the magnetic phase
diagram calculation for bulk chiral magnets when the system is free from any mechanical loads. We know that
the coefficients of magnetoelastic coupling in different orders generally satisfy

K> 1L, L L3> Loiq, Loaqg, Losq, whichgives g1, 3, &3 o K*m?and that the influence of elastic
strains on the equilibrium magnetization is predominantly attributed to the term Km?c;; in equation (2). Hence,

consideration of &1, &, €33 inthe minimization of W renormalizes the coefficient of m* in the magnitude by
R? R?
_Cll+2612 Cu+2G,
between the elastic strains and magnetization can be neglected in the phase diagram calculation. When
Izz
Gi+2GC,

.In summary, we can compare the value of and 1 to qualitatively evaluate if the coupling

< 1, the equilibrium magnetization and magnetization-induced elastic strains can be solved

independently. For bulk MnSi, we have ~ 1073, which suggests that magnetoelastic coupling should

_K
G+ 2Cp
have a negligible effect on the shape of the magnetic phase diagram.

For bulk MnS;, free from any mechanical loads, we plot the temperature-magnetic field phase diagram in
figure 1(a) using the thermodynamic parameters fitted in table 1. The phase diagram is indistinguishable from the one
plotted in our previous work [36] where magnetoelastic coupling is neglected. To further understand why this is the
case, we plot in figure 1(b) the relative difference of free energy in the skyrmion phase
[W (mps) — Wo(mgs)]/|W (mps3) |, and the relative difference of free energy in the conical phase
[W (M conical) — Wo (M conica)] /| (M conicar) |- Here, W (m) and #w, (m) denote, respectively, the averaged free energy
density calculated by integrating equation (7) and the averaged free energy density calculated by neglecting #.) + Wine
in equation (7). We see that at 28 K, by including #, + Wiy, in the free energy density, the free energy of the system in
both the skyrmion phase and the conical phase decreases by about 2% to about 6% at different magnetic field. Yet the
free energy in the two phases decreases in approximately the same way, which explains why the phase diagram is
barely affected. On the other hand, magnetoelastic coupling pins the direction of the wave vectors (q;, q;,, q;; and so
on) in the skyrmion lattice phase, as shown in figure 1(c). In the triple-Q representation of the skyrmion lattice, it is
usuallyassumed thatq,, = [1 0 017, q;, = [— 1/2 J3/2 0]T, and q,; = [— 1/2 —/3/2 O]T. This is
because neglecting the magnetoelastic coupling (setting we = Wine = 0 in equation (7)), the free energy density
functional is invariant under an arbitrary rotation of q;;, q;, and q, ; in the x-y plane. After incorporating
magnetoelastic coupling in the free energy density, we find that such a symmetry is broken and the direction of the
triple-Q wave vectors is pinned. In figure 1(c), we plot in figure 2(a) the variation of

Aw[mps(T, B, )] = [W[mp3(T, B, o)] — W[mF3(T, B, g)]] / W[mp3(26.4, 0.1, 7)]with ¢, where ¢

describes the angle between q, , and the x-axis (depicted in the inset of figure 2(a)). We find that at any temperature
and magnetic field, the minimized free energy is found when ¢ = :I:g. Asaresult, the magnetoelastic coupling pins

the triple-Q wave vectorsto q,, = [0 1 0]%, q, = [— J3/2 —1)2 O]T, and q;; = [ﬁ/z —1/2 O]T, as
introduced in equation (18). Meanwhile, it is found that the value of other independent variables such as g, m,,
and q in the triple-Q representation is merely affected by the magnetoelastic coupling.

4.2. Variation of elastic constants with an external magnetic field

Using the parameters given in table 1 and the method introduced in section 3.2, we plot the variation of elastic
coefficients, denoted by AC,3 = (Cap)(T, by, by, bisy bis — (CaB)(T, mo, e ci, ciz) 11 figures 2(a)—(c). Here,

(CaB)T, by, by, biyy bis 18 derived from equation (19), where C,, 3 denotes a compressed matrix notation of the fourth-
order tensor Cyy; [44]. The curves obtained from our theoretical calculation resemble corresponding
experimental results in great detail [26, 27]. To be more specific, in figure 2(a) AC;; and ACj5 change to the
opposite direction from the same point in the distorted conical phase as the magnetic field increases [26, 27]; in
the conical phase ACs3 > AC; with a gap with a magnitude that approaches 102 GPa and the gap mildly
decreases as the magnetic field increases [26]; when a phase transition from the conical phase to the skyrmion
phase occurs, we observe an obvious lift of AC;;, which makes AC; > AC;3[26,27]; when a phase transition
from the conical phase to the ferromagnetic phase occurs, AC;; and ACjs; both increase, while ACy; increases
more sharply [27]. In figure 2(b), ACys and ACgs change to the opposite direction in both the distorted conical
phase and conical phase [27]; when a phase transition from the conical phase to the skyrmion phase occurs,
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Figure 1. (a) Temperature-magnetic field phase diagram of MnSi when the system is free from any mechanical loads. (b) Relative free
energy difference induced by magnetoelastic coupling as a function of the magnetic field calculated at temperature T = 28 K. Here,
W (mp3) and W (mconica) denote the free energy calculated for the skyrmion phase and the conical phase incorporating magnetoelastic
coupling at a given magnetic field, while Wy (mp;) and Wy (monica) denote the free energy calculated without considering the
magnetoelastic coupling at a given magnetic field. () Variation of AW with ¢ at three conditions of T and B.

ACyy drops slightly, while ACgg increases sharply [27]. In figure 2(¢), variation of ACy; and AC;; with magnetic
field is predicted, where corresponding experiments have never been performed before.

When plotting figure 2, the magnetization in the skyrmion phase is described by the third-order Fourier
representation. We find that if we use the triple-Q representation instead, the values of AC, 3 obtained changes
slightly within a range of £0.2%. This result shows that the order of Fourier representation of the skyrmion
lattice phase has a negligible effect on the calculation of elastic constants.

4.3. Temperature-magnetic field phase diagram for MnSi suffering uniaxial compression
We consider the variation of temperature-magnetic field phase diagram with application of uniaxial compression. The
uniaxial compression is applied in two directions: [0 0 1]"and[1 1 0]’. When uniaxial normal stress o is applied

in[0 0 1]7, theboundary conditionreads 033 = 0, 1] = 02 = 01, = 013 = 033 = 0, and the elastic strains can
G, o Ci+ G

T2 —520>83 = =3 — 2

Ch+ GGy —2C;, Chi+ GGy —2C;,

normal stress 0 isappliedin[1 1 0]”, the boundary condition reads 0y, = 05, = 07, = %, 033 = 013 = 023 = 0,

be approximated by g, = &, = 0, &2 = €13 = &3 = 0. When uniaxial

. . . G G
and the elastic strains can be approximatedby g, = 65 = —5——— 0,63 = ——5——2——0
pPp Y & 227 CE+ GGy —2Ch) 0 33 Ci+GiCy—2C3
g = % , &3 = &3 = 0. Bysubstituting the solution of elastic strains into equation (7), we can initiate the
44
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Figure 2. Variation of the elastic coefficients (a) ACy;, ACss, (b) ACy, ACes, (¢) AC, AG3, of MnSi with an external magnetic
field at 28 K. A, denotes the change of elastic coefficient C;; due to magnetoelastic coupling.

temperature-magnetic field phase diagram calculation when uniaxial stress is applied. For two conditions of o
o = —100 MPa and 0 = —200 MPa, we plot in figure 3 four temperature-magnetic field phase diagrams for MnSi.
Our result agrees quantitatively with corresponding experiments [25]. The phase diagrams of MnSi under uniaxial
pressure show the following characteristics: (i) a left shift of critical temperature as the pressure increases. This effect is
predominantly caused by the magnetoelastic coupling term Km?¢;; in equation (2). According to the theory of
elasticity, ;; = c : 2.0 = o +1 TR where 0;; is a stress tensor invariant, so that this result is valid for uniaxial
compression applied in any direction. Hence, K?s;; renormalizes the second-order Landau expansion term in

I$
Gt 26,7

equation (7) as (t +
__k
Gi+2G,
compression in the direction of [0 0 1] constricts the stable region of the skyrmion phase in the phase diagram,
while uniaxial compression in the directionof [ 1 0]” extends the stable region of the skyrmion phase in the phase
diagram. This effect is predominantly caused by the magnetoelastic coupling term
Wimeoz = Li(mie, + mje, + miess)inequation (2). To explain this, we compare the averaged free energy density
in the skyrmion phase within triple-Q representation W (myipleq) = W (119, M4, q)and the averaged free energy
density in the conical phase W (M onical) = W (113, 11, q). Atagiven condition of the external field we have

) m?, for which the rescaled Curie temperature reduces from 1 to approximately

o. For MnSi, uniaxial compression always decreases the Curie temperature, since K < 0. (ii) uniaxial

aPPTOXimatel}’ ms = My and my = \/gmqla which yields Al’T’mCOZ = Wme02 (mtripleQ) — Wineo2 (Mconical) =
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Figure 3. Temperature-magnetic field phase diagram of MnSi when the system is suffering uniaxial compression, where the
compressive stress is applied in direction [0 0 1]” with (a) ¢ = —100 MPa, (b) o = —200 MPa, and indirection [1 1 0] with (c)
o = —100 MPa, (d) o = —200 MPa.

_ i Li(a; + ) qu + %I:l €33 qu. Note that for MnSi I; < 0, out-of-plane uniaxial compression yields negative &3

and positive €1, &, for which AWy, > 0 so the skyrmion phase becomes less stable. On the other hand, in-plane
uniaxial compression yields positive €33 and negative &1, &, for which A#e0 < 0 so the skyrmion phase

becomes more stable.
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5. Conclusion

In this paper, a thermodynamic model analyzing the coupled magnetoelastic fields in B20 helimagnets is
developed based on group theoretical analysis. The model provides a unified theoretical framework to explain
various aspects of skyrmion-related magnetoelastic experimental results, including but not limited to phase
diagram calculation and equilibrium property calculation under coupled temperature-magnetoelastic field. By
applying the model to bulk MnSi, we quantitatively reproduce the temperature-magnetic field phase diagram
when the material is free from any mechanical loads, the variation of all the elastic constants with magnetic field,
and the variation of temperature-magnetic field phase diagram when the material is suffering uniaxial
compression in two different directions. We also obtain the general condition at which the effect of
magnetoelastic coupling on the equilibrium properties can be neglected, and find that magnetoelastic coupling
pins the triple-Q wave vectors of the skyrmion lattice phase in the x-y plane. Through calculation, we fita whole
set of thermodynamic parameters for MnSi, which lays a reliable foundation for further analytical or numerical
analysis of magnetoelastic coupling phenomena.
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Appendix A. Simplification of the higher-order magnetoelastic free energy density
functional

The lowest-order coupling functionals between 5, (i, j = 1, 2, 3),m;, (I =1, 2, 3)and
myq (P> q =1, 2, 3)thatareinvariant under all the operations of point group T can be written as:

13
WmelT = Z L~Tif~T,': (Al)
i=1
where
f~T1 = 1My M3 + Exnhiy 3y + 33311y,
frz = 1My 3My + ExMy M3 + E33M3 1My,
f~T3 = g1M3, 1My + €My M3 + €331y 31y,
J;T4 = 1My 1M3 + ExM3 My + €331 311,
iTS = aummmy3 + €xnMymsy + E33mzmy,
fre = aimmsy + Exnpmpymyz + E33M3hy ),
fT7 = Ya3my 3Ms + Yi3Mp 11 + Y1231,
f~T8 = Y23y My + Y13y 313 + Y1231 1,
ng = 7Y23M3,1M3 + Y1321 + Y1211,31,
]?Tm = Y231 My + Y13M3 M3 + Y12t 31, (A2)
frn = Yaztmms3 + Y13ty + Y1232,
f~T12 = Yozt + Y3tz 3 + Yi2Ms iy g,

fris = Yozt 4 yistnaty, 4 Yiamams s,

11
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Strictly speaking, point group T allows 13 independent thermodynamic parameters to describe W1 7. Yet,
in practice we do not have enough experimental data to fit all these parameters. Hence, we change the symmetry
condition from point group T to point group O, which yields #,,.; defined in equations (3) and (5). As for Wy,
we neglect all terms that are relevant to &, &, €33, because Wy, describes higher-order effects of those
described by Wiye;. We find in calculation that these neglected terms relevant to &, &, €33 are related to the
variation of elastic constants such as G, Cs3. But their contribution is negligible compared with corresponding
terms in Wpye1.

Appendix B. Derivation of the rescaled free energy density functional incorporating
magnetoelastic interactions

The free energy density functional for cubic helimagnets incorporating magnetoelastic interactions can be
written as

3 2
oM
w(M, g;) = ZA(@—) +DM - (VXM)—B-M+ a(T — T))M? + SM* + Wan + Wel + Wme, (B1)
i=1 Xi
where
3 2
OM;
Wan = Z Ae( 1) + ACMi4 > (BZ)
i=1 ax,-
1
Wel = ECll(slz1 + €3, + 33) + Cu(enen + aiess + enen)
1
+ EC44(7122 + 7123 + 7%3% (B3)
Wme = Wme0 T Wmel + Wme2s (B4)
and

1
Wieo = W[KMZ&&' + LiMen + Mjen + Miess) + Ly(Mjar + Miey + Mjess)

S

+ Ly (MyMyy12 + MiMsy13 + Mo M3 y,3)], (B5)
L&
Wmel = _ZZ LOi fOi’ (B6)
s i=1
e
Wme2 = WZ L2if2i: (B7)

s i=1

for = an(MioMs — My 3 M) + ex(Mas My — My 1 Ms) + €35(Ms 1My — M, M),

for = anMsz 1My — My 1 M) + ex(MipMs — M3 o My) + €33(Ma s My — My 3Ms),

fos = aitMi(Ma3 — Ms,) + ennMy(Msy — My3) + e33M3(Myy — M),

fos = 123(Mi3Ms — Mip M) + yis(Ma i My — My s M) + v (Mo, My, — M3 M),

Jos = V23(M3 1Mz — My i Mp) + vyi3(Mi oMy — M3 o Mz) + y2(Ma 3 My — M, 3 M),

Jos = Y3 Mi(Mz3 — M) + yisMy(My,) — M 3) + yiaMs (Mo, — M), (B8)

f1 = Y2372 MiMs + o373 MM, + Y2713 My Ms,
fo = 7%3M12 + 7122M32 + ’Y123M22>
fos = M>(v35 + vy + 1) (B9)

Here, M = [M;, M,, M;]" denotes the magnetization vector, M denotes the saturation magnetization, and
M? = M + M; + Mj. The first term in equation (B1) describes the exchange energy density with stiffness A;
the second term is the Zeeman energy density with the applied magnetic field B; the third term is the DM
coupling with constant b which determines the period and direction of the periodic magnetization;

a(T — Ty)M? + 3M* are two Landau expansion terms. wy,, W, and wi, denote, respectively, the anisotropy
energy density with cubic magnetocrystalline anisotropic coefficient A. and exchange anisotropic coefficient
A, the elastic energy density given in equation (B3) and magnetoelastic free energy density given in

equations (B4)—(B9).

Equation (B1) provides an implicit model to study the effect of magnetoelastic interactions on the skyrmion
lattice phase, because the effect cannot be understood by simply examining the magnetoelastic thermodynamic
parameters, such as K, L, etc, butis also related to the magnetic thermodynamic parameters such as A and D.
In this case, it is more convenient to write the free energy density functional in a rescaled form given in
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equation (7), where
w(m) = gvV(M), (B10)
and
2 _
r= X b= =M 2 G D poaomy, M= (S, =TT gy
Ip B M, D 4A 3 G
The rescaled thermodynamic parameters (parameters with a wavy overline) are defined by
~e:ﬁigczﬁ)K:LZ)EIZLZ)EZZ%)EC*):LZ)
A I6] GM; GM; GM; GM;
= Ly; . = 2Loi . ~ B
Ly = GMSZ’ (1 =1, 2, 3)3 Loi = DMSZ’ (l =1, 2, ~--)6)> G = Fcll)
G =250 Cu=Locu (312)

The rescaled stress components are defined by 5; = —0;;.
GZ

References

[1] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Boni P 2009 Skyrmion lattice in a chiral magnet
Science 323 915-9
[2] YuXZ, OnoseY, Kanazawa N, Park ] H, Han ] H, Matsui Y, Nagaosa N and Tokura Y 2010 Real-space observation of a two-
dimensional skyrmion crystal Nature 465 9014
[3] YuXZ, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Near room-temperature formation of a
skyrmion crystal in thin-films of the helimagnet FeGe Nat. Mater. 10 1069
[4] DzyaloshinskiiI 1964 Theory of helicoidal structures in antiferromagnets: 1. Nonmetals Sov. Phys. JETP 19 960-71
[5] BakPand Jensen M H 1980 Theory of helical magnetic structures and phase transitions in MnSi and FeGe J. Phys. C: Solid State Phys.
131881
[6] Leonov A O, Monchesky T L, Romming N, Kubetzka A, Bogdanov A N and Wiesendanger R 2016 The properties of isolated chiral
skyrmions in thin magnetic films New J. Phys. 18 065003
[7] Zang], Mostovoy M, Han ] H and Nagaosa N 2011 Dynamics of skyrmion crystals in metallic thin films Phys. Rev. Lett. 107 136804
[8] SchulzT,Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M and Rosch A 2012 Emergent
electrodynamics of skyrmions in a chiral magnet Nat. Phys. 8 3014
[9] FertA, Cros V and Sampaio J 2013 Skyrmions on the track Nat. Nanotechnol. 8 152—6
[10] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Boni P 2009 Topological Hall effect in the A phase of MnSi Phys.
Rev. Lett. 102 186602
[11] DrozdovIK, Kulik LV, Zhuravlev A S, Kirpichev V E, Kukushkin I V, Schmult S and Dietsche W 2010 Extra spin-wave mode in
quantum Hall systems: beyond the skyrmion limit Phys. Rev. Lett. 104 136804
[12] DuHF, Ning W, Tian M Land Zhang Y H 2013 Field-driven evolution of chiral spin textures in a thin helimagnet nanodisk Phys. Rev. B
87 142-9
[13] SunL, CaoRX,Miao BF, FengZ, You B, Wu D, Zhang W, Hu A and Ding H F 2013 Creating an artificial two-dimensional skyrmion
crystal by nanopatterning Phys. Rev. Lett. 110 167201
[14] DuH F et al 2015 Edge-mediated skyrmion chain and its collective dynamics in a confined geometry Nat. Commun. 6 8504
[15] DuHF etal2015 Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires Nat.
Commun. 67637
[16] Zhang X C, Zhou Y and Ezawa M 2016 Magnetic bilayer-skyrmions without skyrmion Hall effect Nat. Commun. 7 10293
[17] KongLY and Zang] D 2013 Dynamics of an insulating skyrmion under a temperature gradient Phys. Rev. Lett. 111 067203
[18] Mochizuki M, Yu X Z, Seki S, Kanazawa N, Koshibae W, Zang J, Mostovoy M, Tokura Y and Nagaosa N 2014 Thermally driven ratchet
motion of a skyrmion microcrystal and topological magnon Hall effect Nat. Mater. 13 241-6
[19] Finazzi M, Savoini M, Khorsand A R, Tsukamoto A, Itoh A, Duo L, Kirilyuk A, Rasing T and Ezawa M 2013 Laser-induced magnetic
nanostructures with tunable topological properties Phys. Rev. Lett. 110 177205
[20] Iwasaki], Mochizuki M and Nagaosa N 2013 Universal current-velocity relation of skyrmion motion in chiral magnets Nat. Commun.
41463
[21] YuXZ, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Skyrmion flow near room
temperature in an ultralow current density Nat. Commun. 3 988
[22] Butenko A B, Leonov A A, Rossler U K and Bogdanov A N 2010 Stabilization of skyrmion textures by uniaxial distortions in
noncentrosymmetric cubic helimagnets Phys. Rev. B 82 3484-94
[23] HuangS X and Chien CL 2012 Extended skyrmion phase in epitaxial FeGe(111) thin films Phys. Rev. Lett. 108 267201
[24] KarhuE A, Rossler U K, Bogdanov A N, Kahwaji S, Kirby BJ, Fritzsche H, Robertson M D, Majkrzak C Fand Monchesky T L2012
Chiral modulations and reorientation effects in MnSi thin films Phys. Rev. B 85 094429
[25] NiiY, Nakajima T, Kikkawa A, Yamasaki Y, Ohishi K, Suzuki ], Taguchi Y, Arima T, Tokura Y and Iwasa Y 2015 Uniaxial stress control
of skyrmion phase Nat. Commun. 6 8539
[26] NiiY, Kikkawa A, Taguchi Y, Tokura Y and Iwasa Y 2014 Elastic stiffness of a skyrmion crystal Phys. Rev. Lett. 113 267203
[27] Petrova A E and Stishov S M 2015 Field evolution of the magnetic phase transition in the helical magnet MnSi inferred from ultrasound
studies Phys. Rev. B91 214402

13


https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nmat2916
https://doi.org/10.1038/nmat2916
https://doi.org/10.1038/nmat2916
https://doi.org/10.1088/0022-3719/13/31/002
https://doi.org/10.1088/1367-2630/18/6/065003
https://doi.org/10.1103/PhysRevLett.107.136804
https://doi.org/10.1038/nphys2231
https://doi.org/10.1038/nphys2231
https://doi.org/10.1038/nphys2231
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1103/PhysRevLett.102.186602
https://doi.org/10.1103/PhysRevLett.104.136804
https://doi.org/10.1103/PhysRevB.87.014401
https://doi.org/10.1103/PhysRevB.87.014401
https://doi.org/10.1103/PhysRevB.87.014401
https://doi.org/10.1103/PhysRevLett.110.167201
https://doi.org/10.1038/ncomms9504
https://doi.org/10.1038/ncomms8637
https://doi.org/10.1038/ncomms10293
https://doi.org/10.1103/PhysRevLett.111.067203
https://doi.org/10.1038/nmat3862
https://doi.org/10.1038/nmat3862
https://doi.org/10.1038/nmat3862
https://doi.org/10.1103/PhysRevLett.110.177205
https://doi.org/10.1038/ncomms2442
https://doi.org/10.1038/ncomms1990
https://doi.org/10.1103/PhysRevB.82.052403
https://doi.org/10.1103/PhysRevB.82.052403
https://doi.org/10.1103/PhysRevB.82.052403
https://doi.org/10.1103/PhysRevLett.108.267201
https://doi.org/10.1103/PhysRevB.85.094429
https://doi.org/10.1038/ncomms9539
https://doi.org/10.1103/PhysRevLett.113.267203
https://doi.org/10.1103/PhysRevB.91.214402

10P Publishing

NewJ. Phys. 19 (2017) 123002 Y Huand B Wang

[28] Franus-Muir E, Plumer M and Fawcett E 1984 Magnetostriction in the spin-density-wave phase of MnSi J. Phys. C: Solid State Phys.
171107

[29] HuY and Wang B 2016 Reversible ‘triple-Q’ elastic field structures in a chiral magnet 6 30200

[30] Shibata K efal 2015 Large anisotropic deformation of skyrmions in strained crystal Nat. Nanotechnol. 10 589-92

[31] Kittel C 1949 Physical theory of ferromagnetic domains Rev. Mod. Phys. 21 541

[32] Plumer M and Walker M 1982 Magnetoelastic effects in the spin-density wave phase of MnSi J. Phys. C: Solid State Phys. 15 7181

[33] Xiao-Xiao Zand Naoto N 2017 Ultrasonic elastic responses in a monopole lattice New J. Phys. 19 043012

[34] Callen E and Callen H B 1965 Magnetostriction, forced magnetostriction, and anomalous thermal expansion in ferromagnets Phys.
Rev. 139 A455

[35] Rossler UK, Bogdanov A N and Pfleiderer C 2006 Spontaneous skyrmion ground states in magnetic metals Nature 442 797-801

[36] Stolt M],LiZ A, Phillips B, Song D S, Mathur N, Dunin-Borkowski R E and Jin $ 2017 Selective chemical vapor deposition growth of
cubic FeGe nanowires that support stabilized magnetic skyrmions Nano Lett. 17 508—14

[37] HuY 2017 Wave-nature and intrinsic stability of emergent crystals in chiral magnets arXiv:1702.01059v2

[38] HuY 2016 Emergent elasticity of skyrmion crystal in chiral magnets arXiv:1608.04840v3

[39] Landau L D and Lifshitz E M 1980 Statistical Physics I (Oxford: Pergamon)

[40] Stishov S, Petrova A, Khasanov S, Panova G K, Shikov A, Lashley J, Wu D and Lograsso T 2008 Experimental study of the magnetic
phase transition in the MnSi itinerant helimagnet J. Exp. Theor. Phys. 106 888-96

[41] GrigorievS, Maleyev S, Okorokov A, Chetverikov Y O and Eckerlebe H 2006 Field-induced reorientation of the spin helix in MnSi near
Tc Phys. Rev. B73 224440

[42] Grigoriev S, Dyadkin V, Moskvin E, Lamago D, Wolf T, Eckerlebe H and Maleyev S 2009 Helical spin structure of Mn 1— y Fe y Si under
amagnetic field: small angle neutron diffraction study Phys. Rev. B79 144417

[43] WanX, HuY and Wang B 2017 Tunable surface configuration of skyrmion lattices in cubic helimagnets In production

[44] Meitzler A H, Berlincourt D, Welsh F S, Tiersten H F, Coquin G A and Warner AW 1988 IEEE Standard on Piezoelectricity (New York:
IEEE) (https://doi.org/10.1109 /TEEESTD.1988.79638)

14


https://doi.org/10.1088/0022-3719/17/6/018
https://doi.org/10.1038/srep30200
https://doi.org/10.1038/nnano.2015.113
https://doi.org/10.1038/nnano.2015.113
https://doi.org/10.1038/nnano.2015.113
https://doi.org/10.1103/RevModPhys.21.541
https://doi.org/10.1088/0022-3719/15/35/015
https://doi.org/10.1088/1367-2630/aa6322
https://doi.org/10.1103/PhysRev.139.A455
https://doi.org/10.1038/nature05056
https://doi.org/10.1038/nature05056
https://doi.org/10.1038/nature05056
https://doi.org/10.1021/acs.nanolett.6b04548
https://doi.org/10.1021/acs.nanolett.6b04548
https://doi.org/10.1021/acs.nanolett.6b04548
http://arxiv.org/abs/http://1702.01059v2
http://arxiv.org/abs/http://1608.04840
https://doi.org/10.1134/S1063776108050063
https://doi.org/10.1134/S1063776108050063
https://doi.org/10.1134/S1063776108050063
https://doi.org/10.1103/PhysRevB.73.224440
https://doi.org/10.1103/PhysRevB.79.144417
https://doi.org/10.1109/IEEESTD.1988.79638

	1. Introduction
	2. Formulation of the magnetoelastic free energy density functional
	3. Extended micromagnetic model incorporating magnetoelastic interaction
	3.1. Temperature-magnetic field phase diagram calculation for helimagnets suffering mechanical loads
	3.2. Equilibrium properties for helimagnets concerning magnetoelastic coupling

	4. Results for bulk MnSi
	4.1. Temperature-magnetic field phase diagram concerning magnetoelastic coupling when the material is free from any mechanical loads
	4.2. Variation of elastic constants with an external magnetic field
	4.3. Temperature-magnetic field phase diagram for MnSi suffering uniaxial compression

	5. Conclusion
	Acknowledgments
	Author contributions
	Competing financial interests
	Appendix A.
	Appendix B.
	References



