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Reversible “triple-Q" elastic field
structures in a chiral magnet

Yangfan Hu & Biao Wang

The analytical solution of the periodic elastic fields in chiral magnets caused by presence of periodically
. distributed eigenstrains is obtained. For the skyrmion phase, both the periodic displacement field
Accepted: 29June 2016 :  and the stress field are composed of three “triple-Q" structures with different wave numbers. The
Published: 26 July 2016 : periodic displacement field, obtained by combining the three “triple-Q"” displacement structures, is
. found to have the same lattice vectors with the magnetic skyrmion lattice. We find that for increasing
external magnetic field, one type of “triple-Q” displacement structure and stress structure undergo a
“configurational reversal”, where the initial and the final field configuration share similar pattern but
with opposite direction of all the field vectors. The solution obtained is of fundamental significance for
understanding the emergent mechanical properties of skyrmions in chiral magnets.

Received: 21 April 2016

Chiral magnets have attracted interest over the last few years due to experimental observation of a new chiral mod-
ulated magnetic state, commonly referred to as skyrmion lattice, first in MnSi', and then in Fe,;Co, sSi* and FeGe>.
Skyrmion lattice in chiral magnets can be described as chiral spin structures with a whirling configuration, which
can be described mathematically by a combination of three plane-wave functions in space (hence referred to as a
“triple-Q” structure). These magnetic skyrmions are stabilized by the antisymmetric Dzyaloshinskii-Moriya (DM)
interactions*®, and are well known for their emergent electromagnetic properties®” and topological Hall effect’.

Due to the magnetoelastic coupling in chiral magnets, it is known that application of mechanical loads or
misfit strains can stabilize the skyrmion lattice>'°'2. Moreover, it is found in FeGe that elastic deformation and the
deformation of the skyrmion lattice are strongly coupled, which leads to large emergent deformation of skyrmion
lattice when elastic stress is applied"*!*. To understand such an exotic phenomenon, we first have to discuss the
internal elastic field induced by presence of magnetic skyrmions. This induced elastic field should be composed
of a homogeneous part, which has been solved in our previous work'®, and a periodic part, which is to be dis-
cussed in the present work. In the early studies of MnSi, it has already been confirmed that periodic distribution
of elastic fields coexists with periodic magnetization in the spin-density-wave phases (e.g., helical and conical
phase)'6. Besides, it is shown theoretically that the magnitude of periodic strain waves should be considered as
independent variables when formulating the free energy of the system, since it results in new terms in the free
energy functional’. Existence of the periodic elastic field represents realization of the same mathematical struc-
ture as magnetic skyrmions in a different physical field due to multiphysics coupling. Moreover, regarding the
nonlinear nature of the magnetoelastic coupling in chiral magnets, additional periodic structures with changed
wave vectors may occur in the solution of elastic field. Induced by the magnetic skyrmions, these periodic elastic
structures should always accompany the magnetic structures. Hence the solution of the periodic elastic fields may
characterize the elastic property of magnetic skyrmions in some way.

The elasticity problem induced by presence of any kind of phase transition strains is called an eigenstrain
problem®® in micromechanics. In this case, the eigenstrains refer to the strains that occur due to a change of
magnetization during a phase transition from the paramagnetic phase to the skyrmion phase. Since in the skyr-
mion phase, the magnetization is a periodic vector function in space, we encounter an eigenstrain problem with
periodic eigenstrains. The analytical method for solving the elastic fields induced by periodic distribution of
eigenstrains was developed long ago'®!?, mainly due to its mathematical significance for constructing the Fourier
transform-based analytical solution method. Yet, the eigenstrain problem with periodic eigenstrains composed
of plane waves with several discrete wave vectors was not treated. Before the discovery of magnetic skyrmions in
chiral magnets, it’s not clear such a solution is of any physical significance.

In this paper, we formulate the eigenstrain problem from an extended micromagnetic model for chiral mag-
nets developed upon group theoretical analysis and the Ginzburg-Landau theory'® and then obtain the analytical
solution of the problem for two different chiral magnetic phases: the conical phase and the skyrmion phase. We
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find that appearance of the triple-Q skyrmion lattices is accompanied by formation of three types of triple-Q
structures in the displacement field, described by u’!(r) (with the same wave number g as the magnetic skyrmi-
ons), u¥¥(r) (wave number 24), and u%3(r) (wave number 3 q), as well as formation of three types of triple-Q
structures in the stress field, described by O'ijSl (wave number g), Gijsz (wave number 2¢), and aij” (wave number
~/3q). By using the values of equilibrium magnetization obtained through free energy minimization at given
temperature and magnetic field'®, we plot the field configuration of us!(r), u%?(r), u%3(r) and o?l, 035,2, a3§3 and
discuss their variation with temperature and magnetic field. We find that as the applied magnetic field increases,
the field configuration of u’'(r) and o5 gradually undergoes a “configurational reversal” process, where the field
configuration of the initial state and the final state remains similar, but the direction of every vector in the field is
reversed. The phenomenon provides a possibility of developing novel information storage devises and microwave
applications. The analytical solution of the periodic elastic fields also lay a foundation for discussion of the emer-
gent elastic behavior of magnetic skyrmions®®, which is to be discussed in a subsequent work of ours.

Formulation of the eigenstrain problem in chiral magnets
For chiral magnetics with cubic symmetry, the Helmholtz free energy density contains two terms related to the
elastic strains'®, which are the elastic energy density

1 2 2 2
We = Ecu(gu + &5 + €33) + Cpplenen + €11833 + €39833)
1 2 2 2
+ —Cuy + + V3)s
5 Y2 T V13 T Va3 )

and the magnetoelastic energy density
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where C,,, Cy,, and C,, are the elastic stiffness at constant magnetization, Ej (i, j=1, 2, 3) are the elastic strains,
V12 = 2615, 713 = 2613, and 7,3 = 2¢,; are the engineering shear strains, M, denotes the saturation magneti-
zation, M* = M} + M; + M} and
for = enM,,My — M, sM,) + 5, (My ;M) — My \M3) + e33(M3, M, — M;,M,),
foz en(My M, — My M) + &5 (M ;M5 — M3 ,M)) + e53(M, ;M — M, ;M)),
fo3 = enM(My5 — My,) + epMy(Ms, — My 5) + e53M3(M,, — M, ),
fo4 = 723(M1,3M3 - MI,ZMZ) + 713(M2,1M1 - M2,3M3) + 712(M3,2M2 - M3,1M1)»
fo5 Yos(M3 My — M, M) + 713(M1,2M1 - M3,2M3) + 71(My M, — M1,3M1)>
fos Yo (M5 5 — My ) + 7isMy(My ) — My 5) + 7,M5(My, — My ). 3)
In eq. (2), higher order terms of magnetoelastic coupling (e.g., w,,,,, in ref. 15) are omitted for convenience of

deduction. According to our previous work'?, such a simplification leads to an estimated error in the order of
0.01% when calculating the elastic strains €5, ¢,5and ¢, in MnSi.

For a bulk material free from any mechanical loads, the stresses are obtained from o= —a(we(f) :vwm”) wheni = j,
and o= W wheni = j. After manipulation we get ’
7
o = Cyley — &) + Cpplen — €55 + €33 — €55),
0y = Cyley — €35) + Cipley — &y + €33 — €55),
033 = Cyy(e33 — €33) + Cppley — & + € — £55),
03 = Cu(v23 — 155)
o3 = Culyiz — %)
o1, = Cyulvy — M) (4)

where ai}‘ and fyi]f“, the eigenstrains, are related to the magnetization:
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In eq. (5), the parameters with a superscript “*” are defined as K — —uX" G+ L +L2)2, F= Ly -
(Cpy = Cpp) (Cyy + 2C1) Mg (Cpy = Cpp) Mg

L#— Ly Lz — —Culot Cip(=Lor+ Loy + Los) L — Culo— Ciolor = Loy + Loy)
2= 2 01— 2 > 02 — 2
(Cii = Ci) Mg (€11 = Ci) (Cyy + 2Cyp) Mg (C11 = i) (Cyy +2Cp) M
Lk, — CIZ(LOI +Loy) = (Cpy+Cip)lps
03~ — Cpp)(Cpy +2C ) M2
Substltutmg eq. (4) into the equilibrium equation, and using the geometrical equations under small-deformation

assumption, we have
Crpin + Cugltgpp + 1y 33) + (Cpp + Cyp)(uy 15 + u313) = X4

Ciithypp + Cuglty 1y + iy 33) + (Cpp + Cug)(uy 1y + 1353) = X
Ciiutz 33+ Cagltg5p + s qy) + (Cpy + Cug) (55 + 1y 43) = X5, (6)

where

Xy = Cugfin + Cuehy +e550) + Cuanha + 153)
X, = Cughy + Cioleriy +e55,) + Curhy + 155.3)s
X3 = Cuesss t+ C12(52*2,3 + 51*1,3) + Cy(5, + 71*3,1)- (7)

Here X; (i = 1, 2, 3)resemble components of the body force caused by presence of eigenstrains. Assume M(r)
and u(r) to be periodic functions in space, which can be expressed as

M(r) = que"q‘r,

q
u(r) = EU“eiq'r,
q (®)
wherem 9=m%and U9 = 0", Here m%and 0" are complex conjugates of m? and U4. Through eq. (8), the equilib-

rium state of the system is determined by minimizing F with respect to m%, U%and q. When the system is free from
external mechanical loads, the solution of U4 can be obtained by solving the eigenstrain problem for chiral magnets as

—1
Ul= Ky X9 )
where
Cu‘]l2 + C44(‘122 + ‘132) (Cpy + C44)‘11‘12 (Cpy + C44)‘11‘13
K,=- (Cpy + C44)‘11‘12 C11‘122 + C44(‘112 + ‘132) (Cyy + C44)‘12‘13 >
(Cpy + C44)q1q3 (Cpy + C44)q2q3 C11q32 + C44(q12 + ‘122) (10)

and X%is solved from X = g X997, Eq. (9) determines the elastic fields in the material when the magnetic state
of the system is determined.

Before moving on to the solution of eq. (6) for different chiral magnetic phases, we give a brief discussion on
the situation in the ferromagnetic phase. When the material is stabilized in a ferromagnetic state, the magnetiza-
tion M is a constant vector inside the material. In this case, the eigenstrains are constants according to their defi-
nition given in eq. (5), and we have X; = 0 (i = 1, 2, 3)from eq. (7). We thus obtain a solution of zero stresses
for free boundary condition. The physical interpretation of this solution is clear: when the material is free from
external loads, it is free to deform and so the total strains equal to the eigenstrains, while the stresses vanish.

Solution for the conical phase. In the conical phase, the magnetization can be written without loss of
generality as
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M :[mq cos(gz), m, sin(qz), m3]T, (11)

where it is assumed that the magnetic field is applied along the z-axis. Of course, the following results change with
the direction of the magnetic field. But the method and the form of the solution are exactly the same. Substitution
of eq. (11) into eq. (5) yields

__c qly iqz q24 2iqz
6,-}" = 6,-j* + Reeij e ™ 4 € *e

g (12)
where gf = zl'yijf‘, i = j,and
&7 = [ *+ %(_Ll* + L5g + L53q)m; - Lz*msz}’
&7 = [K* + %(—Ll* —L; + Lsq + L&q)mj},
ey = |K* — Lim; — L(’;quqz — %Lz*qu],
;" = Owheni=j, (13)
[5;1*] __ mqm3(L3 _2LO4q) 00 _11,’
2C Mg 1 —i 0 (14)

R . i(Ly + 2Lpsq)
— (L7 + Lgyq — Lgs9) Wos 7 2Lost)

mZ 2C44M$2
24| q .
[Ei;] ] == i(Ly + 2Losq) ,
2 _— Lf— Ly + Liq — L 0
2C44MS2 1 2 014 034
0 0 Ly (15)

andi = +/—1. The solution of the displacement field can be sought in the following form
u= uc + Re[uqleiqz + l.quQZiqZ], (16)

where u‘ dentoes the displacement field which corresponds to constant eigenstrains. By direct integration of
eq. (13), we have

c  __ Cx
U, = &%
c Cy
Uy = €3
c Cx
Uy = €33%, (17)

where rigid body movements are not considered. Substituting eqs (14-16) into eqs (6, 7), after manipulation

we obtain
u' = K'X7,
w? = lgixe,
4 (18)
where
Cuq® O 0
K =]0 Cu,’ 0}
0 0 Cq
m.m
X" = L2 - Lo,g)qlis 1, 0],
MS
T
XqZ = 10, 0, — I(CH— CIZ)LZ*qm; . (19)

Eq. (18) can thus be expanded as
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mqm3(L3 — Loy

ul' = >
CaaqM;

li, 1, o],

. o 2 T
—i(Cy; — Cp)L3 m,
4C g

2

u?”” = |0, 0,

(20)

The solution for the displacement field can be obtained by combining eqs (16, 17, 20). The total strains and
stresses are solved as

0 0 cos(gz
Cx mqm3(L3 — Lo,q) . (42)
le] = [51] Y-y a 0 0 sin(qz)
44 cos(qz) sin(qz) 0
Cy— CpLym?(0 0 0
(Cyy — CL; 100 0o 0 i
2y, 0 0 cos(2gz) (21)
and
2
m
_ "
(o] 2M?
C12 .
L+ C, —=L, — (Ly; — Lp3)q| cos(2gz) (Ls + 2Lp5q)sin(2gz) 0
11
x ) Ch,+ Cpy
(Ly + 2L5q)sin(2gz) —|L; — CiL2 — (Lo; — Lps)q| cos(2gz) 0
11
0 0 0 (22)

In eq. (12) the periodic eigenstrains contain a part with a wave number 2q. This wave-number-doubling phe-
nomenon derives from the nonlinear nature of the magnetostriction effect, and has been discussed before!®. By
solving the elastic fields of this eigenstrain problem, it is shown that the magnitude of the periodic part of stresses
with wave number g vanishes. To explains the physical origin of this result, one needs to examine the compatibil-
ity condition for the eigenstrains ;7. For the three composition of ¢# in eq. (12), &;;* and Re e/ 91+ 197] gatisfy the
compatibility condition, while a part of Re([e/] 42+ ¢219] does not satisfy the compatlbdlty condmon The compatible
part of eigenstrains directly generates elastic strams while the incompatible part of eigenstrains is constrained by
the elastic body through an internal stress field given in eq. (22).

Using the related parameters for MnSi:

C,, = 283.3GPa, C,, = 64.1 GPa, C,, = 117.9GPa”. K = —2 x 10" JA m L, = —0.7 x 10°JA *m’,
L, =06 x 10°JA m ™', Ly = 1.646 x 10° JA m ", L, = 1.147 x 10 *JA’m %, Ly, = —0.573 x 10°*

JA M % Loy = — 0.573 x 10 * JA?m %% Ly, = Los = Log = 0,".
it is found that for|[M| = M, [u”'| ~ 3.1 x 107° nm, \u"z\mz_m ~ 5.88 x 1077 nm
q

ol

Solution for the skyrmion phase. In the skyrmion phase, the magnetization vector can be written as

3 3
- sin(q,r) - sin(q,r)

0
0l Bm, ||
M=| o+ —=tisin@n) fe 1oLl
— — sin(q,r — — sin(q,r
ms 3 — cos(q,r) 2 % 2 9
— cos(qzr) — cos(q3r) (23)
where it 1s assumed that the external magnetlc field is applied along the z-axis, and q, = ¢[0, 0, 1,
q,=q[- B o]%, Q= q[—f — ﬁ, o, r = [x, ¥ z]'. For the magnetization defined in eq. (23),
the solutlon of tile displacement ﬁefd can be sought in the following form
a = u+ Re[uuleiqlr + uhleiqzr + u”leiqsr + uazeziqlr + uhZeZiqzr + uc2e2iq3r
+ uablei(qlfqz)r + uaclei(q17q3)r + ubclei(q27q3)r]' (24)

z(ql+q2)r o @ tayr i(q,+qy)r

One should notice thatq, + q, + q, = 0, and thus terms withe ande are merged with
terms with e'%", ¢"%" and e'", respectively. By substituting eqs (23, 24) into egs (5, 6, 7), the solution for the dis-

placement field can be obtained in the same way as above. We have after manipulation
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1
ul = [K(qu +m3) + S(LE —2L5 + L6 — 2L + Lgsq)m] — Lym] |x,
* 2 1 * * * * * 2
uy = |K*(m] + m]) + T (L = Li + 1610 = 20600 + Losa)mg
wf 2 2y, 1 . T . « 2 w2
ul = [K (me + m3) + L (F2Li = L+ 250 + 2L g@)m] — Limijz, 03)
im
uul — q galrn3 + gulm [1’ 0’ O]T,
129Cy(Cy; — CIZ)MSZ ( ‘ * q) (26)
b1 im, b1 b1
. = - &, M3+ & My )
129(Cy; — Clz)CkMxZ( “ ! q)
im
bl q bl b1
u, = gomy+gom.|,
129(Cy; — C12)CkMsz( < 2 q)
2
mo mMy(Log+ Los + Log)
U, = — 5 R
16+/3C 4, M; (27)
u' = xulbl,
uzcl — _uzbl,
us’ = ugt (28)
.2
im L
u?=—22[1, 0, of,
12qCyM; (29)
im?
b2 q
u = ———[13CyL, + 3C,,(L, + 3L, — Ly — gLy, + qLo; + 2gLo, + 2qL5e)
1 24quM52 44l 124 2 3 — qLo1 T qLos qLos qLos
—3C (3L — 4L, — 3L; — 3qLo; + 3qLos + 69Lo, + 6qLoe) 1,
.2
m
ul? = —WZMZ[ISCMLZ + Cpp(—3L, + 4L, + 3L, + 3qLo, — 39Los — 69Los — 6qLog)
+ C(Ly + 3L, — Ly — gLoy + qLos + 2qLos + 29Log) ]
e m: (Log + Los + Log)
} 3, M2 (30)
ulcz _ ulbz
u? = —ul?,
us® = —u, (31)
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.2
abl __ m

124G = quz)CkMsz {CH(K + 8L, + 2L; + 3qLo,; + qLo, — 4qLoy — 2qLog)
+Cpp[—4C, (2K + Ly + 4L, + qLo; + qLos)
+C,(4K — 4L, — 4L, + 6L, + 59Ly, + 3qLo, — 4q9Los — 12qLo,—69LG6)]
—4C [—Cu(2K + L, + 6L, + qLy, + qLg3) + C,(2K
=Ly + L, + 2Ly + 29Lo; + qLoy — qLlos — 4qLos — 2qLog)1}

abl im;

12-/39(Cy; — C)CM!

x{3CA[4K — 4L, + 6Ly + q(5Lo, + 3Loy — 4Los — 12Lo,—6Log)]

+C,[4C,,2K + L, + 4L, + qL,;

+qLos) + 3C,(4K + 4L, + 2L3+3qLo; + qLo; — 49Los — 29Loe)]

—4C,[C, 2K + Ly + 6L, + gLy, + qLos) + 3C,2K — L, + L,

+2L; + 2qLo; + 9Ly — 9Los — 49Los — 29Loe)l}

L ma(Log + Los + Log)
} 16-/3C,,M? (32)
uft = o
uft = —uf,
u;cl _ _u;bl’ (33)
e im: [(Cy; — Cp) @K + Ly — 5L, + qLoy + qLoy) + 2Cy,L,) 0, 1, off
12£Q(C11 - CIZ)C11M52 o (34)
where
= —4./3(=C,Q2K + qLoy) + €K + 2L, + qLgy)),
g = (—=C,(6K + 3L, — 2L, + 3qL, + 3qLoys)
+ Cy (6K + 3L, + 4L, + 3qLo; + 39Lo3)), (35)
8'cb1l = —23{-4C,}{2C4(2K — L, + qLo,) + 3C,[4K + q(Lo, + Loy — 2Loe) 1}

-+ C12{8C44(2K - 3L, + qLOZ) + 3C12[8K — 8L, + q(LO1 + 3Lg,— 2L06)]}
+3CL[8K 4 8L, + q(3Lo; + Loy — 6Log) 1}
gsbl1 = —4CII[C44(6K + 3L, — 2L, + 3qLo; + 3qL03) + 3C12(6K + L, — L, + 2L,
+ 2qLoy + 3qLo, + qLos — 4qLoy + 2qL06)] + C12[4C44(6K + 3L, — 8L, + 3qLq,
+3qLos) + 3C,(12K + 4L, — 12L, + 4Ly + 5qLo, + 3qLo, + 4qLos — 8qLoy
+4qLog)] + 3C{{12K + 8L, + 3[2Ly + q(Loy + 3Loy — 4Loy + 2Log) 1} (36)

gcbzl = —6{C,{—8C(2K — 3L, + qLo,) + Cp,[8K + q(38Lg; + Lo, — 6Loe) 1}
—4C{2C 4 (=2K + L, — qLoy) + Cp[4K + q(Loy + Loy — 2L 1}
+ CAI8K + q(Lo; + 3L, — 2Loe)1}
gy = AB{CAM12K + 4L, + 2Ly + q(5Loy + 3Loy + 4Los — 4Loy + 2Log)]
— 4Cy,[—Cu(6K + 3L, — 2L, + 3qLy; + 3qLgs) + C,(6K + Ly — L,
+ 2L; + 2qLo, + 3qLo, + qLos — 49Loy + 2qLos)]
+ C,{—4C (6K + 3L, — 8L, + 3qLy; + 3qLy3)
+ C,{12K — 4L, + 3[2L; + q(Lo; + 3L, — 4Loy + 2Log) 131, (37)
andC; = 3C} + 10C,,Cyy — 3C1,(Cy, + 2C,)

The solution of periodic displacement field in the skyrmion phase is composed of three types of triple-Q
structures, defined by
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uiSI(l‘) _ Re[uiulequr + uiblezqzr + u,-‘le’q3r],
uiSZ(r) — Re[uialebqlr + uib2621q2r + ui62621q3r])
S3 _ abl ji(q,—q,)r acl Ji(q,—q,)r bel Ji(q,—q,)r
u;”(r) = Relu7 W™ 4 TN gy 7ML TBI] (38)

With eq. (38), eq. (24) can be recasted asu = u‘ + wlr) + v (r) + uv*().

Eqs (25-37) show that the magnitude of the periodic displacement field depends on the magnetization as well
as the magnetoelastic effects. To be more specific, in terms of the magnetization, u;* (r) depends on both m; and
m, defined in eq. (23), while uis2 (r)and uis3 (r) depend merely onm _; in terms of the magnetoelastic effects, uis1 (r)
and uiS3 (r) depend on K, which represents the dominant magnetoelastic term, while uis2 (r)is independent of K.

It is easy to verify that in the skyrmion phase, the eigenstrains ¢;* do not satisfy the compatibility condition.
Similar to explanation given in section 3, the part of eigenstrains that doesn't satisfy the compatibility will gener-
ate periodic elastic stresses. The components of the three triple-Q stress tensors can be obtained as

Sio_ Si Si Si
o1 = Cuep + Ciley + e33),
Si Si Si Si
0 = Ciey + Cley + es3),
Si Si Si Si
o33 = Cren + Cole +e )
3531' 11 335;‘ 124611 20 (fori=1, 2, 3)
03 = 204853,
Si_ Si
o3 = 2Cuep,
Si_ 0. S
op = 44€12> (39)
where
1 ) ) )
eijs»1 —(uisjl + ujsi) Re E;I*e’ql' + aijbl*e’qzr + s,;l*e“h'],
5 i, ,
52 1 s 82 a2, 2iqr b2, 2iqr 2, 2igqr
e;” = E(ui‘j +uj,1-)—Re[5lj e +5ij e 4 g e,
S3 1 S3 S3\ abl, i(qlfqz)r acl i(qlqu)r bel i(quqa)r
e = Z(ui’j +uj),<) Re g5 e +s,j e +€i]- e . (40)

The analytical expressions of ', (i, k, [ = 1, 2, 3) can be obtained by substituting eqs (25-38) into egs (39, 40),
which are too lengthy to be expanded here. This result indicates that in bulk materials free from any mechanical
loads, appearance of magnet skyrmions is always accompanied by nontrivial periodic stress fields.

Field configuration of the triple-Q elastic structures for MnSi and discussion.  For MnSi, the con-
figuration of the three triple-Q displacement structures are plotted in Fig. 1(a-c) using the magnetization
obtained through free-energy minimization at temperature 4 K and zero magnetic field using the extended micro-
magnetic model'®. From Fig. 1(a—c), we learn that w®l(r), u¥?(r) and u®*(r) have field configurations that are differ-
ent from each other and also different from the magnetic skyrmions. However, they all form hexagonal networks
of localized fields, while all the three triple-Q displacement structures have only in-plane components. This can
be explained from eqs (25-34), where all the displacement components in z-axis rely only on Lo, Los, and Leg,
which are set to be zero for MnSi. In fact, since Loy, Los, and Lqg represent high order magnetoelastic effects'®, the
smallness of z-component of the skyrmion induced displacement field is guaranteed for any B20 compound.

From Fig. 1(d), we see the total periodic displacement field denoted by wl(r) + u®(r) + v (r) appears to
have the same periodicity with u’!(r), which can be explained as follow. The lattice vectors of the periodic dis-
placement structure u®'(r), denoted by a, and a,, satisfy

a-q, =
a-4q, =
y-q =
ay-q, =

==

(41)

The periodicity of ! (r) can generally be described by u' (r + 21 ma, + 2n,ma,) = u5(r), where n, and n,
are arbitrary integers. From eq. (38), we can easily prove that u’*(r + 2n,ma, + 2n,7a,) = u5(r) and
uiS3 (r + 2nyma; + 2n,ma,) = u,-53 (r). Hence uis1 (r) + u,-sz (r) + uiS3 (r)and ufl (r) (or M(r)) shares the same lat-
tice vectors and period. For bulk chiral magnets, this period, determined by the strength of the DM interaction
and the stiffness of the exchange energy density, is independent of the period of the underlying atomic lattice. This
explains directly why magnetic skyrmion materials are incommensurate systems, and also provides quantitative
description of the deformed lattice configuration of the skyrmion materials.

The maximum achievable displacement of u’!, u%?, u$* and uS! + u%? + u* are listed in Table 1, from which we
can see max, |u®’| > max, |u®'| > max, |u*?. The magnitude of u*! and u®’ is significantly larger than that of u%2,
since the solution of u$! and u*? is related to the exchange-interaction-induced magnetoelastic coupling term with
coefficient K, which is the dominant term among all magnetoelastic coupling effects (for MnSi, the magnitude of
K s at least an order of magnitude larger than the coefficient of other magnetoelastic terms'?).
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Figure 1. Configuration of the three triple-Q displacement structures at temperature 4 K and magnetic field
0T: (a) u’, (b) u®? (c) u* and (d) u®' + us2 + u®. The arrows represent the direction of the displacement vectors
which vary in space, and the length of the arrows reflects the magnitude of the displacement vectors.

Maximum displacement (nm) 6.20x10°6 1.20x107° 9.25%x107° 1.41x107°

Magnitude of wave vector q 2q J3q q

Table 1. Magnitude of maximum achievable displacement for the three triple-Q displacement structures
of MnSi and their sum calculated at temperature 4K and magnetic field 0 T.

When solving the stress field of MnSi, it is found that the stress components defined on (001) plane
0'3Sli, (i, I = 1, 2, 3)is generally much larger than other stress components. This can be understood since the peri-
odic in-plane displacements release most of the eigenstrains defined on (100) plane and (010) plane while the
other incompatible eigenstrains cause stresses mainly on the (001) plane. The field configuration of
ogi = [0_3811') Uf'{, O'3S3i T, (i =1, 2, 3) is plotted in Fig. 2(a—c), where we can see that O'3S3i, (i =1, 2, 3)is the most
significant stress component.

Variation of the field configuration with temperature and magnetic field. The periodic elastic
fields solved as functions of the equilibrium magnetization, should vary with temperature and magnetic field.
When the temperature is increased from 0K to the critical temperature, it is found that the field configuration
of all the triple-Q structures is merely changed, but the magnitude of vectors gradually decreases to zero. This is
understood since the components of the magnetization gradually decrease to zero as the temperature approaches
the critical temperature.

On the other hand, we find that the field configuration of u’' and o3" is very sensitive to variation of the mag-
nitude of applied magnetic field while the field configuration of other triple-Q field structures is not. In Figs 3(a-d)
and 4(a-d), we plot the variation of the field configuration of u’' and o' when the magnetic field gradually
increases from 0.1T to 0.4 T. We find an interesting phenomenon that the field configuration of both u%' and o'
undergoes a “configurational reversal” when the external magnetic field increases: comparing Fig. 3(a,d)
(Fig. 4(a,d)), it is observed that field configuration of u’! (cgl) plotted at applied field 0.1 T and 0.4 T shares similar
pattern but with opposite direction of all the field vectors. One should notice that such a reversal of elastic field
configuration does not affect the magnetic state of the material (i.e., no magnetic phase transition occurs, and the
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Figure 2. Configuration of the components of the three triple-Q stress tensors defined on the (001) plane (or
the xy plane) at temperature 4K and magnetic field 0 T: (a) O'3Sil, (b) aﬁz, and (c) U3Si3. The unit used in all three

figures is MPa.

A d ot vyr bs)p)pyqasr avy ¥
‘4111>;""“AA<V‘\‘
A‘4144A,""‘(A>VV‘5
Ad vYvy 4«44, pV4arsr yVYYyYH»
‘v>>><<<447>>>>><<<v
VAAAL VvV VYV AV VVes £45s )
V4aas «avvYYd A A dvon s, ,,
v,“x<yv\§‘4lvv>;,,'
v“‘A>yV¥|A‘411<A)”
YA AALLD Y YY » A JdVVy <44 s )
> > rp <a9d949 <« > > P> 4a<<d 9 <
Ad YVer 445 p V7V 4 arr av vy d
A"((»}""‘\‘\qu"
A441¢<;,""‘(g.‘v\b
Ld gy 484, pyqaasr vy h
Ad vVVy «a4a a4 bV A Aandr TVY YV
Yaoosr a«< < N vV Prop> <aa a4
V4AANA v VY P AL T VYr Lo )
v“A4<,y\|A444,, ASE 151
"‘\Abvv““’Vv<A"’
"‘AApyyvillfquAA"

Yaanserrrygy  pyVve<a<asas
MR P R O A I
YY»L&deV‘}AdvvaAAii
7»44<<<<vv‘vvv>>>>A4\
Vadaaaa<c<s< o rrrreb>
Avv<<<<<44'>>>>>brrv
‘bvv<<44AP'iAs>>>7V<
AAAAL“"VVV“A"AAA
‘4,,,..;«ivv»‘4.,,,‘
AVVVFFFLLA'LA<<<<<1Y
P R I I
YA b obrrprry , vYCT9aaas
Y4aAaborryqg i rrvN<aas)
YYYY P ey badqae='T""Y
VPAAA<<<V¥A4777>>AAQ
VA4<<4<<<7‘-7>>>>>>5A
‘<<<<<<<<<'>>>>>>>>\>
Ay.q<<<<44AVAs>>>>>vg
Arsvv<assPVdannsrg gy
Adqdgw AV TTT TV Paag )
‘4yvy>>>A4'»A4<<<<vy-

ae < < a> > > >> << << <> > >0

>>D>>r <4<a< <<

>>>> > <9< <<

0.000
1.000
. 2.000
3.000
4.000
unit: fm
y

unit: fm
Y

o

(c)

NN~~~ - -

- -

» s asaPA A aAAAY Pssasrtaanan

> rr v drve < <Y rrvedbrvvea

PECAR Y I S Y S SRR AR 2R 2R BT Y U S 2
VVIYLdADIPVYVVN Y L\TVII4L4LIPYYY

p A AV LT >ALAqQYPLAa< VL4V >agq
Aa a9 \v > rAAY Psad g > BraA

0.000
0.6350
1 1.270
1.905
2.540
unit: fm

A4 e
AAd wvwy
NN
Aarrg )

N
I
vewes YV £

C v L4

g <4a
44 veaa
> <<a<
A4 L g
44t 9w

> > >bb> 4<aa<

<< << <> > >>>

y

(o]

aaar vy
Aan> ;)
Aarry
e 4
vers 4
vvwer P
v g 42
g ) <aa

YVYVVY VLTV VYILAIPVYVYVYN PV VTS

A AAAY P s aassYaaadaty Praa
- <9 <9 <« 94> > > > >

Py vy v ps v A AhDdYYY Vv 7T 4

> > >>r 99w <<

(b)

0.000
1.050
. 2.100
3.150
4.200
unit: fm
y

VYN aap
>y v aV ¥
A A g a4
4d ¢ vV > b
i A G .
A A >
AR BN 2 2 4
rrre g 4
b b A< v
A 4 4 4« 9 Vv

<< < < <> > > >>

ve<al?rrrvarArve a4l pyry
> > P> aaad a4 <

«e e+t <« )
Ve e aa s
YV wairy
by e 4 q
A gv > a
PR N R

pPAaA AN AT P AQqQYy P LA~
s a4 <, > >bAd T Sasax

14
»

S
<A nspVry
y V4> vyv
[ R I W |
b A a4 avDd

v
av
>>>>pr <4< < <

<4
4 4
A A

a<a <9 < «a> > > >>

(d)

Figure 3. Configuration of u®! at temperature 4 K and magnetic field (a) 0.1T, (b) 0.2T, () 0.3 T, and (d) 0.4 T.

SCIENTIFICREPORTS |6:30200| DOI: 10.1038/srep30200

10



www.nature.com/scientificreports/

0 R S SR TRTE . 02 2 < v,00844daa, &

Ty e 4 4 v - A a v 444

» bbb aee Cqgquen 4 6 »p TvhreetAaa., o o A A s
03512 v v ¢ ya s s aw I, 4000 %0 00 0.06775:‘v;;A.;::x..,:‘_'..‘A‘

*»® 4, 4 b4 4 ¢ M W e 4 e, « PRI N
-0.6025:;,.‘\“‘,',""“H,;','m51437 st ooy WO1095 7 o UL LU Uy ey Y Sy e ey
08537 4 ¢ % ° 468664 vsa6eanvh?$% A% %% 045130 ¢ a4 a2 22 s AT « 1 <% 2%1; %5 O
.' IR IR A A . R Rttt R R W WY
1105 € & (4 60 v PP P 206000 To 01930% > v ¢ 4 s o 224444, ,0a4aa

Qe g s06060?pppp° vsboavsa W Loy g0 Lsaey g aea
€4 68000V L 00 4d40aqqg NS R N R
80580 00V g4 g0, 406060404 e *XYVren A T,

¥ . v X L e @ 4 4 a, S X

v e D s 0 0 Y o990 ® 46666 o v ¢« 444
2 4300001 T 900 g4b00e 0 sa A Lwiy pg O ACD g g oA RS A
»° 0 L a6 oe0e e @0 g a0 6 0P pop I T T T N S
o ® e b b 60 e, g 6 o0 ?pPpy 4 e vy paa>tttep g0 0P P sa
v e °® L0606 ceqaassce Py y '..;;‘,}>“"'»4r.0"':‘
2 @ ®® 4 60600 0se06 0000V, gy LSO T A A B SO IR N »
..g.‘na,......‘-’.V',, “'(445»"““»0"“"
.Q.4‘,\,‘.¢AAA‘.':‘.AW'. g.'4‘A,4AAA4“b.‘AA\A
@6y g0606e 8PP s 400wl o0 Aoy gqgo PP LAy et
a aQ a
> e 6060600l s o0 e, ¢ s v Ao g5 0P PSP aey ™
(a) (b)
01460 » » » ¢ v YV o s b6 a4 0 vy p s 0-1800::';;v;
YvyweoP Y Ta ; AR
03430 T T L ee e  NILIILNNVN Ny 62758 F Fy ety

R R R R E R R AR 1.075 Yo
BOSA008 4 & Xt i e e e e HERR I
.0.7370“‘\4'v'vv»>'77v!,-443 313 O320 O3 1.523 ¢ ¢ oL

40 9 P P P AL PYTY v €4 g
09340, ¢ g v @ ¥ 7 > aun oy vaerrrace? 1.970% 6 ¢ o o oy

AL & QYoo bb) ey VA Y At Qg
< TV P g0 bbb, e peu0y 9 M
9 90 V'o““l/‘-y,',, v REEMM
vvvvv YV eoo6464,,005p0p0pc¢ b3 . o9 v Y
4 20099V e 5 0644 0®P P I sa aaw ey 9V
O L 2L IR T G O T B I S *»;\..’,.
> b b ) o° ¢ T QA a2 o9 P Voo oo o \‘Qsiv,
b 0, 00 009 9 o909 ?Voae e XT’A..Q
& b4 5400909090900 00 [ 25 I I P S a0
R AR R s PV e o4 LA S
66 4 g0 *PP P Aaqesr PV o 0440 00
v ww o o P S, Db by e UA e dv ® e o ®
aaaeac e 9V o000 ) y°° L a a e o o ?

Figure 4. Configuration of 0'5? ! defined on the (001) plane (or the xy plane) at temperature 4 K and magnetic
field (a) 0.1T, (b) 0.27T, (¢c) 0.3T,and (d) 0.4 T.

magnetization is not reversed). Through thermodynamic analysis within the mean-field theory'®, we already
known that the variation of m, and m, with external magnetic field in the skyrmion phase is insignificant. u*2, u®,
032, and o3 depend merely on m,, and so their field configuration merely changes with external magnetic field.
To understand why u®! and o3" are sensitive to external magnetic field, we first consider the K-dependent terms
in u¥! and o3". It is found after manipulation that the u’' and o3" depend on K linearly, with a coefficient propor-
tional to 4-/3 m, — 3m,, which vanishes at % ~ 2.31. For MnSi, as the magnetic field increases from 0T t0 0.4 T,
the equilibrium value of 2 in the skyrmion 3phase decreases from 2.59 to 2.15. As a result, the coeflicient of the
m

linear term of K changes sign as the magnetic field increases, which is responsible for the configurational reversal
ofu’' and o3".

In Fig. 5(a-d), we plot the variation of the field configuration of uS! + u$? + u%* when the magnetic field gradu-
ally increases from 0.1 T to 0.4 T. We find that the configurational reversal of u’! is smeared by u%? +u%, which is
almost unchanged for increasing magnetic field. Yet, by comparing Fig. 5(a,d) we see that the location of a “signif-
icant outburst” changes from the center in Fig. 5(a) to six adjacent points of the center in Fig. 5(d).

In eq. (23), the magnetization function introduced is specified for the case where the external magnetic field
is applied along the z-axis. Concerning the magnetoelastic effects described in eq. (2), all terms except KM?c;; are
anisotropic, which means that the solution of displacement field, as well as the field configurations, all vary with
the direction of applied field. In other words, the solution given in eqs (25-39) are specified for the case where the
external field is applied along the z-axis.

Condition for occurrence of a configurational reversal of u** and o§1 for B20 compounds. The

analytical solution of u®' and o3" derived in eqs (38, 39) applies to any B20 compounds. As a result, the coefficient
m

of the linear term of K in u®' and o5 always vanishes at "¢ ~ 2.31. The occurrence of a configurational reversal of

m

m
u’! and o' is garanteed if the equilibrium value of in the skyrmion phase at 0T is larger than 2.31 and the
m
equilibrium value of 2 in the skyrmion phase at some critical magnetic field is smaller than 2.31. After analysing
m

the free-energy minimization process within the extended micromagnetic model'®, we find that the equilibrium
value of ™ is determined by the Landau expansion terms w; = a(T — T,)M* + SM* and the

Dzyaloshinsi(ii—Moriya (DM) coupling term bM - (V x M), where T denotes the temperature. Neglecting the

DM coupling term and substituting eq. (23) into w;, we find that the equlibrium value of —¢ in the skyrmion phase

equals to 2.23, regardless of the value of @, § and T. Adding the DM coupling term back to the functional, it can

be calculated that once |(ThiqT)\ > 0.08, we always have 4 ~ 2 31 in the skyrmion phase, where g denotes the
a(T—T, m

3
wave number. Hence the stronger the DM coupling, the larger 4. For MnSi, |(TI’7QT)‘ ~ 0.26 at 0K. On the other
ms all =1y
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Figure 5. Configuration of u’! + u%? + u® at temperature 4K and magnetic field (a) 0.1T, (b) 0.2 T, (¢) 0.3 T, and
(d)04T.

hand, application of external magnetic field along the z-axis will inevitably increase m; and decrease m,, which

»
leads to a decrease of 2. Concerning the above analysis, we think the occurrence of a configurational reversal of

ms
v and 05" with increasing magnetic field is more of a general phenomenon for any B20 compound than a specific

issue for MnSi. Even if a configurational reversal does not occur, the variation of u’' and o;' with external mag-
netic field should be significant.

Technological interest of elastic triple-Q structures in chiral magnets. Magnetic skyrmions are
regarded as one type of possible information carrier, since their motion in materials can be manipulated by small
current density®”?°, and their existence can be manipulated by various approaches*-?. Stem from the intrinsic
magnetoelastic coupling in chiral magnets, the elastic triple-Q structures always move together with the magnetic
skyrmions. This provides the possibility of identifying the existence of magnetic skyrmions by checking the local-
ized elastic state. Moreover, the field configuration of the elastic triple-Q structures having the same periodicity
with the skyrmions is sensitive to external magnetic field, which means that we can have opposite elastic state
for almost unchanged magnetic state. From the solution obtained in eqs (25-37), the magnitude of the periodic
elastic field can be enhanced by increasing the magnetoelastic coeficients and also the size (the wavelength) of an
individual skyrmion, which may be achieved by choosing appropriate materials.

Besides data-storage devices, magnetic skyrmions are also promising for developing new microwave appli-
cations, since they excite gigahertz collective spin vibration modes when exposed to magnetic microwave!+2+2>,
Existence of the elastic triple-Q structures provides a variety of options for development of related technology,
such as novel magneto-acoustic actuators and sensors. For this purpose, it is of interest to derive the correspond-
ing collective elastic field vibration modes from the known collective spin vibration modes and study their cou-
pling in dynamical conditions.

Conclusion

We obtain the analytical solution of the periodic elastic fields for the eigenstrain problem in chiral magnets. In the
skyrmion phase, the nonlinear magnetoelastic coupling leads to formation of three types of triple-Q elastic field
structures. For MnSi, the triple-Q displacement structure u’' and the triple-Q stress structure o' are found to
undergo a configurational reversal when the magnetic field increases from 0T to 0.4 T. Through thermodynamic
analysis, we find that such a configurational reversal is likely to occur for any B20 compound. It will be interesting
to experimentally detect the periodic elastic structure, and further discuss the intrinsic vibration modes of these
elastic triple-Q structures.
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