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In recent years, the composition-gradient electrode material has been verified to be
one of the most promising materials in lithium-ion battery. To investigate diffusion-
induced stresses (DIS) generated in a cylindrical composition-gradient electrode, the
finite deformation theory and the stress-induced diffusion hypothesis are adopted
to establish the constitutive equations. Compared with stress distributions in a
homogeneous electrode, the increasing forms of Young’s modulus E(R) and par-
tial molar volume Ω(R) from the electrode center to the surface along the radial
direction drastically increase the maximal magnitudes of hoop and axial stresses,
while both of the decreasing forms are able to make the stress fields smaller and
flatter. Also, it is found that the slope of -1 for E(R) with that of -0.5 for Ω(R)
is a preferable strategy to prevent the inhomogeneous electrode from cracking,
while for the sake of protecting the electrode from compression failure, the opti-
mal slope for inhomogeneous E(R) and the preferential one for Ω(R) are both
-0.5. The results provide a theoretical guidance for the design of composition-
gradient electrode materials. © 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4986542]

I. INTRODUCTION

As one of the most promising secondary cells, the lithium-ion battery has been the stored-
energy apparatus of many portable electronic devices and transportations due to its high energy
density, long cycle life, high open-circuit voltage, low self-discharge rate and its environmental
friendly merit. However, shortcomings of lithium-ion batteries, such as high cost and low energy
storage capacity, restrict its applications in hybrid electric vehicles and electric vehicles. There-
fore, lowering the manufacturing costs and enlarging the energy storage capacity become a strategic
goal of breaking LIBs’ bottleneck of application.1,2 Although based on the current research, as
anode materials, silicon has the highest lithium-ion intercalation capacity (4200mAh/g) which is ten
times of that in graphite materials commonly used in commerce.3,4 When a silicon anode absorbs
or desorbs lithium, it will generate about 300 to 400 percent of volume deformation in the elec-
trode. After the first charged-discharged cycling, large stresses leads the silicon electrode to crack
or degrade electrochemically.5–7 As cathode materials commonly used at present, LiCoO2 suffers
from its toxicity on the human body and high cost due to limited sources of cobalt ore.1,8 More-
over, the stresses produced by deformation of LiCoO2 cathodes may cause the electrode to fracture
when it is constrained.9 So searching for the substitution and improving the preparation technol-
ogy have become a hotspot in LIB anode materials. Among advanced materials substituted for
LiCoO2, composition-gradient materials shows better electrochemical performances, such as ther-
mostability and its excellent cycle performance.10,11 Even though the study of composition-gradient
materials just focuses on simple shapes like sphere. It is believed that there will be different shapes
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of composition-gradient electrodes synthesized as technologies of synthesis process are improved.
Hence, it is of major importance for us to study the electrochemical and mechanical properties
of composition-gradient electrodes in different shapes. With the analysis of DIS affected by these
properties, it provides a theoretical strategy to guide the design of composition-gradient electrode
materials.

The initial research of diffusion-induced stresses (DIS) in silicon wafer were started by Prussin.12

From then on, the study of DIS in various compositional and structural solids attracts many attention
of researchers. Li13 studied DISs generated in solid ferrite doped with excess nitrogen in differ-
ent simple shapes such as thin plates, cylinders and spheres. Recently Yang et al.14 analyzed the
stresses caused by insertion deformation within a spherical electrode particle in potentiostatic and
galvanostatic conditions. Song et al.15 and Li et al.16 computed the analytical expressions of DISs
in cylindrical electrode, while Zhang et al.17 introduced Young’s modulus ratio and axial lithiation
expansion coefficient ratio to isotropic case to investigate stresses generated in transversely isotropic
cylindrical electrodes of lithium-ion batteries. Yang and Li18 modelled a MEMS microcantilever
sensor bending induced by dopant diffusion and evaluated DISs caused in beam structure. Zhang
et al.19 provided the formulas of stresses and compared solutions of reaction induced stress with that
of diffusion induced stress during reversible electrochemical reaction in cylindrical Li-ion battery
electrodes.

The studies above investigated DISs based on the linear elastic theory, neglecting nonlinear
influence of large deformation. Besides, the literatures were established on the basis of the Fick’s
law, ignoring the interaction between diffusion and stresses. There are many achievements in these
aspects. Hao and Fang20,21 studied DISs of core-shell electrode by introducing a chemical potential
coupling for diffusion and stresses. However, they still didn’t consider the effect of large defor-
mation. A large plastic deformation theory was formulated by Zhao and his co-workers22 based
on nonequilibrium thermodynamics. And they mainly analyzed the effect of plastic yielding on
the magnitude of stress in the amorphous silicon electrode. Cui et al.23 investigated the phase
interface based on a model that accounts for the finite deformation kinematics and stress-diffusion
interaction.

In this paper, a general framework to consider the mechanical behavior of a cylindrical
composition-gradient electrode is formulated. Our theory incorporates the interaction of diffu-
sion and stress as well as the finite deformation. Then we discussed a situation where the
composition-gradient electrode is constrained in the axial direction. Furthermore, comparing the
results of composition-gradient and homogeneous electrodes, we try to determine preferable
inhomogeneous factors mechanically which may guide the design of composition-gradient elec-
trodes.

There are two kind of new-style composition-gradient material synthesized as spherical elec-
trode particle, one of which is LiMn1. 87Ni0. 13O4 and the other is Li1. 2(Mn0. 62Ni0. 38)0. 8O2.24,25

The former has a concentration-gradient shell region where the concentration of Ni increases
and that of Mn decreases from the core to its surface while the latter has an opposite trend in
the concentration-gradient shell region. Both of them have excellent characteristics in the electro-
chemical performance. The thermostable composition-gradient electrode LiMn1. 87Ni0. 13O4 shows
its superior cyclability with a capacity retention of 90. 2% after 200 cycles at 55°C, while the
LiMn2O4 in the same test conditions exhibited only 57. 8%. And the novel composition-gradient
electrode Li1. 2(Mn0. 62Ni0. 38)0. 8O2 retained 97% of its capacity after 100 cycles relative to the
first cycle at a rate of C/2. However, there is few of literatures focusing on the mechanical and
electrochemical properties about these new material. So we try to adopt the mechanical and electro-
chemical parameters of LiMn2O4 to study the mechanical difference between composition-gradient
electrodes and homogeneous electrodes indirectly. Namely, it is assumed that the mechanical
and electrochemical properties change continuously from electrode center to its surface. Also,
the effect of plasticity in a composition-gradient electrode is ignored since there are no obvious
plastic deformation in these lithium nickel manganese oxide material.24,26 Besides, it is assumed
that the effect of concentration-dependence of Young’s modulus is not discussed in our mod-
els.27 Because it may play a small role in stresses generated in concentration-gradient electrode
materials.
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II. BASIC THEORY

A. Mechanical equilibrium

When lithium-ions diffuse into or out of the electrode, large volume deformation may be gener-
ated in the electrode. There are two descriptions which are Lagrangian form and Eulerian form. The
former is based on the initial configuration, while the latter is based on the current configuration. In
the cylindrical coordinate, a point of the electrode at (R, Θ, Z) in the Lagrangian description moves
to (r, θ, z) in the Eulerian description after a period of time t. So the total deformation gradient tensor
in the cylindrical coordinate is defined as

F= 〈F11, F22, F33〉=

〈
1 +

∂u
∂R

, 1 +
u
R

, 1 +
∂w

∂Z

〉
, (1)

where u is the radial displacement, and w is the axial displacement. The total deformation F can be
decomposed into elastic part Fe and inelastic part Fi without consideration of the plasticity of the
composition-gradient electrode.

F=FeFi, (2)

An isotropic form of inelastic deformation gradient tensor is adopted as follow.28

Fi =
(
Λ

i
) 1

3 I, (3)

where I is the unit tensor and Λi is the inelastic volume ratio since the inelastic deformation depends
on the volume change caused by lithium-ions diffusion. So it is dominated by the lithium-ion con-
centration C based on the Lagrangian description. With the diffusion partial molar volume Ω, the
inelastic volume ratio is expressed as

Λ
i = 1 +ΩC, (4)

And the components of the elastic deformation gradient tensor Fe is given as

Fe =F
(
Fi

)−1
=

〈(
1 +

∂u
∂R

) (
Λ

i
)− 1

3 ,
(
1 +

u
R

) (
Λ

i
)− 1

3 ,

(
1 +

∂w

∂Z

) (
Λ

i
)− 1

3

〉
, (5)

According to the assumption above, the material properties change along the radial direction,
while it remain the same along the azimuthal and the axial direction in a cylindrical composition-
gradient electrode. Therefore, the partial molar volume Ω, the elasticity modulus E and the diffusion
coefficient D are functions of radial coordinate in the Lagrangian description. It follows from Eq. (2)
that the total Green-Lagrange strain tensor E, the elastic Green-Lagrange strain tensor Ee and the
inelastic Green-Lagrange strain tensor Ei can be written as

E=
1
2

(
FT F − I

)
, (6)

Ee =
1
2

((
Fe)T Fe − I

)
, (7)

Ei =
1
2

((
Fi

)T
Fi − I

)
, (8)

where I is the second order unit matrix.
Here, we use an elastic strain energy density in the Lagrangian description as follow23,29

W =Λi E
2(1 + υ)

{
υ

1 − 2υ

[
tr

(
Ee

)]2
+ tr

(
EeEe

)}
, (9)

E and υ are the Young’s modulus and Poisson’s ratio of the composition-gradient electrode, respec-
tively. Moreover, the non-zero components of the first Piola-Kirchhoff stress σ0 can be deter-
mined by

σ0 =
∂W
∂F
=
∂W
∂Ee

∂Ee

∂Fe

∂Fe

∂F
, (10)
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Substituting Eqs. (4) and (9) into Eq. (10), we can obtain

σ0 =Λi E
2(1 + υ)

[
2υ

1 − 2υ
tr

(
Ee

)
+ 2Ee

]
Fe

Fi
, (11)

Combining Eqs. (1), (3), (4), (5) and (7) with Eq. (11) leads to

σ
0
R = (1 +ΩC)

E
(1 + υ) (1 − 2υ)

[
(1 − υ) Ee

R + v
(
Ee
Θ

+ Ee
Z

)] 2Ee
R + 1

1 +
∂u
∂R

, (12)

σ
0
Θ
= (1 +ΩC)

E
(1 + υ) (1 − 2υ)

[
(1 − υ) Ee

Θ
+ v

(
Ee

R + Ee
Z

)] 2Ee
Θ

+ 1

1 +
u
R

, (13)

σ
0
Z = (1 +ΩC)

E
(1 + υ) (1 − 2υ)

[
(1 − υ) Ee

Z + v
(
Ee
Θ

+ Ee
R

)] 2Ee
Z + 1

1 +
∂w

∂Z

, (14)

where σ0
R, σ0

Θ
and σ0

Z are components of the first Piola-Kirchhoff stress σ0. Ee
R, Ee

Θ
and Ee

Z are
components of the elastic Green-Lagrange strain tensor Ee given as

Ee
R =

1
2



(
1 +

∂u
∂R

)2

(1 +ΩC)
2
3

− 1



, (15)

Ee
Θ
=

1
2



(
1 +

u
R

)2

(1 +ΩC)
2
3

− 1



, (16)

Ee
Z =

1
2



(
1 +

∂w

∂Z

)2

(1 +ΩC)
2
3

− 1



, (17)

Here, the quasi-static mechanical equilibrium is assumed due to the much slower velocity of
atomic diffusion over that of elastic deformation.17 Then, the equations of mechanical equilibrium
in the cylindrical coordinate are reduced as

∂σ0
R

∂R
+
σ0

R − σ
0
θ

R
= 0, (18)

∂σ0
Z

∂Z
= 0. (19)

The mechanical equilibrium behavior is governed by Eqs. (12)∼(19).

B. Diffusion equation

The diffusion kinetic equation in the Lagrangian description is expressed as follow based on the
law of mass conservation30

∂C
∂t

+
∂(RJ)
R∂R

= 0, (20)

where C is the concentration of lithium-ions based on the Lagrangian description. J is defined as
the radial diffusion flux of the solute in the Lagrangian description. And the true concentration of
lithium-ions c can be determined by C as follow

C = c · det (F)= cFRFΘFZ, (21)

where FR, FΘ and FZ are components of the total deformation gradient tensor F.
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The true diffusion flux j is a function of the chemical potential µ.

j =−
cD

RgT
∂µ(r, c)
∂r

, (22)

where D is the diffusivity of Lithium-ions in the electrode, Rg is the universal gas constant and T is
the temperature. Combining Eqs. (21) with (22), the diffusion flux J can be deduced as

J =−
CD
RgT

1

F2
R

∂µ (R, C)
∂R

, (23)

where µ(R, C) is expressed by the Lagrangian coordinates.
Here, the form of the chemical potential is adopted as22

µ (r, c)= µ0 + RgTlog (γc) −Ωσm, (24)

where µ(r, c) is the chemical potential based on the Euler description, µ0 is a reference value, γ is the
activity coefficient and σm is the hydrostatic stress. We let γ equal to 1.

From Eqs. (21)∼(23), we can obtain

J = jFΘFZ , (25)

Substituting Eq. (24) into Eq. (22) and combining Eq. (25), the diffusion flux J is formulated as

J =−D
FΘFZ

FR

∂

∂R

(
C

FRFΘFZ

)
+

1
RgT

CD

F2
R

(
∂Ω

∂R
σm +

∂σm

∂R
Ω

)
, (26)

where the diffusion partial molar volumeΩ is a function of the radial coordinate R in the Lagrangian
description. And the hydrostatic stress σm is expressed as

σm =
1
3

(σR + σΘ + σZ ) , (27)

while the first Piola-Kirchhoff stress σ0 and the Cauchy stress σ have a relationship as follow

σ0 = det (F) fσ, (28)

in which f =
∂X
∂x
= I −

∂u
∂x

.

Therefore, the Cauchy stress σ can be denoted by the first Piola-Kirchhoff stress σ0 as

σ = 〈σR,σΘ,σZ〉= 〈
1(

1 +
u
R

) (
1 +

∂w

∂Z

) σ0
R,

1(
1 +

∂u
∂R

) (
1 +

∂w

∂Z

) σ0
Θ

,
1(

1 +
∂u
∂R

) (
1 +

u
R

) σ0
Z 〉. (29)

The diffusion kinetic behavior is dominated by Eqs. (20), (26) and (29).

C. Boundary and initial conditions

We assume that the radial surface of the cylinder is stress-free and the cylindrical center has no
displacement, that is

σ
0
R (R0, t)= 0, (30)

u (0, t)= 0, (31)

Besides, potentiostatic operation is set at the surface of the cylinder resulting in a constant
concentration Cmax there, that is

C(R0, t)=Cmax, (32)

while the boundary conditions substituting for Eq. (32) are given by

J(R0, t) =
in
F

, (33)

corresponding to the galvanostatic discharging process. Meanwhile, in is the applied current density
and F is the Faraday’s constant.
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At the center of the cylinder, the diffusion flux J is given as

J(0, t)= 0, (34)

Physical constraints are imposed on the top and bottom faces of the cylinder in order to constrain
the deformation of the ends in the axial direction. We hypothesize that such constraints may not
prevent the ends of the cylinder from moving in the lateral direction, that is w=0 on the faces of the
ends.

At last, we adopt Li-free, stress-free and displacement-free initial conditions in the cylinder,
that is

C(R, 0)= 0, (35)

u(R, 0)= 0, (36)

III. RESULTS AND DISCUSSION

Since there is bare possibility of getting the analytical solution of equations above, we solve
numerically the system of equations described in Section II by using the finite element method
(COMSOL Multiphysics). Also, it is difficult to obtain the mechanical and electrochemical properties
of the composition-gradient electrodes LiMn1. 87Ni0. 13O4 or Li1. 2(Mn0. 62Ni0. 38)0. 8O2. The exact
functions of E(R) and Ω(R) have not been fully understood and studied. Following the previous
assumption,28 these functions are linear with several different slopes of radial coordinate R. Once
the properties are constant along the radial coordinate, the inhomogeneous theory in Section II
reduces to the theory in a homogeneous cylindrical particle of LiMn2O4. The main purpose for
this paper is to study different gradient effect of properties on DISs in a cylindrical composition-
gradient electrode during potentiostatic charging and galvanostatic discharging. To achieve this goal,
we divide this section into two parts. Following the previous method,32 in the first part, we discuss
DISs initially from two specific conditions. In the first condition, inhomogeneous properties increase
respectively from the center to the surface with the slope of 1, while the second is the decreasing
form with the slope of -1. And we study the gradient effect of properties with different slopes on
DISs at two specific positions where the maximal DISs happen in the second part. The material
properties of LiMn2O4 are listed in Table I,28 which will be also used as reference values in a
cylindrical composition-gradient electrode. And the Faraday’s constant is 96485.3365 A s mol-1.31

Here, it is defined that the increasing form means properties increase from the electrode center to
the surface, while the decreasing form means the opposite situation. And the normalized time τ is
represented as

τ=Dt/R2
0, where t is the real time. (37)

Here, the state of charging (SOC), is used to represent the percentage of full capacity and to
evaluate the charging process of the cylinder. Thus, SOC is given as33

TABLE I. Material properties and operating parameters of LiMn2O4.28

Parameter Symbol Value

Young’s modulus E0 10 GPa
Poisson’s ratio υ 0. 3
Surface lithium-ion concentration Cmax 2. 29×104 mol m-3

Diffusion partial molar volume Ω0 3. 497×10-6 m3 mol-1

Gas constant Rg 8. 31 J mol-1 K -1

Diffusion coefficient D0 7. 08×10-15 m2 s-1

Temperature T 273 K
Faraday’s constant F 96485.3365 A s mol-131

Current density in 2.0 A m-231

Cylinder radius R0 2×10-7 m
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SOC =

∫ R0

0
CR2dR∫ R0

0
Csteady−stateR2dR

, (38)

It is assumed that E(R) and Ω(R) are simple linear functions of R given as follow

E(R)= a1

(
R −

R0

2

)
+ E0,Ω (R)= a2

(
R −

R0

2

)
+Ω0 (39)

where a1 and a2 are respectively slopes of properties. E0 and Ω0 are properties of homogeneous
LiMn2O4 material. Namely, the properties at 1/2 radius R0 are defined the same as those of LiMn2O4

material. Then k1 and k2 are normalized as

k1 =
R0

E0
a1, k2 =

R0

Ω0
a2. (40)

where k1 and k2 are respectively dimensionless slopes of the Young’s modulus and partial molar
volume.

A. Two specific conditions

The results of a homogeneous cylindrical particle are plotted by solid lines, while the results of
an inhomogeneous cylindrical particle are plotted by dashed lines. And If not state particularly, all
results in this part follow this rule.

According to the previous research,28 inhomogeneous diffusion coefficient D(R) only influences
the velocity of diffusion. Nevertheless, there is little difference on stresses between homogeneous
and inhomogeneous D(R) materials. Thus, the effect of inhomogeneous D(R) on Li-ions diffusion
is not discussed here. It is noted that E on illustrations below means the Young’s modulus value of
homogeneous LiMn2O4 materials.

Fig. 1 and Fig. 2 illustrate the stress fields for homogeneous and inhomogeneous elastic modulus
E(R) at different normalized time. Figures of the lithium-ion concentration distributions are not

FIG. 1. Illustrations of radial stress (a), hoop stress (b) and axial stress (c) of homogeneous and inhomogeneous elastic
modulus E(R) at different normalized time.
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FIG. 2. Illustrations of the stress fields of homogeneous and inhomogeneous elastic modulus E(R) at different normalized
time.

exhibited here since inhomogeneous E(R) has little influence on lithium-ion distribution comparing
with that in a homogeneous electrode. Comparing Fig. 1(b) with Fig. 2(b), at the electrode surface,
we know that positive gradient E(R) drastically increases the value of hoop stresses, while negative
gradient E(R) can effectively decrease the magnitudes of hoop stresses. In Fig. 1(c) and Fig. 2(c),
at the electrode center, inhomogeneous E(R) hardly affects the axial stress values in the beginning
and make a great difference later that positive gradient E(R) reduces the magnitudes of axial stresses
and negative gradient E(R) leads to the opposite result. By contrast, at the electrode surface, negative
gradient E(R) sharply decreases the magnitudes of axial stresses, while it leads to the opposite result
in an inhomogeneous electrode of positive gradient E(R). And it should be noted that the stress
distributions, especially the axial stress, change unevenly along the coordinate R at the steady state,
while the stress distributions are flat in a homogeneous electrode.

Fig. 3 and Fig. 4 illustrate the concentration and stress fields of homogeneous and two specific
inhomogeneous partial molar volumeΩ(R) at different normalized time. Comparing dashed lines with
solid lines in Fig. 3(a) and Fig. 4(a), inhomogeneous Ω(R) nearly has no influence on concentration
distributions at the beginning. As the charging process is going ahead, the positive gradient Ω(R)
accelerates the diffusion process later, while negative gradient Ω(R) shows the opposite result.

At the electrode center, we can find in Fig. 3(b, c, d) that positive gradient Ω(R) obviously
increases the values of tensile stresses and greatly increases the magnitudes of hoop stresses and
axial stresses at the electrode surface. Also, at the electrode surface, the maximal magnitudes of the
hoop stress and the axial stress in a positive gradientΩ(R) electrode are respectively the same as those
in a positive gradient E(R) electrode at the slope of 1. So it is easy for us to wonder if the maximal stress
values for inhomogeneousΩ(R) are the same respectively at different slopes comparing with that for
inhomogeneous E(R). This issue will be discussed in Section III B. In Fig. 4(b, c, d), at the electrode
center, we know that negative gradientΩ(R) greatly increases the magnitudes of compressive stresses
at the steady state but effectively decreases the values of tensile stresses, while at the electrode surface,
negative gradient Ω(R) effectively decreases the values of compressive hoop and axial stresses but
the hoop stress turns to tensile at the steady state. The results are quite different from that in plane
stain method.34 Although stress distributions become flatter than that in a homogeneous electrode,
tensile hoop stresses in the surface may lead to mechanical fracture of the negative gradient Ω(R)
electrode.
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FIG. 3. Illustrations of lithium-ion concentration (a), radial stress (b), hoop stress (c) and axial stress (d) of homogeneous and
inhomogeneous partial molar volume Ω(R) at different normalized time.

FIG. 4. Illustrations of the concentration distribution and stress fields of homogeneous and inhomogeneous partial molar
volume Ω(R) at different normalized time.

B. Two inhomogeneous factors in different slopes k

From Section III A, we have already known that the maximal compressive stresses happen at
the beginning of diffusion at the electrode surface during potentiostatic charging while the maximal
tensile stresses are generated at the center. Secondly, it is noticed that at the steady state, stress fields in
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an inhomogeneous electrode, especially for inhomogeneous E(R) andΩ(R), are significantly different
from that in a homogeneous electrode. To further study the effect of inhomogeneous E(R) and Ω(R)
on stress distributions at the positions mentioned above, we choice two critical positions, the center
and the surface of electrodes where the maximal stresses are possibly generated. And our purpose is
to find and evaluate the optimal slope of E(R) and Ω(R) to reduce the maximal stresses.

In Section III B, we also calculate DISs in the heterogeneous E(R) and Ω(R) electrode during
galvanostatic discharging. Firstly, the heterogeneous E(R) and Ω(R) models with different slopes k
are charged to SOC=90% in a constant voltage. Next, we will make them respectively discharged in
a constant current density in. The results of the center and surface are discussed in this section. And
it should be noted that the positive slope k means inhomogeneous factors increase from the electrode
center to its surface, while the negative k represents the opposite situation.

The result shows that radial stresses are equal to hoop stresses at electrode center at the same
normalized time. Moreover, radial stresses are defined as zero at the cylindrical surface in the boundary
condition. Thus, they are no need discussed here.

The explanation is made to describe illustrations in Section III B before discussion. Panels
(a, b) represent the results at the center of the electrode, while panels (c, d) represent that at the
surface. Besides, illustrations (a, c) correspond to the result in potentiostatic charging condition,
while illustrations (b, d) correspond to that in galvanostatic discharging condition. If there is no
special statement, all graphs in Section III B follow this regulation.

Fig. 5 illustrates hoop stresses at different slopes of inhomogeneous E(R) at the center and
surface of an electrode. From Fig. 5(a, b), we can find that the maximal positive hoop stress reaches
as high as 0.008∼0.009 during constant-voltage charging process. It is much larger than that in
Fig. 5(b) during the discharging process. So, there is a proper way for us to discuss the effect of
different slopes of E(R) on hoop stresses in Fig. 5(a) rather than Fig. 5(b). And it can be concluded
that inhomogeneous E(R) is able to decrease the maximal value of tensile hoop stress. We also infer
from Fig. 5(a) that the larger absolute value of the slope k, the smaller maximum tensile hoop stress
it is. In addition, it is found in Fig. 5(b) that as the galvanostatic discharging process becomes steady,
only the hoop stress of homogeneous material is convergent to zero while the results of increasing
forms of E(R) approach tension and those of decreasing forms of E(R) approach compressive stress.

FIG. 5. Illustrations of radial or hoop stress (a, b) and hoop stress (c, d) of the inhomogeneous elastic modulus E(R) in different
slopes k.
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On the contrary in Fig. 5(d), the hoop stress of a decreasing form of E(R) is convergent to a
tensile value, while that of an increasing form approaches a compressive value at the surface of the
electrode at the discharging steady state. It is obviously that decreasing forms of E(R) are able to
decrease the hoop stress markedly at the electrode’s surface upon the initial charging in Fig. 5(c).

As we all know that high tensile stresses easily generate cavities or void space,22,35 resulting in a
degradation of electrodes and the decline of their cycling performance. To prevent the risk, the slope
of -1 is probably the optimal slope for an inhomogeneous E(R) electrode because it decreases the
maximal tensile stress at the center and also tremendously reduces the maximal stress at the surface.

The variation of axial stresses with the normalized time τ are displayed in Fig. 6. It is obvious
that the electrode is mainly under pressure in the axial direction. Unlike Fig. 5, the magnitude of
axial stresses among graphs in Fig. 6 are in the same order. Therefore, we need to analyze and
evaluate the axial stresses in all four graphs. It is found that increasing forms of E(R) can decrease the
maximal axial stress at the electrode center in Fig. 6(a), while they increase the result at the surface
of the electrode in Fig. 6(c). Decreasing forms of E(R) show the opposite results. By contrast with
maximum stresses in Fig. 6, it inspires us that the slope of -0.5 is probably the optimal slope for
an inhomogeneous E(R) electrode because the maximal magnitude of axial stresses at the center is
nearly equal to that at the surface.

It illustrates hoop stresses at different slopes of inhomogeneous Ω(R) at the center and surface
of an electrode in Fig. 7. We can find that increasing forms of Ω(R) are able to increase the maximal
tensile hoop stress at the center in Fig. 7(a), while decreasing forms ofΩ(R) increase the tensile hoop
stress at the electrode surface at the charging steady state in Fig. 7(c). Thus, on the analysis of the
tensile stress in Fig. 7, the slope of -0.5 is more desirable than others for inhomogeneous Ω(R) due
to the comparatively low tensile stress in the electrode. 0.0072 is the maximal magnitude of tensile
normalized hoop stresses for the decreasing form ofΩ(R) with the slope of -0.5 which is an advisable
design to prevent an electrode from fracture and degradation.

Fig. 8 illustrates axial stresses at different slopes of inhomogeneous Ω(R) at the center and
surface of an electrode. Similarly, increasing forms of Ω(R) decrease the maximal axial stress
at the electrode center in Fig. 8(a), while they increase that at the surface of the electrode in
Fig. 8(c). And decreasing forms of Ω(R) show the opposite result. Similar to Fig. 6, Fig. 8 shows

FIG. 6. Illustrations of axial stress during potentiostatic charging(a, c) and that during galvanostatic discharging(b, d) of the
inhomogeneous elastic modulus E(R) in different slopes k.
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FIG. 7. Illustrations of radial or hoop stress (a, b) and hoop stress (c, d) of the inhomogeneous partial molar volume Ω(R) in
different slopes k.

FIG. 8. Illustrations of axial stress during potentiostatic charging(a, c) and that during galvanostatic discharging(b, d) of the
inhomogeneous partial molar volume Ω(R) in different slopes k.

that the choice of advisable Ω(R) slopes depends on the maximal axial stresses at the both positions
of the electrode. For this reason, the slope of -0.5 is more preferable than others for inhomogeneous
Ω(R) since it makes the same maximal axial stresses at both positions in charging and discharging
conditions.
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IV. CONCLUSION

We have formulated a theory in a cylindrical composition-gradient electrode constrained axi-
ally by considering the interaction effects of diffusion and stress in this paper. Combining with
the diffusion theory and the finite deformation theory, the constitutive equations are established to
analyze an electrode of being charged under potentiostatic operation and discharged under galvanos-
tatic operation. Two inhomogeneous factors, Young’s modulus E(R) and partial molar volume Ω(R)
are respectively investigated. The increasing forms of E(R) and Ω(R) from the electrode center to
its surface enlarge the maximum stresses comparing with that in a homogeneous electrode, while
certain of decreasing forms of them are able to decrease the maximum stresses effectively and
make stress distributions flatter. And we can find that the center and the surface of an electrode
are two critical positions where the maximum stress are generated. Besides, we can conclude from
Section III B that the slope of -1 for E(R) with that of -0.5 forΩ(R) is a preferable strategy to prevent
an inhomogeneous electrode from fracture and degradation, while for the sake of protecting the elec-
trode from compression failure, the optimal slope for inhomogeneous E(R) and the preferential one
for Ω(R) are both -0.5. So the choice of the slope depends on the function and practical application
of an electrode. These theoretical results need to be tested experimentally in future. And we hope
that they provide some guidance on the design of composition-gradient electrodes.
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