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The interplay between the linear elastic deformation up to 20% and the unique electronic properties of graphene nanostructures
offers an attractive prospect to manipulate their properties by strain. Here we review the recent progress on the electronic response
of graphene to the in-plane strains, including the strain-modulated electronic structure and the strain-modulated spin, valley and
superconducting transports. A generalized Hamiltonian for a graphene was constructed subjected to arbitrary in-plane strains. The
Hamiltonian is helpful to design and optimize the graphene-based nano-electromechanical systems (NEMS).

Keywords: Graphene; strain; transport; electronic structure.

1. Introduction

The outstanding mechanical properties of graphene with the
Young's modulus of 1 terapascals and the linear elastic de-
formation more than 20%,1,2 accompanying the unique
electronic structure with the carrier's behavior like relativistic
Dirac fermions,3–5 provide an exciting prospect to design and
fabricate the graphene-based nano-electromechanical systems
(NEMS).6–10 Recently, a great deal of theoretical and ex-
perimental investigations have been done focusing on the
strain effect on the electronic structure, optical properties,
electronic transport, spin transport and valley transport in
graphene nanostructures and devices. Here we review the
recent progresses on the response of graphene to the in-plane
strains and construct a generalized Hamiltonian describing
the quasiparticles in a graphene subjected to arbitrary in-
plane strain. The generalized Hamiltonian is built based on
the tight-binding approach and the linear elasticity theory.
The tight-binding method for graphene predicts the linear
dispersion and zero bandgap,11 which agrees well with the
experimental results.3–5 The linear elasticity theory for gra-
phene is a reasonable approximation for relative small de-
formation, since the mechanical experiments demonstrate
that the graphene can sustain the linear elastic deformation
more than 20%.1 The tight-binding interaction between any
two nearest-neighbor C atoms mainly results from the � bond

of the two Pz orbitals, since the in-plane stretch does not lead
to the out-of-plane deformation such that the � bond of the
two Pz orbitals is quite weak and can be neglected.12,13 The
generalized Hamiltonian cannot only give the coincident
expression as derived before under uniaxial strain, but also be
suitable for the tension-shear combined loadings. The ana-
lytical expression of the strain-dependent Hamiltonian can be
used to predict the electronic properties of the in-plane
strained graphene, which is helpful to design and optimize
the graphene-based NEMS devices.

2. Model of an in-plane strained graphene

One of the simplest graphene-based NEMS structures is a
two-terminal device, as depicted in Fig. 1, where the local
strain is usually applied inside the middle region. In order to
explore the electronic transport properties along different
directions in such a clean and flat graphene nanostructure,
one direction should be chosen as the x-axis and then we
label the laboratory frame (Cartesian or cylindrical coordi-
nates). It is convenient to choose the longitudinal direction of
the device as the x-axis, as shown in the inset in Fig. 1. Note
that the longitudinal x direction can be any direction in the
graphene plane. That is to say, it is not necessary to require
that the zigzag direction of graphene must agree well with the
longitudinal x direction. For a two-dimensional material such
as the graphene, the in-plane strain tensor in lab frame always¶Corresponding author.
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includes three independent elements "xx, "yy and "xy, no
matter which kind of loading is applied in the plane, such as
the uniaxial or multiaxial tensions. The strain tensor has this
general form

"̂ ¼ "xx "xy

"xy "yy

" #
; (1)

where the two elements "xx and "yy are the axial strains and
"xy is the shear strain, respectively. Equation (1) indicates that
only x and y axial strains retain if "xy is zero and only pure
shear strain exists when both of "xx and "yy are zero. Other-
wise, the strain tensor reflects a combination of the shearing
and axial strains. Provided that a uniaxial tension T is applied
along the direction with an angle θ in Fig. 1(a) and the
shear force F is applied along the direction with an angle ’ in
Fig. 1(b), the uniaxial and shear loadings induce the fol-
lowing strain tensors, respectively:

(i) Uniaxial tension induced strain

"̂ ¼ "
cos2θ � � sin2θ (1þ �) sin θ cos θ

(1þ �) sin θ cos θ sin2θ � � cos2θ

" #
; (2a)

where " is the uniaxial strain magnitude and � is the Poisson's
ratio. Note that here the strain tensor always keeps this form, no
matter whether the x-axis is the zigzag direction or not, due to
the isotropic mechanical property of buck graphene.14

(ii) Pure shear force induced strain

"̂ ¼ γ
�sin 2’ cos 2’

cos 2’ sin 2’

" #
; (2b)

where γ is the shear strain magnitude.

The graphene crystal lattice can be described by the
translation primitive vectors a1 and a2, and the nearest-
neighbor vectors ±1, ±2 and ±3 in the lab frame directly, but
these vectors have complicated expressions. In order to
simplify the expressions of these vectors, we choose another
lattice frame (x 0–y 0 frame), where the zigzag direction of
graphene has an angle α with respect to the x-axis. In the
lattice frame, as depicted in the right inset of Fig. 1, we can
simply write these lattice vectors and corresponding basic
vectors of reciprocal lattice for the graphene without strain as

± 0
1 ¼ a0

ffiffiffi
3

p

2
;� 1

2

� �
; ± 0

2 ¼ a0(0; 1);

± 0
3 ¼ a0 �

ffiffiffi
3

p

2
;� 1

2

� �
;

(3a)

a 0
1 ¼ ± 0

1 � ± 0
2 ¼ a0

ffiffiffi
3

p

2
;� 3

2

� �
;

�~a 0
2 ¼~±

0
3 �~±

0
2 ¼ a0

ffiffiffi
3

p

2
;
3
2

� �
;

(3b)

b 0
1 ¼

2�
a0

1ffiffiffi
3

p ;� 1
3

� �
; b 0

2 ¼
2�
a0

1ffiffiffi
3

p ;
1
3

� �
: (3c)

By using the rotation operation R(α), we can further write all
these vectors in the lab frame as

ÂT ¼ R(α)(Â 0)T ¼
cos α �sin α

sin α cos α

" #
(Â 0)T ; (4)

where (Â 0)T (T denotes the transpose) is any one vector in
the lattice frame with its counterpart ÂT in the lab frame.
When an external loading is applied, the graphene structure
will have a deformation. As a result, all these vectors in the

Fig. 1. A two-terminal graphene-based NEMS device (left inset) in the lab frame (x–y frame). The in-plane mechanical loading in the rectangular region
possibly includes (a) a uniaxial tension T with the loading directional angle θ, (b) a shear force F with the loading directional angle ’ and (c) a tension-shear
combined loading. Right inset: Graphene lattice in lattice frame (x 0–y 0 frame).
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lab frame will also be changed and can be described by

Â s
i ¼ Âi þ

X
j

"ijÂj; (5)

where Â s
i (i; j ¼ x; y) is any deformed vector.

3. The tight-binding Hamiltonian for a
strained graphene

3.1. The tight-binding Hamiltonian and
energy band structure of graphene
subjected to in-plane strains

Using the standard nearest-neighbor tight-binding approach,
we can write the strain-dependent Hamiltonian in momentum
space as

H ¼
0 h(k)

h�(k) 0

" #

¼
0 �

X3

j¼1
tje

ik�± s
j

�
X3

j¼1 tje
�ik�± s

j 0

2
664

3
775; (6)

where tj ¼ Vpp�(j± s
j j) ¼ �t0 exp (�2k0(j± s

j j=a0 � 1)) is the
nearest-neighbor hopping integral interactions between the
two neighboring carbon Pz orbitals with k0 � 1:6.14 It should
be mentioned that the nearest-neighbor hopping integral
can also be approximately treated as tj ¼ Vpp�(j± s

j j) ¼
�t0a

2
0=j± s

j j2, which has been used to evaluate the band en-
ergy structure in a graphene ribbon.15,16 Within the linear
deformation range of graphene, the two kinds of approx-
imations have the similar and comparable varying trends.
Equation (5) can give the energy band structure (or the dis-
persion relationship), i.e., E(k) ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h�(k)h(k)
p

.
From the plot of the energy dispersion relationship, we

cannot only observe the strain-induced reciprocal space dis-
tortion but also judge whether the bandgap is opened or not.

The contour plots of the energy dispersion for strained gra-
phene are shown in Fig. 2. From Fig. 2(a), it can be seen that
the Brillouin zone is the typical honeycomb geometry of the
hexagonal lattice for free graphene. Assuming that a uniaxial
tension along the zigzag direction (θ ¼ α ¼ 0) is applied, the
Brillouin zone is apparently stretched and reflects the rela-
tively low symmetry of the rhombic lattice, as shown in
Fig. 2(b). The pure shearing strain (’ ¼ α ¼ 0) in Fig. 2(c)
leads to the lowest symmetry of the monoclinic lattice. The
strain-induced transformation of the lattice symmetry is given
in Ref. 17 and is used to check the electron behavior.18

Therefore, the strain-induced lattice distortion and the chan-
ged hopping interactions of the two Pz orbitals of the neigh-
boring carbon atoms are directly responsible for the electronic
structure and transport properties of strained graphene. To
make sure that the band gap is opened or not in strained
graphene, we plot the band energy structure under different
loadings in Fig. 3. It is found that the uniaxial tension cannot
open the bandgap even though the strain magnitude is up to
22%, which agrees well with previously theoretical and ex-
perimental results.14,19–21 The pure shear strain less than
about 17% cannot either open the bandgap, as shown in
Fig. 3(a), where the γ is 15% and ’ is zero. But the bandgap
can be opened when γ is larger than 17% and also agree well
with previous results,17 as demonstrated in Fig. 3(b), where γ
is 20% and ’ is zero. In addition, the different combinations
of the uniaxial and shear strains have different effects on the
bandgap, as shown in Figs. 3(c) and 3(d). The pure shear
strains with γ ¼ 15% and ’ ¼ 0, combined with the zigzag
direction uniaxial strain with " ¼ 15% and θ ¼ 0 still do not
open the gap, but the armchair direction uniaxial strain with
" ¼ 15% and θ ¼ �=2, combined with the pure shear strain
with γ ¼ 15% and ’ ¼ 0 open a wider gap. This means that
the uniaxial strains along the zigzag and armchair direction
reduces and enhances the pure shear strains with ’ ¼ 0, re-
spectively. Therefore, when using the tension-shear combined
loadings one should enhance the shear deformation to realize
the off state of a graphene-based NEMS device.

Fig. 2. The contour plots of the energy dispersion for (a) free graphene, (b) graphene under the zigzag direction strain with " ¼ 15% and (c) graphene under
pure shear along the zigzag direction with γ ¼ 15%. Their irreducible Brillouin zones are defined by Γ—M—K—Γ, Γ—M—K—M—K—Γ and Γ—K—M—K
—M—K—M—K—Γ, respectively.
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3.2. The generalized Hamiltonian within the
linear elasticity theory

By using Eqs. (3)–(6), we can write the term h(k) as

h(k) ¼ t0f1 exp [i(ky cos α� kx sin α)a0]

þ 1
2
t0f2 exp � 1

2
i((

ffiffiffi
3

p
kx þ ky)a0 cos α

�

þ (�kx þ
ffiffiffi
3

p
ky)a0 sin α)

�

þ 1
2
t0f3 exp

1
2
i((

ffiffiffi
3

p
kx � ky)a0 cos α

�

þ (kx þ
ffiffiffi
3

p
ky)a0 sin α)

�
; (7)

where we have set these quantities f1, f2 and f3 as

f1 ¼ 1þ i(kxa0"xy þ kya0"yy þ 2ik0"yy cos α) cos α

� i(kxa0"xx þ kya0"xy þ 4ik0"xy cos α) sin α

� 2k0"xxsin
2α; (8a)

f2 ¼ 2� 2k0"xx � 2k0"yy � i(
ffiffiffi
3

p
kx"xx þ kx"xy

þ
ffiffiffi
3

p
ky"xy þ ky"yy)a0 cos α

þ k0(�"xx � 2
ffiffiffi
3

p
"xy þ "yy) cos 2α

þ i(kx"xx �
ffiffiffi
3

p
kx"xy þ ky"xy �

ffiffiffi
3

p
ky"yy)a0 sin α

þ k0(
ffiffiffi
3

p
"xx � 2"xy �

ffiffiffi
3

p
"yy) sin 2α; (8b)

f3 ¼ 2� 2k0"xx � 2k0"yy þ i(
ffiffiffi
3

p
kx"xx � kx"xy

þ
ffiffiffi
3

p
ky"xy � ky"yy)a0 cos α

þ k0(�"xx þ 2
ffiffiffi
3

p
"xy þ "yy) cos 2α

þ i(kx"xx þ
ffiffiffi
3

p
kx"xy þ ky"xy þ

ffiffiffi
3

p
ky"yy)a0 sin α

þ k0(�
ffiffiffi
3

p
"xx � 2"xy þ

ffiffiffi
3

p
"yy) sin 2α: (8c)

Note that all these physical quantities are expanded to the
first-order of the strain tensor elements and to the second-
order in an impulse,22 due to the assumption of the linear
elasticity theory. Using Eqs. (7) and (8a)–(8c), we can find
the position (KDx, KDy) of the conduction band bottom
according to the minimum conditions of the energy function
E(k) ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h�(k)h(k)
p

in momentum space, and the position of

Fig. 3. The energy band structure, under the pure shear strains with ’ ¼ 0 for (a) γ ¼ 15% and (b) γ ¼ 20%, under the tension-shear combined loadings for (c)
γ ¼ 15%, ’ ¼ 0, " ¼ 15% and θ ¼ 0 and (d) γ ¼ 15%, ’ ¼ 0, " ¼ 15% and θ ¼ �=2.
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the conduction band bottom is at

KDxa0 ¼
4� cos α

3
ffiffiffi
3

p � 4
ffiffiffi
3

p
�

9
("xx cos αþ "xy sin α)

þ k0(("xx � "yy) cos 3αþ 2"xy sin 3α); (9a)

KDya0 ¼
4� sin α

3
ffiffiffi
3

p � 2k0"xy cos 3α�
4�

3
ffiffiffi
3

p ("xy cos α

þ "yy sin α)þ k0("xx � "yy) sin 3α: (9b)
By substituting (kx; ky) ¼ (KDx þ qx;KDy þ qy) into in
Eqs. (6) and (7) we can expand the Hamiltonian near the
point (KDx, KDy) and further evaluate the generalized Ham-
iltonian as follows:

HS ¼
0 g1qx � ig2qy

g�
1qx þ ig�

2qy 0

" #

¼
0 =x � i=y

=x þ i=y 0

" #
¼ ¾ �= ¼ ¾ � A

qx

qy

 !
; (10)

where ¾ is the Pauli matrice, and the }vF ¼ 3t0=2a0 has been
set as 1, and the other quantities g1, g2, =x and =y with
λ ¼ 1=2� k0 are set as

g1 ¼ eiα(1þ 2λ("xx � i"xy)); (11a)

g2 ¼ eiα(1þ 2λ("yy þ i"xy)); (11b)

=x

=y

 !
¼A

qx

qy

 !
¼

(g�
1 þ g1)=2 i(g�

2 � g2)=2

(g�
1 � g1)=2i (g�

2 þ g2)=2

" #
qx

qy

 !
;

(12a)

A11 ¼ (g�
1 þ g1)=2 ¼ (1þ 2λ"xx) cos αþ 2λ"xy sin α; (12b)

A12 ¼ i(g�
2 � g2)=2 ¼ 2λ"xy cos αþ (1þ 2λ"yy) sin α; (12c)

A21 ¼ (g�
1 � g1)=2i ¼ 2λ"xy cos α� (1þ 2λ"xx) sin α; (12d)

A22 ¼ (g�
2 þ g2)=2 ¼ (1þ 2λ"yy) cos α� 2λ"xy sin α; (12e)

Substitutioning of all the matrix elements in Eqs. (12b)–(12e)
into Eq. (10) yields the generalized Hamiltonian as

HS ¼ ¾ �= ¼ ¾ � R(�α)( Î þ 2λ"̂)q; (13)

where R(�α) is the rotation operation as demonstrated in
Eq. (4) and Î is the identity matrix.

The validity of the generalized Hamiltonian in Eq. (13) is
checked by comparison with previous results. We first check
the special uniaxial tension, as done in Refs. 14 and 22,
where the angle θ of the tension direction is fixed along the
x-axis (i.e., θ ¼ 0), but the angle α can be varied to determine
which direction of the graphene lattice is stretched. By
substituting the strain tensor in Eq. (2a) into Eq. (13), we can
obtain the Hamiltonian under uniaxial strain as follows:

HS ¼¾ �= ¼ ¾ � A
qx

qy

 !

¼¾ �
cos α sin α

�sin α cos α

" #
(1þ 2λ")qx

(1� 2λ"�)qy

 !
: (14)

The obtained Hamiltonian for the uniaxial tension is con-
sistent with the results in Refs. 22.When the strain magnitude
" is lower than 20%, the band gap is not opened. As a result,
the conduction band bottom is the so-called Dirac point. The
Hamiltonian in Eq. (14) near the Dirac point directly
demonstrates the anisotropic linear energy dispersion

E 2(k) ¼ (1þ 2λ")2q2
x þ (1� 2λ"�)2q2

x : (15)

For example, the effects of the zigzag direction strain on
the linear energy dispersion are shown in Figs. 4(a) and 4(b)
with " ¼ 5% and 15%, respectively. Due to the isotropic
dispersion, the isoenergetic curves for free graphene are cir-
cles. In the presence of the zigzag direction strain, the iso-
energetic curves are ellipses, which reflect the typical
anisotropic dispersion. In addition, with the increased strain,
the anisotropy is enhanced. Similarly, we find the shear strain
can also induce anisotropic linear energy dispersion, but with
a rotation due to the shear force, as shown in Fig. 4(c) with
γ ¼ 15%, ’ ¼ 0.

Substituting the strain tensor in Eq. (2a) into Eqs. (9a)–
(9b), respectively, we can write the position of Dirac point for

Fig. 4. Strain-induced anisotropic isoenergetic curves under zigzag direction strain for (a) " ¼ 5% and (b) " ¼ 15%, under the pure shear strain for (c)
γ ¼ 15%, ’ ¼ 0. The circles are the isoenergetic curves of free graphene.
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the uniaxial tension, as follows:

KDxa0 ¼
4
ffiffiffi
3

p
�

9
(1� ") cos αþ k0"(1þ �) cos 3α; (15a)

KDya0 ¼
4
ffiffiffi
3

p
�

9
(1þ "�) sin αþ k0"(1þ �) sin 3α: (15b)

The position of Dirac point in Eqs. (15a) and (15b)
includes the shift of the Dirac point, i.e., the strain-dependent
components, which play the role on the strain-induced pseu-
domagnetic field,8–10,23–27 and can be experimentally7,28–31

probed. This is very important for electronic transport in
graphene nanostructure. Note that if a uniform strain is applied
inside the whole graphene layer, there is no pseudomagnetic
field, since the mismatch of the wave vector never happens.

In principle, the generalized Hamiltonian in Eq. (13) can be
used to deal with any in-plane strains, in spite of the non-
uniform strain profiles, strain gradient and boundary problems.
The reason is that one can use the finite difference method or
finite element method to separate the strained regions into a
series of small and uniform strained modules, where a rea-
sonable size a� b of the small and uniform two-dimensional
module must be much bigger than the lattice constant a0 (i.e.,
a; b � a0) to ensure the validity of the generalized Hamilto-
nian. In addition, it is worthy to mention that the finite dif-
ference method has been successfully applied to predict the
electronic properties of graphene quantum waveguide and
superlattice,22,32–40 and the predicted results agree well with
the experiment, which indicates that the Dirac point can be
cloned in a graphene superlattice.41 The limitations of the
generalized Hamiltonian in Eq. (13) are only for in-plane
strain under the small deformation, where the maximum limit
of the uniaxial strain is about 20% and the maximum shear
strain is about 15%, since a larger shear strain can open the
band gap and possibly destroy the graphene crystal lattice.

Experimentally, the in-plane strain can be realized by the
flexible substrate (such as the polyethylene terephthalate),1,2,42

where a robust adhesion between the graphene and the sub-
strate is made to ensure the effective uniaxial loading on the
graphene. Usually, for a two-terminal graphene-based NEMS
device, the uniform external tension is applied along the lon-
gitudinal transport direction in lab frame. In such a case, the
angle θ equals to zero, and therefore the longitudinal tension
along the x-axis is relatively easy to be loaded in experi-
ments42 and becomes simple for the theoretical analysis.

4. Strain effects on the quantum transport in
graphene nanostructure

4.1. Strain-manipulated electronic transports in
graphene nanostructure

Owing to the linear dispersion and the ultra-long mean free
path with the order of micrometer, the electrons and holes as

relativistic Dirac fermions show the ballistic electronic
transport phenomenon in clean graphene.3–5 How to control
the electronic transport behavior in graphene has aroused a
great deal of attention of many researchers. The electrons in
graphene can perfectly pass through a potential barrier with
normal incidence and this phenomenon is the so-called Klein
tunneling.43,44 In the presence of a bipolar PN junction fab-
ricated by a combination of top/bottom electrostatic
gates,46–48 the carriers exhibit electronic negative refractive
due to the interband scattering,49 which attracts considerable
attention on the analogous light phenomenon of electrons in
graphene-based nanostructure.50–59 Alternatively, the strain
opens an exotic way to tailor the electronic transport in a
strain-engineering fashion, where the electronic confinement,
collimation and scattering can be achieved by designing an
expected substrate-induced local strain profile.8 For the
strain-induced graphene 1D channels, i.e., the quantum
waveguide, the bound states and the surface modes occur and
play the important role of guided mode on guiding the
electrons inside the channel.8,58,59 In addition, the different
directional strains lead to different effects on the guided mode
and the strain-tunable bound states are verified by the photon-
assisted tunneling,59 where an oscillating potential or a laser
is used to supply the photon.60–71 A profile of periodic local
uniaxial strains or corrugated deformation in graphene can
remarkably affect the energy structure, electronic transmis-
sion and shot noise by the strain-induced vector potential,
scalar potential and renormalized group velocity.22,37–40 In
addition, the anisotropic energy dispersion in graphene po-
tential superlattice also exists in the graphene strain super-
lattice.35 Attractively, a zero-field quantum Hall effect can
appear in strained graphene,9 due to the strain-induced
pseudomagnetic field up 10–100 T, which has been con-
firmed by experiments.7 The strain also has remarkable
tunable effects on the optical properties of graphene, because
the strain changes the lattice space group and the energy
structure.72–74

4.2. Strain-manipulated graphene Spin
electronics and Valley electronics

Experiments demonstrate that the spin coherence length in
graphene at room temperature can be more than 1 μm.75 The
combination of the ultra-long spin coherence and the unique
electronic structure of graphene have attracted considerable
attention in graphene-based spintronics and quantum trans-
ports in low-dimensional nanostructure. Because two de-
generate and inequivalent valleys at the K and K 0 corner of
the Brillouin zone exist in graphene, the valley degree
of freedom plays the role as the similar spin information
carrier. When the valley freedom can be manipulated in a
controllable fashion, as a counterpart of the spintronics, the
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graphene-based valleytronics can spring up attractively.76 For
the graphene spintronics, to inject and detect the spin in
graphene, a spin valve can be fabricated with an enhanced
injecting efficiency.77–81 The reduced size and edge effects
may make magnetic correlations happen in a graphene
nanoflake82,83 and a zigzag graphene ribbon subjected to an
in-plane electric field may have complete single spin
state.84,85 Alternatively, the extrinsic Rashba spin–orbit in-
teraction (SOI) in graphene can induce the spin-dependent
electronic structure,86–93 and has been demonstrated in
experiments, where the graphene is grown on a metal Ni
substrate.94,95 Recently, Rashba SOI is extensively used in
the tunable spin transport.96–104 Another way is the proximity
effect between a ferromagnetic insulator and graphene,105

which induces the ferromagnetic graphene and has been
demonstrated in experiments.106,107 For the graphene val-
leytronics, the valley valve, filter and polarization also need
to be realized. A zigzag graphene ribbon with size confine-
ment and additional gate voltage can provide the valley filter
and valve effects.76 The different non-trivial deformations
(i.e., band trigonal warping effect) for the energy band of the
two valleys will happen if a relatively high voltage
(�600meV) is applied, and provide another way to realize
the valley polarization.108,109 In addition, the intense irradi-
ation on graphene or inducing Dirac gap can also induce the
valley polarization effect.110

Besides the generation of the spin polarization and the
valley polarization, the controllable spin and valley transports
in graphene need to be realized. In such a case, strains pro-
vide an important way to manipulate the spin and valley
transports in graphene-based nanostructure. There are two
ways for strain in graphene to modulate the spin and valley
transports. One is that designing an expected substrate pattern
induces a suitable strain distribution, which produces pseu-
domagnetic vector potential to have remarkable effects on the
electronic transports; and the other one is that using the
uniaxial tension to induce not only the anisotropic strain-
renormalized group velocity but also the pseudomagnetic
field from the shift of the Dirac point to manipulate the spin
and valley electrons in graphene nanostructure. First, for the
spin manipulation, a ferromagnetic/strained/normal graphene
junction demonstrates a strain-controllable spin-resolved
Fermi energy range and a strain-modulated spin rectification,
which can be utilized as a tunable spin diode.111 It is shown
that the zigzag and armchair direction strains have aniso-
tropic modulating effects. A graphene ferromagnetic junction
coupled with the pseudomagnetic vector potential shows a
strain-tunable spin-resolved conductance and polarization,
which can be used as a spin filter.112 The strain combining
with a spin–orbit coupling can also have a tunable effect on
the spin-dependent conductance modulation113 and the gen-
eration of full spin polarization if a ferromagnetic exchange

splitting is induced.114 The strain effects on the spin transport
exhibit a different tunable behavior from the gate-controlled
potential barrier.115 Next, for the valley manipulation, a
combination of the strain and real magnetic field in graphene
can realize the valley polarization, since the symmetry of
strain-induced vector potential at valleys K and K 0 is
destroyed by the real magnetic field.116–119 Consequently, the
combined structures between the local strain and real mag-
netic field can be designed to tune the valley transport in
graphene.120–124

4.3. Strain-manipulated graphene
superconductor nanoelectronics

Experiments demonstrate that the superconductivity of gra-
phene cannot only be induced by the proximity effects,125–134

but also be applied in a graphene-superconductor junction,
where the relativistic DC Josephson current is observed and
agree well with the theoretical results.135–141 The interplay
between the superconductivity and the linear dispersion of
graphene is responsible for not only the specular Andreev
reflection,142–149 but also the unusual supercurrent phenom-
enon (i.e., a finite Josephson current induced by the zero
energy state), while controllable superconductor nanoelec-
tronics require a high on/off rate. Therefore, controllable
Josephson current in graphene superconductor junction needs
to be realized.

The strain in graphene can not only induce the size de-
formation but also supply an anisotropic manipulation on the
supercurrent due to the anisotropic group velocity and the
different Dirac point displacements. In addition, the strain has
little influence on the superconducting state of graphene
under the superconducting electrodes, because the strain-
induced pseudomagnetic fields have no impacts on the spin
unlike the real magnetic field.150 There are two ways to re-
alize the strain-modulated graphene Josephson junction. One
is the uniform strain for the whole graphene superconductor
junction including the left and right graphene super-
conducting regions,151–153 and the other is the non-uniform
strain only applied inside some local regions.154

For the uniform strain, the whole sheet of graphene has the
same deformation and thus there is no mismatch of the wave
vectors of the wave functions between the superconducting
region and the normal region. In such a case, the strain-in-
duced size deformation plays the most important role in tuning
the Josephson current at the charge neutrality point.151 The
critical supercurrent IC at the Dirac point is proportional to the
rate between the width W and the length L of the middle
normal region in the graphene Josephson junction, (i.e.,
IC � W=L).135 As a result, the zigzag and armchair direction
strains lead to the opposite effects on the supercurrent, i.e.,
linearly decreasing and increasing, respectively. The clear
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reason is that the horizontal and vertical tensions induce the
opposite size deformation of W=L. But note that under arm-
chair direction strain, the supercurrent direction is perpen-
dicular to the strain direction, which is different from the work
in Ref. 154, where the electronic transport direction always
keeps the same direction as the strain direction. The critical
supercurrent IC at other energy has a similar changing trend,
but will oscillate when a potential barrier is applied in the
middle region.139 In addition, a ferromagnetic grapheme
coupled with strain in the middle region, 0–� state transition of
supercurrent will happen and the 0–� state transition can be
manipulated by the zigzag direction strain.155 The uniform
strain can also be applied to change the tunneling conductance
in a graphene-based normal/insulator/superconductor junc-
tion153 and tune the superconducting pair correlation and
display the interplay between the strain-induced pseudomag-
netic fields and pair correlations.150 When a local strain is
applied inside the middle region of a Josephson junction, some
obviously different effects of the local strain on the super-
current can be predicted. Firstly, a velocity distribution occurs
due to the unequal group velocities in different regions. The
velocity distribution will have obvious influence on electronic
transport,156 and thus change the oscillating period of super-
current when the zigzag direction strain is applied, but note
that in such a case the zigzag direction strain never induced the
mismatch of the wave vector ky due to KDy ¼ 0. Second, when
the armchair direction strain is applied, the mismatch of the
wave vectors ky exists due to the Dirac point displacement,
which leads to the vanishing of the Andreev bound states and
turns off the Josephson supercurrent with a cutoff strain. But
one should bear in mind that here the supercurrent direction is
the same as the strain direction.

In summary, the effects of the in-plane strain on the
electronic structure and the spin, valley and superconducting
transports are summarized and reviewed. A generalized
Hamiltonian in graphene subjected to arbitrary in-plane
strains is constructed. By comparing with previous results, it
is found that the generalized Hamiltonian is effective and has
more general characteristics for graphene under in-plane
complex strain state.
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