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Reversible “triple-Q” elastic field 
structures in a chiral magnet
Yangfan Hu & Biao Wang

The analytical solution of the periodic elastic fields in chiral magnets caused by presence of periodically 
distributed eigenstrains is obtained. For the skyrmion phase, both the periodic displacement field 
and the stress field are composed of three “triple-Q” structures with different wave numbers. The 
periodic displacement field, obtained by combining the three “triple-Q” displacement structures, is 
found to have the same lattice vectors with the magnetic skyrmion lattice. We find that for increasing 
external magnetic field, one type of “triple-Q” displacement structure and stress structure undergo a 
“configurational reversal”, where the initial and the final field configuration share similar pattern but 
with opposite direction of all the field vectors. The solution obtained is of fundamental significance for 
understanding the emergent mechanical properties of skyrmions in chiral magnets.

Chiral magnets have attracted interest over the last few years due to experimental observation of a new chiral mod-
ulated magnetic state, commonly referred to as skyrmion lattice, first in MnSi1, and then in Fe0.5Co0.5Si2 and FeGe3. 
Skyrmion lattice in chiral magnets can be described as chiral spin structures with a whirling configuration, which 
can be described mathematically by a combination of three plane-wave functions in space (hence referred to as a 
“triple-Q” structure). These magnetic skyrmions are stabilized by the antisymmetric Dzyaloshinskii-Moriya (DM) 
interactions4,5, and are well known for their emergent electromagnetic properties6,7 and topological Hall effect8,9.

Due to the magnetoelastic coupling in chiral magnets, it is known that application of mechanical loads or 
misfit strains can stabilize the skyrmion lattice2,10–12. Moreover, it is found in FeGe that elastic deformation and the 
deformation of the skyrmion lattice are strongly coupled, which leads to large emergent deformation of skyrmion 
lattice when elastic stress is applied13,14. To understand such an exotic phenomenon, we first have to discuss the 
internal elastic field induced by presence of magnetic skyrmions. This induced elastic field should be composed 
of a homogeneous part, which has been solved in our previous work15, and a periodic part, which is to be dis-
cussed in the present work. In the early studies of MnSi, it has already been confirmed that periodic distribution 
of elastic fields coexists with periodic magnetization in the spin-density-wave phases (e.g., helical and conical 
phase)16. Besides, it is shown theoretically that the magnitude of periodic strain waves should be considered as 
independent variables when formulating the free energy of the system, since it results in new terms in the free 
energy functional17. Existence of the periodic elastic field represents realization of the same mathematical struc-
ture as magnetic skyrmions in a different physical field due to multiphysics coupling. Moreover, regarding the 
nonlinear nature of the magnetoelastic coupling in chiral magnets, additional periodic structures with changed 
wave vectors may occur in the solution of elastic field. Induced by the magnetic skyrmions, these periodic elastic 
structures should always accompany the magnetic structures. Hence the solution of the periodic elastic fields may 
characterize the elastic property of magnetic skyrmions in some way.

The elasticity problem induced by presence of any kind of phase transition strains is called an eigenstrain 
problem16 in micromechanics. In this case, the eigenstrains refer to the strains that occur due to a change of 
magnetization during a phase transition from the paramagnetic phase to the skyrmion phase. Since in the skyr-
mion phase, the magnetization is a periodic vector function in space, we encounter an eigenstrain problem with 
periodic eigenstrains. The analytical method for solving the elastic fields induced by periodic distribution of 
eigenstrains was developed long ago18,19, mainly due to its mathematical significance for constructing the Fourier 
transform-based analytical solution method. Yet, the eigenstrain problem with periodic eigenstrains composed 
of plane waves with several discrete wave vectors was not treated. Before the discovery of magnetic skyrmions in 
chiral magnets, it’s not clear such a solution is of any physical significance.

In this paper, we formulate the eigenstrain problem from an extended micromagnetic model for chiral mag-
nets developed upon group theoretical analysis and the Ginzburg-Landau theory15 and then obtain the analytical 
solution of the problem for two different chiral magnetic phases: the conical phase and the skyrmion phase. We 
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find that appearance of the triple-Q skyrmion lattices is accompanied by formation of three types of triple-Q 
structures in the displacement field, described by uS1(r) (with the same wave number q as the magnetic skyrmi-
ons), uS2(r) (wave number 2q), and uS3(r) (wave number q3 ), as well as formation of three types of triple-Q 
structures in the stress field, described by σij

S1 (wave number q), σij
S2 (wave number 2q), and σij

S3 (wave number 
q3 ). By using the values of equilibrium magnetization obtained through free energy minimization at given 

temperature and magnetic field15, we plot the field configuration of uS1(r), uS2(r), uS3(r) and σ j
S

3
1, σ j

S
3

2, σ j
S

3
3 and 

discuss their variation with temperature and magnetic field. We find that as the applied magnetic field increases, 
the field configuration of uS1(r) and σ j

S
3

1 gradually undergoes a “configurational reversal” process, where the field 
configuration of the initial state and the final state remains similar, but the direction of every vector in the field is 
reversed. The phenomenon provides a possibility of developing novel information storage devises and microwave 
applications. The analytical solution of the periodic elastic fields also lay a foundation for discussion of the emer-
gent elastic behavior of magnetic skyrmions13, which is to be discussed in a subsequent work of ours.

Formulation of the eigenstrain problem in chiral magnets
For chiral magnetics with cubic symmetry, the Helmholtz free energy density contains two terms related to the 
elastic strains15, which are the elastic energy density
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where C11, C12, and C44 are the elastic stiffness at constant magnetization, εij (i, j =  1, 2, 3) are the elastic strains, 
γ ε γ ε γ ε= = =2 , 2 , and 212 12 13 13 23 23 are the engineering shear strains, Ms denotes the saturation magneti-
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In eq. (2), higher order terms of magnetoelastic coupling (e.g., wme2 in ref. 15) are omitted for convenience of 
deduction. According to our previous work15, such a simplification leads to an estimated error in the order of 
0.01% when calculating the elastic strains ε ε,23 13 and ε12 in MnSi.

For a bulk material free from any mechanical loads, the stresses are obtained from σ =
ε
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where ε ⁎
ij  and γ ⁎

ij , the eigenstrains, are related to the magnetization:
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In eq. (5), the parameters with a superscript “* ” are defined as = − + + +
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Substituting eq. (4) into the equilibrium equation, and using the geometrical equations under small-deformation 
assumption, we have
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Here =X i( 1, 2, 3)i  resemble components of the body force caused by presence of eigenstrains. Assume M(r) 
and u(r) to be periodic functions in space, which can be expressed as
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. Here m̂q and Û

q
 are complex conjugates of mq and Uq. Through eq. (8), the equilib-

rium state of the system is determined by minimizing F with respect to mq, Uq and q. When the system is free from 
external mechanical loads, the solution of Uq can be obtained by solving the eigenstrain problem for chiral magnets as

= −U K X , (9)
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and Xq is solved from = ∑ ⋅eX X i
q

q q r. Eq. (9) determines the elastic fields in the material when the magnetic state 
of the system is determined.

Before moving on to the solution of eq. (6) for different chiral magnetic phases, we give a brief discussion on 
the situation in the ferromagnetic phase. When the material is stabilized in a ferromagnetic state, the magnetiza-
tion M is a constant vector inside the material. In this case, the eigenstrains are constants according to their defi-
nition given in eq. (5), and we have = =X i0 ( 1, 2, 3)i  from eq. (7). We thus obtain a solution of zero stresses 
for free boundary condition. The physical interpretation of this solution is clear: when the material is free from 
external loads, it is free to deform and so the total strains equal to the eigenstrains, while the stresses vanish.

Solution for the conical phase. In the conical phase, the magnetization can be written without loss of 
generality as



www.nature.com/scientificreports/

4Scientific RepoRts | 6:30200 | DOI: 10.1038/srep30200

= 

m qz m qz mM cos( ), sin( ), , (11)q q
T

3

where it is assumed that the magnetic field is applied along the z-axis. Of course, the following results change with 
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and = −i 1. The solution of the displacement field can be sought in the following form
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Eq. (18) can thus be expanded as
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The solution for the displacement field can be obtained by combining eqs (16, 17, 20). The total strains and 
stresses are solved as
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In eq. (12) the periodic eigenstrains contain a part with a wave number 2q. This wave-number-doubling phe-
nomenon derives from the nonlinear nature of the magnetostriction effect, and has been discussed before16. By 
solving the elastic fields of this eigenstrain problem, it is shown that the magnitude of the periodic part of stresses 
with wave number q vanishes. To explains the physical origin of this result, one needs to examine the compatibil-
ity condition for the eigenstrains ε ⁎

ij . For the three composition of ε ⁎
ij  in eq. (12), ε ⁎

ij
c  and ε ⁎eRe[ ]ij

q iqz1  satisfy the 
compatibility condition, while a part of ε ⁎eRe[ ]ij

q iqz2 2  does not satisfy the compatibility condition. The compatible 
part of eigenstrains directly generates elastic strains, while the incompatible part of eigenstrains is constrained by 
the elastic body through an internal stress field given in eq. (22).
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= . = . = .C C C283 3 GPa, 64 1 GPa, 117 9 GPa11 12 44

7. = − × − −K 2 10 JA m7 2 1, = − . ×L 0 7 101
6 − −JA m2 1, 

= . × − −L 0 6 10 JA m2
6 2 1, = . × − −L 1 646 10 JA m ,3

6 2 1 15. = . × − − −L 1 147 10 JA mO1
4 2 2, = − . × −L 0 573 10O2

4

− −JA m2 2, = − . × − − −L 0 573 10 JA m ,O3
4 2 2 15. = = =L L L 0,O O O4 5 6

15.
it is found that for = MM ,s  ≈ . ×

=
−u 3 1 10 nmp

m m
1 5

q3
, ≈ . ×

=
−u 5 88 10 nmp

m m
2 7

q3
.

Solution for the skyrmion phase. In the skyrmion phase, the magnetization vector can be written as
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





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−


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











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
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m

m
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0
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3
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0
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cos( )

3
2
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1
2
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3
2

sin( )

1
2

sin( )

cos( )

,

(23)

q

3
1

1

2

2

2

3

3

3

where it is assumed that the external magnetic field is applied along the z-axis, and = qq [0, 0, 1]T1 , 
= −qq [ , , 0]T2

1
2

3
2

, = − −qq [ , , 0] ,T
3

1
2

3
2

 = x y zr [ , , ]T. For the magnetization defined in eq. (23), 
the solution of the displacement field can be sought in the following form

= + + + + + +

+ + + .− − −

e e e e e e

e e e

u u Re u u u u u u

u u u

[

] (24)

c a i b i c i a i b i c i

ab i ac i bc i

q r q r q r q r q r q r

q q r q q r q q r

1 1 1 2 2 2 2 2 2

1 ( ) 1 ( ) 1 ( )

1 2 3 1 2 3

1 2 1 3 2 3

One should notice that + + =q q q 01 2 3 , and thus terms with +ei q q r( )1 2 , +ei q q r( )1 3  and +ei q q r( )2 3  are merged with 
terms with eiq r3 , eiq r2  and eiq r1 , respectively. By substituting eqs (23, 24) into eqs (5, 6, 7), the solution for the dis-
placement field can be obtained in the same way as above. We have after manipulation
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O1 O2 O6

2
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11
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11 44 1 2 O1 O3 12 1 2

3 O1 O2 O3 O4 O6

12 44 1 2 O1 O3

12 2 3 O1 O2 O4 O6

and = + − +C C C C C C C3 10 3 ( 2 )k 11
2

11 44 12 12 44 .
The solution of periodic displacement field in the skyrmion phase is composed of three types of triple-Q 

structures, defined by
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With eq. (38), eq. (24) can be recasted as = + + +u u u r u r u r( ) ( ) ( )c S S S1 2 3 .
Eqs (25–37) show that the magnitude of the periodic displacement field depends on the magnetization as well 

as the magnetoelastic effects. To be more specific, in terms of the magnetization, u r( )i
S1  depends on both m3 and 

mq defined in eq. (23), while u r( )i
S2  and u r( )i

S3  depend merely on mq; in terms of the magnetoelastic effects, u r( )i
S1  

and u r( )i
S3  depend on K, which represents the dominant magnetoelastic term, while u r( )i

S2  is independent of K.
It is easy to verify that in the skyrmion phase, the eigenstrains ε ⁎

ij  do not satisfy the compatibility condition. 
Similar to explanation given in section 3, the part of eigenstrains that doesn’t satisfy the compatibility will gener-
ate periodic elastic stresses. The components of the three triple-Q stress tensors can be obtained as

σ
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= + +

=

=

=

=
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The analytical expressions of σ =i k l, ( , , 1, 2, 3)kl
Si  can be obtained by substituting eqs (25–38) into eqs (39, 40), 

which are too lengthy to be expanded here. This result indicates that in bulk materials free from any mechanical 
loads, appearance of magnet skyrmions is always accompanied by nontrivial periodic stress fields.

Field configuration of the triple-Q elastic structures for MnSi and discussion. For MnSi, the con-
figuration of the three triple-Q displacement structures are plotted in Fig. 1(a–c) using the magnetization 
obtained through free-energy minimization at temperature 4 K and zero magnetic field using the extended micro-
magnetic model15. From Fig. 1(a–c), we learn that u r( )S1 , u r( )S2  and u r( )S3  have field configurations that are differ-
ent from each other and also different from the magnetic skyrmions. However, they all form hexagonal networks 
of localized fields, while all the three triple-Q displacement structures have only in-plane components. This can 
be explained from eqs (25–34), where all the displacement components in z-axis rely only on LO4, LO5, and LO6, 
which are set to be zero for MnSi. In fact, since LO4, LO5, and LO6 represent high order magnetoelastic effects15, the 
smallness of z-component of the skyrmion induced displacement field is guaranteed for any B20 compound.

From Fig. 1(d), we see the total periodic displacement field denoted by + +u r u r u r( ) ( ) ( )S S S1 2 3  appears to 
have the same periodicity with u r( )S1 , which can be explained as follow. The lattice vectors of the periodic dis-
placement structure u r( )S1 , denoted by a1 and a2, satisfy

⋅ =
⋅ =
⋅ =
⋅ = .

a q
a q
a q
a q

1
0
0
1 (41)

1 1

1 2

2 1

2 2

The periodicity of u r( )i
S1  can generally be described by π π+ + =u n n ur a a r( 2 2 ) ( )i

S
i
S1

1 1 2 2
1 , where n1 and n2 

are arbitrary integers. From eq.  (38), we can easily prove that π π+ + =u n n ur a a r( 2 2 ) ( )i
S

i
S2

1 1 2 2
3  and 

π π+ + =u n n ur a a r( 2 2 ) ( )i
S

i
S3

1 1 2 2
3 . Hence + +u u ur r r( ) ( ) ( )i

S
i
S

i
S1 2 3  and u r( )i

S1  (or M(r)) shares the same lat-
tice vectors and period. For bulk chiral magnets, this period, determined by the strength of the DM interaction 
and the stiffness of the exchange energy density, is independent of the period of the underlying atomic lattice. This 
explains directly why magnetic skyrmion materials are incommensurate systems, and also provides quantitative 
description of the deformed lattice configuration of the skyrmion materials.

The maximum achievable displacement of uS1, uS2, uS3 and uS1 +  uS2 +  uS3 are listed in Table 1, from which we 
can see > u u umax max maxS S S

r
3

r
1

r
2 . The magnitude of uS1 and uS3 is significantly larger than that of uS2, 

since the solution of uS1 and uS3 is related to the exchange-interaction-induced magnetoelastic coupling term with 
coefficient K, which is the dominant term among all magnetoelastic coupling effects (for MnSi, the magnitude of 
K is at least an order of magnitude larger than the coefficient of other magnetoelastic terms15).
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When solving the stress field of MnSi, it is found that the stress components defined on (001) plane 
σ =i l, ( , 1, 2, 3)l

Si
3  is generally much larger than other stress components. This can be understood since the peri-

odic in-plane displacements release most of the eigenstrains defined on (100) plane and (010) plane while the 
other incompatible eigenstrains cause stresses mainly on the (001) plane. The field configuration of 

σ σ σσ = =i[ , , ] , ( 1, 2, 3)Si Si Si Si T
3 31 32 33  is plotted in Fig. 2(a–c), where we can see that σ =i, ( 1, 2, 3)Si

33  is the most 
significant stress component.

Variation of the field configuration with temperature and magnetic field. The periodic elastic 
fields solved as functions of the equilibrium magnetization, should vary with temperature and magnetic field. 
When the temperature is increased from 0 K to the critical temperature, it is found that the field configuration 
of all the triple-Q structures is merely changed, but the magnitude of vectors gradually decreases to zero. This is 
understood since the components of the magnetization gradually decrease to zero as the temperature approaches 
the critical temperature.

On the other hand, we find that the field configuration of uS1 and σS
3

1 is very sensitive to variation of the mag-
nitude of applied magnetic field while the field configuration of other triple-Q field structures is not. In Figs 3(a–d) 
and 4(a–d), we plot the variation of the field configuration of uS1 and σS

3
1 when the magnetic field gradually 

increases from 0.1 T to 0.4 T. We find an interesting phenomenon that the field configuration of both uS1 and σS
3

1 
undergoes a “configurational reversal” when the external magnetic field increases: comparing Fig. 3(a,d) 
(Fig. 4(a,d)), it is observed that field configuration of uS1 (σS

3
1) plotted at applied field 0.1 T and 0.4 T shares similar 

pattern but with opposite direction of all the field vectors. One should notice that such a reversal of elastic field 
configuration does not affect the magnetic state of the material (i.e., no magnetic phase transition occurs, and the 

Figure 1. Configuration of the three triple-Q displacement structures at temperature 4 K and magnetic field 
0 T: (a) uS1, (b) uS2, (c) uS3 and (d) uS1 +  uS2 +  uS3. The arrows represent the direction of the displacement vectors 
which vary in space, and the length of the arrows reflects the magnitude of the displacement vectors.

Triple-Q displacement structures: uS1 uS2 uS3 uS1 + uS2 + uS3

Maximum displacement (nm) 6.20× 10−6 1.20× 10−6 9.25× 10−6 1.41× 10−5

Magnitude of wave vector q 2q q3 q

Table 1.  Magnitude of maximum achievable displacement for the three triple-Q displacement structures 
of MnSi and their sum calculated at temperature 4 K and magnetic field 0 T.
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Figure 2. Configuration of the components of the three triple-Q stress tensors defined on the (001) plane (or 
the xy plane) at temperature 4 K and magnetic field 0 T: (a) σ i

S
3

1, (b) σ i
S

3
2, and (c) σ i

S
3

3. The unit used in all three 
figures is MPa.

Figure 3. Configuration of uS1 at temperature 4 K and magnetic field (a) 0.1 T, (b) 0.2 T, (c) 0.3 T, and (d) 0.4 T.
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magnetization is not reversed). Through thermodynamic analysis within the mean-field theory15, we already 
known that the variation of m3 and mq with external magnetic field in the skyrmion phase is insignificant. uS2, uS3, 
σS

3
2, and σS

3
3 depend merely on mq, and so their field configuration merely changes with external magnetic field. 

To understand why uS1 and σS
3

1 are sensitive to external magnetic field, we first consider the K–dependent terms 
in uS1 and σS

3
1. It is found after manipulation that the uS1 and σS

3
1 depend on K linearly, with a coefficient propor-

tional to −m m4 3 3 q3 , which vanishes at ≈ .2 31
m

m
q

3
. For MnSi, as the magnetic field increases from 0 T to 0.4 T, 

the equilibrium value of m
m

q

3
 in the skyrmion phase decreases from 2.59 to 2.15. As a result, the coefficient of the 

linear term of K changes sign as the magnetic field increases, which is responsible for the configurational reversal 
of uS1 and σS

3
1.

In Fig. 5(a–d), we plot the variation of the field configuration of uS1 +  uS2 +  uS3 when the magnetic field gradu-
ally increases from 0.1 T to 0.4 T. We find that the configurational reversal of uS1 is smeared by uS2 +  uS3, which is 
almost unchanged for increasing magnetic field. Yet, by comparing Fig. 5(a,d) we see that the location of a “signif-
icant outburst” changes from the center in Fig. 5(a) to six adjacent points of the center in Fig. 5(d).

In eq. (23), the magnetization function introduced is specified for the case where the external magnetic field 
is applied along the z-axis. Concerning the magnetoelastic effects described in eq. (2), all terms except KM2εii are 
anisotropic, which means that the solution of displacement field, as well as the field configurations, all vary with 
the direction of applied field. In other words, the solution given in eqs (25–39) are specified for the case where the 
external field is applied along the z-axis.

Condition for occurrence of a configurational reversal of uS1 and σS
3
1 for B20 compounds. The 

analytical solution of uS1 and σS
3

1 derived in eqs (38, 39) applies to any B20 compounds. As a result, the coefficient 
of the linear term of K in uS1 and σS

3
1 always vanishes at ≈ .2 31

m

m
q

3
. The occurrence of a configurational reversal of 

uS1 and σS
3

1 is garanteed if the equilibrium value of m

m
q

3
 in the skyrmion phase at 0 T is larger than 2.31 and the 

equilibrium value of m
m

q

3
 in the skyrmion phase at some critical magnetic field is smaller than 2.31. After analysing 

the free-energy minimization process within the extended micromagnetic model15, we find that the equilibrium 
value of m

m
q

3
 is determined by the Landau expansion terms α β= − +w T T M M( )L 0

2 4  and the 
Dzyaloshinskii-Moriya (DM) coupling term ⋅ ∇ ×bM M( ), where T denotes the temperature. Neglecting the 
DM coupling term and substituting eq. (23) into wL, we find that the equlibrium value of m

m
q

3
 in the skyrmion phase 

equals to 2.23, regardless of the value of α, β and T. Adding the DM coupling term back to the functional, it can 
be calculated that once > .

α −
0 08bq

T T( )0
, we always have > .2 31

m

m
q

3
 in the skyrmion phase, where q denotes the 

wave number. Hence the stronger the DM coupling, the larger m
m

q

3
. For MnSi, ≈ .

α −
0 26bq

T T( )0
 at 0 K. On the other 

Figure 4. Configuration of σS
3

1 defined on the (001) plane (or the xy plane) at temperature 4 K and magnetic 
field (a) 0.1 T, (b) 0.2 T, (c) 0.3 T, and (d) 0.4 T.
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hand, application of external magnetic field along the z-axis will inevitably increase m3 and decrease mq, which 
leads to a decrease of m

m
q

3
. Concerning the above analysis, we think the occurrence of a configurational reversal of 

uS1 and σS
3

1 with increasing magnetic field is more of a general phenomenon for any B20 compound than a specific 
issue for MnSi. Even if a configurational reversal does not occur, the variation of uS1 and σS

3
1 with external mag-

netic field should be significant.

Technological interest of elastic triple-Q structures in chiral magnets. Magnetic skyrmions are 
regarded as one type of possible information carrier, since their motion in materials can be manipulated by small 
current density6,7,20, and their existence can be manipulated by various approaches21–23. Stem from the intrinsic 
magnetoelastic coupling in chiral magnets, the elastic triple-Q structures always move together with the magnetic 
skyrmions. This provides the possibility of identifying the existence of magnetic skyrmions by checking the local-
ized elastic state. Moreover, the field configuration of the elastic triple-Q structures having the same periodicity 
with the skyrmions is sensitive to external magnetic field, which means that we can have opposite elastic state 
for almost unchanged magnetic state. From the solution obtained in eqs (25–37), the magnitude of the periodic 
elastic field can be enhanced by increasing the magnetoelastic coefficients and also the size (the wavelength) of an 
individual skyrmion, which may be achieved by choosing appropriate materials.

Besides data-storage devices, magnetic skyrmions are also promising for developing new microwave appli-
cations, since they excite gigahertz collective spin vibration modes when exposed to magnetic microwave14,24,25. 
Existence of the elastic triple-Q structures provides a variety of options for development of related technology, 
such as novel magneto-acoustic actuators and sensors. For this purpose, it is of interest to derive the correspond-
ing collective elastic field vibration modes from the known collective spin vibration modes and study their cou-
pling in dynamical conditions.

Conclusion
We obtain the analytical solution of the periodic elastic fields for the eigenstrain problem in chiral magnets. In the 
skyrmion phase, the nonlinear magnetoelastic coupling leads to formation of three types of triple-Q elastic field 
structures. For MnSi, the triple-Q displacement structure uS1 and the triple-Q stress structure σS

3
1 are found to 

undergo a configurational reversal when the magnetic field increases from 0 T to 0.4 T. Through thermodynamic 
analysis, we find that such a configurational reversal is likely to occur for any B20 compound. It will be interesting 
to experimentally detect the periodic elastic structure, and further discuss the intrinsic vibration modes of these 
elastic triple-Q structures.

Figure 5. Configuration of uS1 +  uS2 +  uS3 at temperature 4 K and magnetic field (a) 0.1 T, (b) 0.2 T, (c) 0.3 T, and 
(d) 0.4 T.
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