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a b s t r a c t

The intrinsic ripples of suspended graphene have attracted intensive attention due to their influence on
the electronic transport and other properties. Negative thermal expansion (NTE), another unconven-
tional phenomenon found in graphene, can be utilized to control the intrinsic ripples in a reversible way,
thus opening new perspective for application. In this case, understanding the mutual relation and
physical origin of the intrinsic ripples and NTE is crucial, especially since they are both widely observed
in other 2D materials. Here we clarify through lattice dynamical analysis that at low temperature the two
phenomena are both intrinsic for any 2D crystals with a honeycomb structure (or any monatomic 2D
crystals). We find that the intrinsic ripples, generally believed to be caused by thermal fluctuation, have
another origin that is the appearance of soft ZA modes near long wavelength limit when the lattice
constant is shortened. Moreover, the soft ZA modes and NTE have the same physical origin at low
temperature. At finite temperature, NTE is dominantly caused by the “vibrational elongation” effect
owing to large out-of-plane fluctuation according to our calculation based on self-consistent phonon
theory.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Uncovering the nature of its intrinsic ripples [1,2] is one of the
most challenging and vital problems concerning suspended gra-
phene. On one hand, its academic interest derives from the
PeierlseLandaueMermin argument, raised almost 80 years ago,
about the non-existence of low-dimensional crystalline state [3e5].
On the other hand, the crumpled morphology of a suspended
graphene has a profound impact on its physical properties,
including electronic transport [6e12], magnetoresistance [13],
mechanical strength [14], electromechanical coupling [15] and
chemical activity [16,17]. Currently, the spontaneous appearance of
ripples in graphene is attributed to several factors, including ther-
mal fluctuations [18,19], spontaneously and/or thermally generated
strains [20] and adsorbed OH molecules sitting on random sites
[21]. Despite these existing explanations, we believe that the ripple
problem for suspended graphene is still far from settled because of
many related yet unsolved issues. To name a few of these issues, the
clear Engineering and Tech-
ls and Technologies, Sun Yat-
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spontaneous ripples found by Meyer et al. [1] in graphene are with
a size range of 50 e 100 Å, what factor determines this size and is it
controllable? Are the ripples randomly distributed or with a stable
pattern? Is the rippled state unique for graphene or is it a common
feature for any 2D materials?

Another unusual structural property of graphene is that it pos-
sesses NTE coefficient [22], which is also found in graphene oxide
[23,24]. Actually, before the experiments, the NTE coefficient of
graphene has been predicted and explained by using a theoretical
method combining first principle calculation and lattice dynamical
analysis [25]. Moreover, it is found that NTE can be used to control
the intrinsic ripples in a reversible way [20], which is of great
merits for exploration of new tunable graphene-based devices. At
this stage, it is natural to think that certain internal relation exists
between these two types of exotic structural properties of gra-
phene, which has never been truly understood.

In this work, we try to elucidate the relevance between the
intrinsic ripples and the NTE in graphene. By doing so, direct an-
swers or clues to the many unsolved issues concerning the intrinsic
ripples are obtained, as well as a deeper understanding of the origin
of the ripple formation and the NTE coefficient in graphene. The
discussion is divided into two parts: one for low temperature
condition where the effect of thermal fluctuation is neglected, and
the other for finite temperature condition where thermal fluctua-
tion is significant and even compatible with lattice spacing.
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2. Low-temperature analysis

At low temperature, according to the theory of lattice dynamics
in the harmonic approximation [26], the phonon frequencies are
determined by

u2
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where εak(q, n) is polarization of the kth atom in the unit cell in the
a-axis direction of the nth branch of phonon with wave vector q,
and
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is the dynamical matrix. l0k0 is the lattice vector pointing to the unit
cell in which atom k0 is lying. In Eq. (2)
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where U ¼P
i
Fi denotes the total potential energy of the system,

and Fi is the potential energy possessed by the ith atom. The
subscript “0” means that the derivative takes value at equilibrium

lattice structure, and ua

�
0
k

�
denotes the ath component of the

displacement vector of the kth atom in the 0th unit cell.
A basic character of the vibrational motion of 2D materials is

that the restoring force for the out-of-plane motion is caused by
changes of bond angles [27]. This means that an effective descrip-
tion of the interatomic potential in this case has to be a multi-body
potential. For example, the carbonecarbon potential LCBOPⅡ [28]
describes the nearest neighbor interaction between carbon atoms
in graphene as a function of the bond length as well as four related
bond angles. Describing the system with LCBOPⅡ, the potential
energy possessed by the ith atom Fi takes the following form
[29,30].
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where qijk denotes the bond angle between neighboring bond rij
and rik (ks i, j). 41(rij, qijk), 42(rij) and 43(rij) denote respectively the
nearest neighbor interaction, the second nearest neighbor inter-
action and the third nearest neighbor interaction. Geometrically, rij

and qijk are both function of ua

�
0
k

�
and ub

�
l0

k0

�
ða; b ¼ 1; 2; 3Þ.

Hence for any 2D lattice structure, the following expansion can
always be done concerning the second order derivative of the
nearest neighbor interaction 41(rij, qijk)
where rij ¼
		rij		. Eq. (5) expresses the force constants of the phonon

vibration by six derivatives of the potential (one should notice that

for k¼ l and k s l,
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derivatives). The last five of these derivatives are closely related to
the macroscopic mechanical constants of grapheme [30].

For the second order derivative of the long-range interactions in
graphene, an expansion similar to Eq. (5) can be obtained as
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where m¼ 2, 3. The expansions in Eq. (5) and Eq. (6) are useful for
analyzing the phonon spectrum and related physical properties. For
graphene, we find that the first terms on the RHS of Eq. (5) and Eq.

(6) with the form ðv4k
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; ðk ¼ 1; 2; 3Þ (here-

after called the FOD terms) has a considerable effect on the phonon
spectrum and are crucial for the NTE of graphene in low
temperature range. Notice that the ground state lattice constant a0
(here we mean the equilibrium distance between the
nearest neighbors) for graphene is determined by
vFi
va ¼ 1

2
v
va ½

P
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where a is the nearest neighbor distance in graphene. To make the

sum of this three terms zero, ðv4k
va Þ0; ðk ¼ 1; 2; 3Þ are all nonzero

quantities even at ground state, which leads to nonvanishing FOD
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terms. This result can no longer hold if only nearest neighbor
interaction is considered.

From its definition, the linear thermal expansion coefficients are
given by ak ¼ 1

ak
vak
vT , where summation rule is not applied and

ak(k¼ 1, 2) denotes the characteristic length of the lattice cell in x-
axis and y-axis. Following the Grüneisen formalism [31], we have
alternatively

ak ¼
X
q;n

cvðq;nÞ
X
i

sik
S0

giðq;nÞ; (7)

where sik is the in-plane elastic compliance matrix and S0 is the
equilibrium area of the primitive cell. cv(q, n) denotes the contri-
bution to the specific heat from the mode (q, n)
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and gi(q, n) is called the Grüneisen parameter for mode (q, n).
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In Fig. 1, based on the potential LCBOPⅡ, we plot gi(q, n) for all
the phonon modes for graphene (with red lines). Here we take

giðq;nÞ ¼ �a
2u0;ql

�
vuqn
va

�
0
. The overall structure of the spectrum of

gi(q, n) in Fig. 1 (plotted with red lines) is quite similar to the one
obtained in Ref. [25] using a different carbonecarbon interaction
potential, especially for the in-plane branches. For the ZA modes,
large negative Grüneisen parameters are found in both our calcu-
lation and Mounet and Marzari's work. However, the lowest Grü-
neisen parameter obtained in Ref. [25] next to the G point (i.e., at
long wavelength limit) is �80, while the lowest Grüneisen
parameter obtained in our work approaches �∞. To understand
this singularity of Grüneisen parameter, we solve the ZA mode at
long wavelength limit for graphene as

u2
ZA ¼ b2q

2 þ b4q
4; (10)

where q ¼ jqj and
Fig. 1. Mode Grüneisen parameters for graphene, red lines plotted with the FOD terms,
blue lines plotted without the FOD terms. (A colour version of this figure can be viewed
online.)
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Since every carbon atom in graphene has three nearest neigh-
bors, six second nearest neighbors and three third nearest neigh-
bors, b2 in Eq. (11) can be rewritten as b2 ¼ a

2m
vFi
va . We have at

ground state
�
vFi
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�
0
¼ 0 (neglecting the effect of zero point vibra-

tion), and at absolute zero Eq. (10) is reduced to

u0;ZA ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðb4Þ0

q
q2; (12)

where u0,ZA denotes the frequency of the ZA mode at long wave-
length limit at ground state. For graphene at long wavelength limit,
the Grüneisen parameters for the ZA modes are obtained as
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Although (b2)0 vanishes at ground state, ðvb2
va Þ0 ¼ a

2m ðv2Fi
va2 Þ0 is

positive for a stable lattice structure. Hence we have immediately

lim
q/0

gZAðqÞ ¼ �a
4ðb4Þ0q2 ð

vb2
va Þ0 ¼ �∞, where the singularity is caused by

consideration of the FOD terms in Eq. (6). In Mounet and Marzari's
work [25] this singularity is missing probably because the atomic
potential fitted from the first principal calculation is not a multi-
body potential (i.e., not related to cosqijk). The Grüneisen parame-
ters calculated whenwe neglect the FOD terms is plotted with blue
lines in Fig. 1, where we can see that in this case all modes have
positive Grüneisen parameters. So the effect of the FOD terms is the
only reason for the negative Grüneisen parameters in graphene at
ground state. In the low temperature range, the contribution from
the ZA modes at long wavelength limit to the thermal expansion
coefficient dominates, which implies large NTE coefficient for gra-
phene. This explains the sharp decrease of lattice constant imme-
diately above 0 K in the Monte Carlo simulation of finite
temperature lattice properties of graphene [32]. One should notice
that the property of the atomic potential is not used in the dis-
cussion of gZA(q), which means NTE coefficient is an intrinsic
property for any 2D materials with honeycomb structures in low
temperature range. In Appendix A, we further prove that for any
monatomic 2D crystals, the dispersion relation for the out-of-plane
vibration takes the same form as Eq. (10), with b2 ¼ a

2m
vFi
va . Ac-

cording to the discussion given above, NTE is also intrinsic for any
monatomic 2D crystals.

We have proved that NTE coefficient is intrinsic for graphene in
the low temperature range. The next question is does this NTE
coefficient necessarily leads to a rippled state. To answer this
question, we assume that at any given temperature T above the zero
point, graphene remains in a flat state. In this case, the dispersion
relation of the ZAmode at long wavelength limit is still given by Eq.
(10) and Eq. (11), where b2 and b4 are now calculated at the new
equilibrium lattice constant (ELC) aT instead of a0. Due to the NTE of
graphene in the low temperature range, aT< a0 and thus b2< 0. In
this case, for small enough q the first term in Eq. (10) dominates and
softening of the ZA modes at long wavelength limit is expected,
which causes periodic ripples. To be more specific, Eq. (10) can be
rewritten as

u2
ZA ¼ b4

�
q2 þ b2

2b4

�2

� b22
4b4

: (14)
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From Eq. (14), we can see when b2< 0 (i.e. aT< a0), all the ZA

modes in the interval q22
�
0;
				b2b4
				
�

are softened while the most

softened mode is determined by q2 ¼
				 b2
2b4

				. To illustrate this effect,

we plot in Fig. 2 the phonon spectrum of flat graphene at its ground
state lattice constant a ¼ 1:42059Å, and at a smaller lattice constant
a ¼ 1:41Å. The phonon frequencies in Fig. 2 are obtained in such a
way that imaginary frequencies (softened modes) are replaced by
corresponding negative frequencies. It is shown in Fig. 2 that for
a ¼ 1:41Å, the ZA modes at long wavelength limit are softened. In
previous theories for the “bending” waves in strongly anisotropic
crystals [27], or the theory of membranes [33], dispersion relation
with the form of Eq. (12) is directly used based on elastic theory of
thin plates, for which the existence of soft ZA modes cannot be
discovered. This explains why the soft modes mechanism of ripples
is not seen in these two or other related theoretical works. On the
other hand, We notice that by using the quantum field theory, a
similar condensation of ZA modes near long wavelength limit is
predicted when compressive stress is applied [34]. The physical
mechanism of this “buckling transition” is attributed to the inter-
action between flexural phonons when corrected by the exchange
of electron-hole excitation. Since for our analysis, the effect of
electron is incorporated in the empirical carbon potential, San-
Jose's work may provide an explanation for the soft ZA modes in a
subatomic level.

For any ZA mode with wave vector q, the related atomic dis-

placements can be written as uaq

�
l
k

�
¼ da3Aqei½uqt�qðlkþRkÞ�, where

Aq denotes the amplitude and Rk the relative position vector of the
kth atom in the l th unit cell. Whenuq/0, themode gradually loses
its restoring force and ripples with period determined by q are

formed by the out-of-plane displacements uaq

�
l
k

�
. According to

our deduction for flat graphene, all the ZA modes in the interval

q22ð0;
				b2b4
				Þ are softened when b2< 0, which means that starting

from a flat configuration, ripples with period larger than 2p
ffiffiffiffiffiffiffiffi
�b4

b2

q
will spontaneously appear. Another vital question is the role of the

most softened mode q2 ¼
				 b2
2b4

				 in ripple formulation. According to
Fig. 2. Phonon Spectrum for graphene, red lines plotted at lattice constant
a ¼ 1.42059, blue lines plotted at lattice constant a ¼ l.41. The modes with negative
frequencies are softened. (A colour version of this figure can be viewed online.)
the theory of soft modes [35,36], for any existing soft mode with
wave vector q, the related free energy can be written as

DF ¼ 1
2
u2
qQ

2
q þ O

�
Q2
q

�
þ non� critical terms; (15)

where Qq denotes themean value of the normal coordinate of mode
q and OðQ2

q Þ denotes higher order terms in Qq. Eq. (15) is valid only
when Qq is small enough, i.e., 0F is the change of free energy when
the system is disturbed from flat configuration. In the harmonic
approximation, the modeemode interaction is neglected, thus the
analysis for soft modes with different q can be done independently.
When u2

q <0, we have from Eq. (15) Qq¼ 0 corresponds to a non-
equilibrium state. Choosing Qq as the order parameter of the sys-
tem, the evolution of the system can be studied with the help of
thermodynamics of irreversible processes [37,38].

dQq

dt
¼ �G

vDF
vQq

¼ �Gu2
qQq þ O

�
Qq
�
; (16)

where G>0 denotes the phenomenological kinetic coefficient. We

see from Eq. (16) that for u2
q <0, Qq increases with a speed dQq

dt that

varies linearly with
			u2

q

			. Therefore, the most softened mode

q2 ¼
				 b22b4

				 corresponds to the ripple which evolves with the fastest

speed when the initial state of graphene is flat. In this sence, we
should expect existence of ripples with many different q satisfying

q22
�
0;
				b2b4
				
�
, while the most observable one is with a periodicity

determined by q2 ¼
				 b22b4

				.
For material sample with infinite size, the phonon spectrum is

continuous for q and the wavelength l of the ripple that corre-
sponds to the most softened mode at given shrunken ELC can be
predicted by Eq. (14)

qs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
� b2
2b4

s
;

l ¼ 2p
qs

:

(17)

This wavelength l corresponds to the most observable ripple
and thus we call it the characteristic wavelength of the ripples. This
soft mode-induced mechanism for ripple formation is prior to the
fluctuation-induced mechanism [18,19] for two reasons. Firstly,
appearance of soft ZA modes depends merely on a shortened
lattice constant and it can be derived through lattice dynamics
neglecting any anharmonic terms or effect of fluctuation. Secondly,
the ripples formed by soft modes refer to a change of the static
equilibrium configuration of graphene, which reflects the need
of the system to evolve to an equilibrium state. In this sense, these
ripples are “definite” compared with the fluctuation induced rip-
ples which are more “random”. As a result, in the process of soft
modes stabilization, the static equilibrium configuration of gra-
phene is no longer flat, which changes the phonon spectrum. Thus
the formula given in Eq. (17) should be regarded as a rough esti-
mation of the characteristic ripple size. For a precise calculation of
the associated ripple size and thermodynamic properties of gra-
phene, the interplay between the rippling morphology and the
phonons should be incorporated. We treat this problem in a sub-
sequent work [39].

For material sample with finite size L2, discrete phonon spec-
trum is obtained by using the periodic boundary condition. In this
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case, the smallest q attainable is related to the sample size by 2p/L.
Thus for graphene samples with very small size, it is possible that

even the smallest q is outside the interval
�
0;
				b2b4
				
�
. In this case the

graphene sample will maintain flat at low temperature. Of course
one should notice that our discussion is restricted by the periodic
boundary condition. For any real material sample with finite size,
the actual boundary conditionwill change the vibrational modes of
the sample and therefore has significant influence in the stability
and ripple size. This is an interesting topic which requires further
analysis.

The variation of the characteristic wavelength l of the ripples
with ELC predicted by Eq. (17) is plotted in Fig. 3(a), fromwhich we
observe a drop of l when the ELC decreases from its ground state
value. By Monte Carlo simulation, the finite temperature ELC of
graphene is calculated [32] for a sample of 8640 atoms, and ripples
with wavelength of about 80 Å is found at 300 K [18]. We extract
the finite temperature ELC in Zakharchenko et al.'s work [32] and
calculated the characteristic wavelength l of the soft-mode induced
ripples from Eq. (17). The results are plotted in Fig. 3(b). An “U”
shaped curve with l> 40 Å is obtained for the variation of l with
temperature, and at 300 K l is evaluated to be 42 Å using Eq. (17).
This result is compatible with experimental findings [1]
(50e100 Å).
Fig. 3. Variation of the characteristic wavelength of ripples in graphene with (a) lattice
constant and (b) temperature. The inset in (b) shows the variation of lattice constant
with temperature, extracted from Fig. 1 in Zakharchenko et al.'s work [32]. (A colour
version of this figure can be viewed online.)
3. Finite-temperature analysis

According to the above discussion, a flat graphene at ground
state is crumpled as temperature raises, owing to the decreased ELC
caused by the intrinsic NTE coefficient. Yet this intrinsic NTE coef-
ficient is obtained based on the flat configuration of graphene,
which is only true at ground state. At finite temperature, graphene
stabilizes itself in a rippled state which tends to eliminate the large
negative Grüneisen parameters corresponding to the ZA modes at
long wavelength limit. On the other hand, it is well known that the
low lying ZA modes for low-dimensional materials lead to signifi-
cant out-of-plane fluctuation [27] which is crucial for under-
standing their thermodynamic properties. To analyze the relation
between thermal fluctuation and the NTE coefficient of graphene at
finite temperature, we approximate the phonon calculation by
neglecting the FOD terms in Eq. (6). One should notice that this
approximation is equivalent to a replacement of Eq. (10) by Eq. (12)
in terms of the dispersion relation of the ZA modes. It is already
known from the blue curves in Fig. 1 that by taking this approxi-
mation, the Grüneisen parameters for all modes are positive at
ground state.

Based on the approximated phonon calculation, we calculate the
ELC of graphene at different temperature points with two models,
the quasi-harmonic approximation (QH) and the self-consistent
harmonic approximation (SCH), and plot the results in Fig. 4.

Within the QH approximation, the effect of thermal fluctuation
is completely neglected. On the other hand, the SCH model derives
from the self-consistent phonon (SCP) theory [40e42], which treats
the situation in lattice dynamics where the amplitude of atomic
vibration can no longer considered negligible so that anharmonic
effects have to be taken into account. The Helmholtz free energy
within the SCH takes the following form

FSCH ¼ 1
2

X
i; j
isj

D
F
�
rij; qijk

�E
0
þ kBT

X
q;l

ln


2 sinh

�
Zuql

2kBT

��

� 1
4

X
q;l

Zuql coth
Zuql

2kBT
; (18)

where 〈…〉0 denotes statistical average over the states described by
the Hamiltonian of the system under harmonic interactions
Fig. 4. Temperature dependence of the lattice constant predicted by the SCH (red line)
and QH (blue line). (A colour version of this figure can be viewed online.)



Fig. 5. Variation of PF and Pv with lattice constant at T¼ 0 K and T¼ 1000 K using (a)
QH and (b) SCH. The dotted boxes marked the equilibrium points and the arrows
indicate the variation tendency of lattice constant due to the temperature change. (A
colour version of this figure can be viewed online.)
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To be more specific, the first term on the RHS of Eq. (18) is most
conveniently evaluated by using the following formula
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ab ði; jÞ denote components of the inverse matrix of Lði; jÞ,

with components
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Zuqn
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:

(21)

From Fig. 4, we find that NTE presents itself in the curve ob-
tained within the SCH up to about 2000 K, but not in the curve
obtainedwithin the QH. Comparing the blue curve (QH)with Fig.12
in Ref. [25] which also plots the variation of ELC with temperature
calculated within QH, we can see that the trend of their curve is
opposite to ours. This discrepancy is due to the fact that our
calculation is based on an approximated phonon spectrum which
neglects the FOD terms in Eq. (6). In this case the Grüneisen pa-
rameters for all modes are positive at ground state according to
Fig. 1 and positive thermal expansion is expected. In other words,
the NTE presented in Fig. 12 in Ref. [25] is induced by the FOD terms
only. Yet by comparing the red curve and blue curve in Fig. 4, we see
that NTE still exists in the result of SCH model when the effect of
FOD terms are excluded. This means that besides the FOD terms,
the large out-of-plane fluctuation provides another origin for the
NTE coefficient of graphene at finite temperature. Moreover,
anharmonic effects caused mainly by ZA modes can be significant
even at low temperature since the slope of the red curve in Fig. 4 is
changed compared with that of the blue curve immediately above
0 K. The shape of the red curve in Fig. 4 is very similar to the curve of
lattice constants with temperature obtained in Zakharchenko
et al.'s work [32], except that the temperature scale in Fig. 4 is
larger. The temperature scale difference between Fig. 4 and
Zakharchenko's work can be explained by the omission of third
order terms in the expansion of atomic potentials in the SCHmodel.
Inclusion of third order terms leads to phononephonon interaction
which lowers the mode frequencies and finally results in larger ELC
at given temperature.

To explain physically why large out-of-plane fluctuation is
causing NTE, we first come to the equation which determines the
ELC"
vF
�
T ;Rij

�
vRij

#
T

¼ 0; (22)

where the free energy of the system takes different expressions in
different models. Generally, we have

F ¼ FF þ Fv; (23)
where FF denotes contribution from the atomistic potential, and Fv
denotes contribution from the phonon vibration to the free energy.
Substituting Eq. (23) into Eq. (22), we have

PF � Pv ¼ 0; (24)

where

PF ¼ �1
N

"
vFF
vRij

#
T

; Pv ¼ 1
N

"
vFv
vRij

#
T

: (25)

In Eq. (25) N denotes the number of atoms in the system. PF and
Pv can be understood as the averaged “force” acted on each atom in
the system due to atomistic interaction and phonon vibration. For
the two models QH and SCH, the expressions of FF and Fv are given
by

FF;QH¼
1
2

X
i;j
isj

F
�
rij;qijk

�
; Fv;QH¼kBT

X
q;n

ln


2sinh

�
Zuqn
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��
: (26)
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FF; SCH ¼ 1
2

X D
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rij; qijk
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X
q;n

Zuqn coth
Zuqn

2kBT
:

(27)

In Fig. 5 we plot the variation of PF and Pv with lattice constant
at T¼ 0 K and T¼ 1000 K using the two models. From Eq. (26) we
see that within the QH, FF and thus PF are independent of tem-
perature, which means that the variation of ELC with temperature
is governed by change of Fv and thus Pv. In Fig. 5(a), the curve for Pv
is down-shiftedwhenT increases from 0 K to 1000 K, resulting in an
increase of the ELC and thus a positive thermal expansion coeffi-
cient. On the other hand, for SCH FF is defined as the ensemble
average of the atomistic potential, or called the “smeared potential”
[41]. In Eq. (20), the atomic displacement is regarded as a stochastic
variable satisfying Gauss distribution with variance Labði; jÞ. The
consequence is that the interatomic distances are effectively
increased, which is termed “vibrational elongation” [43]. For
example, the bond length for two neighboring atoms undergoing
transverse vibration is always larger than its static value. Actually,
this example implies that for low-dimensional materials the effect
of vibrational elongation should be more significant than for 3D
materials due to large amplitude out-of-plane vibration. This effect
is illustrated by the left-shifted PF curvewhen T changes from 0 K to
1000 K in Fig. 5(b). For the SCH model, the determination of ELC at
given temperature is a result of competition between the down-
shifting of Pv and left-shifting of PF. When the left-shifting of PF
prevails, a drop of ELC is expected, as is shown in Fig. 5(b) when T
increases from 0 K to 1000 K. When the temperature further raises,
the down-shifting of Pv becomes more significant, which leads to
an increase of thermal expansion coefficient and at certain tem-
perature point a positive thermal expansion coefficient is expected.

The effect of FOD terms and the thermal fluctuation are
analyzed independently in Sections 2 and 3, both deduced upon flat
configuration of graphene. A vital question to ask next is how is the
NTE and thermal properties changed when graphene is already
stabilized in a rippled state. The answer of this question is not only
significant for understanding the actual behavior of graphene in
experiments, but also of general interest for studying the structural
properties of any membrane-like material. This question is dis-
cussed in one of our subsequent works [39].
4. Conclusion

In summary, we elucidate that at low temperature the ripples
and the NTE coefficient are two related intrinsic characters for any
2D materials with a honeycomb structure (or any monoatomic 2D
crystals). Appearance of soft ZA modes near long wavelength limit
for systemwith shortened ELC is found to be another origin for the
ripple formation in graphene besides thermal ZA mode fluctuation.
The soft ZA modes and NTE are both caused by the FOD terms in
lattice dynamical analysis. The characteristic wavelength of the
soft-mode induced ripples is related to the shrunken ELC by Eq.
(15). At finite temperature, NTE can be explained by the “vibrational
elongation” effect due to large out-of-plane fluctuation, and it
should be expected for any 2D materials. Currently, silicene, BN,
graphane, MnO2, etc., are among the possible candidates which
have been intensively investigated [44e47] as successors of gra-
phene. Our findings pave the road to the establishment of a soft-
mode based thermodynamic theory which is of significance con-
cerning the stability and structure for all 2D materials [39]. They
also provide the theoretical foundation for “ripple engineering” of
graphene and other 2D materials to tune their electronic, me-
chanical and other properties. For the next step, it is very inter-
esting and instructive to explore the possible effect of various
mechanical loads and boundary conditions on the stability and
structure of graphene and other 2D materials.
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Appendix A. Out-of-plane dispersion relation for monatomic
2D crystals at long wavelength limit

The aim of this appendix is to prove that the out-of-plane
dispersion relation for monatomic 2D crystals at long wavelength
limit takes the same form as Eq. (10), where the coefficient of the q2

term is a
2m

�
vFi
va

�
0
.

For monatomic crystals, Eqs. (1)e(3) still hold, only with the
subscript k, k0 abandoned. Here we rewrite the expression for the
force constants as

Kabð0; l0Þ ¼
 

v2U
vuað0Þvubðl0Þ

!
0

; (A.1)

where U ¼P
i
Fi and Fi is the potential energy possessed by the ith

atom. As the crystal has rotation symmetry, we suppose the
monatomic crystal possesses N fold symmetry. Namely, one atom
has N nth nearest neighbor atoms. In this case, Fi takes the
following form

Fi ¼
N
2

h
41

�
rij; qijk

�
þ 42

�
rij
�þ…4n

�
rij
�i
; (A.2)

where 4k(rij) denotes the kth nearest neighbor interaction and N
denotes the number of nearest neighboring atoms. Here, the
nearest neighbor interaction is considered as short range interac-
tion, and the others are considered as long range interaction. The
second order derivative of U in Eq. (A.1) can be expanded as 
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(A.3)

Using Eq. (A.2), similar expansion can be obtained for 41(rij, qijk)
and 4k(rij), k> 1 in the same way.
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For 2D crystals, we have
rij ¼ ½xðjÞ þ u1ðjÞ � xðiÞ � u1ðiÞ; yðjÞ þ u2ðjÞ � yðiÞ � u2ðiÞ;u3ðjÞ � u3ðiÞ�T ;
rik ¼ ½xðkÞ þ u1ðkÞ � xðiÞ � u1ðiÞ; yðkÞ þ u2ðkÞ � yðiÞ � u2ðiÞ;u3ðkÞ � u3ðiÞ�T :

(A.4)
and rij ¼
		rij		, cosqijk ¼ rij$rik

jrijjjrik j. Therefore we have from Eq. (A.4):
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(A.5)
where a ¼ 1, 2.
We have from Eq. (A.1) and Eq. (A.5) that K3a(0,l0)¼ Ka3(0,l0)¼ 0,

a ¼ 1,2. It means the out-of-plane vibration and in-plane vibration
are mutually independence. This result can also be obtained by
using group theory. As a result, the dispersion relation for the out-
of-plane vibration has the form:

u2
q3 ¼ D33ðqÞ; (A.6)

where

D33ðqÞ ¼
1
m

X
l
0
K33ð0; l0Þe�iql0 : (A.7)

For convenience, we rewrite the force constant K33(0,0), the
nearest neighbor force constant K33(0,l1), … and the n th nearest
neighbor force constant K33(0,ln) as g0, g1,… gn, respectively. Due to
the translational invariance, we have g0¼�N(g1þ g2…þ gn). Thus
we have from Eq. (A.6)
u2
q3 ¼ 1

m

X
l

K33ð0; lÞe�ik$l

¼ 1
m

(
g0 þ

XN�1

n¼0

g1e
i



kx�a1 cos

�
2np
N þ41

�
þ ky�a1 sin

�
2np
N þ41

��
þ…þ

XN�1

n0 ¼0

gne
i



kx�an cos

�
2n

0
p

N þ4n

�
þ ky�an sin

�
2n

0
p

N þ4n

��
;

(A.8)
where a1 is the nearest neighbor distance, a2 is the second nearest
neighbor distance and an is the n th nearest neighbor distance. At
long wavelength limit, we expand Eq. (A.8) and obtain
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(A.9)

Because gl, (l¼ 0, 1, … ,n) is second order derivative of U
with respect to u3(0) and u3(l), from Eq. (A.3) we learn that
the expression of gl can be divided into two parts: the FOD

terms ðvUvrijÞ0ð
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vuzð0ÞvuzðlÞÞ0, and the bond angle (BA) termsP
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(A.10)
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Then we only have to prove that the BA terms in Eq. (A.10)
vanish. As mention above, only the nearest neighbor interaction
potential possesses bond angle variables. So we just focus on the N
angles with atom 0 and atom l1 as their two vertexes. Since
cosqijk ¼ rij$rik

jrijjjrik j, we see immediately that the BA terms is related to

the motion of multiple neighboring atoms.
Fig. A1. Two lattice structures of monatomic 2D crystals: triangular lattice (a) and square lattice (b).
For monatomic 2D crystals, only two situations should be
considered, which are plotted in Fig. A1. If q1 ¼ p

3, the lattice struc-
ture of crystal is triangular lattice (Fig. A1(a)). If q1 ¼ p

2, the lattice
structure of crystal is square lattice (Fig. A1(b)). For triangular lattice
and square lattice, only the BA terms of g1, g2, g3 are nonzero.

We first deal with the BA terms of the nearest neighbor force
constant g1. When q1 ¼ p

3, the BA term of g1 is affected by
q1; q

0
1; q2; q3 and their equivalent angles (some of the related angles

are shown in Fig. A1(a)). Notice that equivalent angles have
equivalent effect on g1.For the BA terms of g1, due to the geometry
of triangular lattice, it is found that three angles (q01,q1 and q01) are
the equivalent angles of q1 and one angle (q01) is the equivalent
angle of q01. Similarly, q2 and q3 have three and one equivalent an-
gles, respectively. Thus, the BA term of g1 has the form
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According to Eq. (A.5), we have
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(A.13)
Then Eq. (A.12) can be rewritten as
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The BA term of g2 is attributed to q2, q20. Since q2 ¼ q
0
2, we have
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The BA term of g3 can be derived in a similar way, where only q3
should be considered:
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For triangular lattice, using Eq. (A.5), we obtain
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Thus for triangular lattice, the effect of the BA terms vanishes.
When q1 ¼ p

2, the BA terms of g1 is affected by q1, q2 and their
equivalent angles (some of the related angles are shown in
Fig. A1(b)). Similar to the discussion for triangular lattice, q1 has
three equivalent angles (q01, q1 and q01). But q2 has one equivalent
angles (not shown in Fig. A1(b)). Therefore, we obtain
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(A.18)

For the BA terms of g2 and g3, we have

½g2�BA ¼ 4
�

vU
vcosq1

�
0

 
v2cosq1

vuzð0Þvuzðl2Þ

!
0

; (A.19)
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Similar to Eq. (A.17), for square lattice we obtain
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Thus for square lattice, the BA terms also vanish. Therefore, we
conclude that the effect of the BA terms on any 2D monatomic
crystal vanishes and only the FOD terms remains. So from Eq. (A.11)
the coefficient for the q2 term in the expression of u2

q3 can be

written as a
2m

�
vFi
va

�
0
at long wavelength limit.
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