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� Transmission for Dirac fermions
through graphene DVBs exhibits
strong resonant tunneling effect.

� The resonant tunneling arises from
Fabry–Pérot resonance and leads to
oscillated conduction at wide
energy range.

� Multi-GH shift peaks with giant mag-
nitudes occur in graphene DVBs with-
out the limits of transmission gap.
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Resonant transmission and Goos–Hänchen (GH) shift for Dirac fermion beams tunneling through
graphene double velocity barrier structures (DVBs) are investigated theoretically. Analytical and
numerical results demonstrate that strong resonant tunneling effect occurs in this structure and is
highly dependent on the incident angle and the structure of velocity barriers. The resonant tunneling in
graphene DVBs belongs to the Fabry–Pérot resonance and leads to oscillated conduction at wide energy
range. It is also found that GH shifts in this structure can be enhanced by the resonant tunneling and
multi-GH shift peaks with giant magnitudes can occur at these resonant energy positions. These special
properties of GH shifts in graphene DVBs may have good application in lateral manipulation of electron
beams and valley or spin beam splitter.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Since the successful fabrication of graphene [1], manipulating
Dirac fermions in this material by external fields has aroused
increasing attention owing to the effect of external fields on its
line dispersion [2,3]. Besides geometric constraints, electric field,
magnetic field and strain effect, inhomogeneous velocity profiles
are recently used to manipulate Dirac fermions in graphene-based
structures [4–11]. Generally, if a channel is close to or connected to
ll rights reserved.

: +86 20 8411 3293.
).
a contact the Hamilton will exhibit modification viewed as the
self-energy related to many-body interaction. Therefore, the con-
duction and valence bands of quasiparticle in this region under the
contact will be renormalized and the quasiparticle velocity will be
renormalized too. Similarly, a grounded metal plane close to
graphene as a channel will also renormalize the Fermi velocity
in corresponding graphene regions [4]. In addition, the group
velocity in strained graphene can be changed owing to the
deformation and shift of Dirac cones under strain [5]. It is also
shown that the periodic potential with some specific patterns in
graphene can renormalize group velocity by producing extra
anisotropic Dirac cones [6,7]. All these methods changing and
controlling the velocity provide an attractive route to velocity
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Fig. 1. Schematic diagram of the graphene DVBs with the yellow-shaded regions
denoting the velocity barrier regions. The upper (solid line) and lower (dash line)
components have a relative displacement τ.
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barrier in graphene. On the other hand, the effective Hamiltonian
in graphene with a position-dependent velocity distribution has
been deduced by Peres [8]. In addition, the electronic transport
through some velocity-modulated graphene nanostructures has
been investigated, such as a velocity barrier and superlattice [9–
11]. Some special properties in these velocity-modulated struc-
tures are demonstrated, including strong anisotropic transmission
and tunneling [4,9], electron beam collimation [10] and disorder-
corrected conductance fluctuations [11].

Electronic transmission through graphene double electrostatic
potential barriers (DPBs) has been investigated and exhibits
strongly resonant tunneling effect [12–16], which plays an impor-
tant role on the quantum interference in graphene-based nanos-
tructure [17–20] and has possibly potential applications in
graphene-based devices with the ultrahigh proceeding speed.
Motivated by the importance of the resonant tunneling effect
and the special transport properties in velocity-modulated gra-
phene structures, in this paper, we will present the resonant
tunneling in graphene double velocity barrier structures (DVBs).
In detail, we will evaluate the effect of the energy gap, the incident
direction and the structures of double velocity barriers on the
resonant tunneling.

Owing to the similarity between the Dirac-Weyl equation for
Dirac fermions and the Helmholtz equation for light, Dirac
fermions in graphene-based structures exhibit analogous light
phenomena [21–23]. An important analogy is the Goos–Hänchen
(GH) shift, which is referred to a lateral shift between the reflected
beam and the incident beam at the interface between two optical
materials with different refraction index on total internal reflec-
tion [24,25]. It has been figured out that the reflected and
transmitted Dirac fermion beams in graphene potential barrier,
strained barrier, velocity-modulated potential barrier and mag-
netic barrier exhibit obvious quantum Goos–Hänchen effect [26–
33]. The quantum GH shift plays an important role on the
manipulation of Dirac fermions in graphene and provides an
important path for achieving valley or spin splitters. Recently,
quantum GH shifts for Dirac fermions in graphene DPBs and
double magnetic barriers (DMBs) have been investigated [31,33].
It is indicated that single giant GH shift peak in graphene DPBs
appears inside the transmission gap [31]. Owing to the difference
between the electrostatic potential barrier and velocity barrier, the
transmission (reflection) through graphene velocity barrier struc-
ture is different from that through graphene electrostatic potential
barrier, and hence the quantum GH shifts in graphene DVBs may
exhibit some quite different behaviors. In this paper, we will
present the GH shift in graphene DVBs. It is found that GH shift
can be enhanced by the resonant tunneling and multi shift peaks
of giant magnitude occur in graphene DVBs.
2. Theory formula

For the graphene-based medium, where a energy gap Δ is
induced by symmetry breaking or spin–orbit interaction and Fermi
velocity v varies in coordinate space as a function v¼v(r) of
position vector r, the massless Dirac–Weyl model is given by [4,8]

−iℏ
ffiffiffiffiffiffiffiffi
vðrÞ

p
r⋅∇r

ffiffiffiffiffiffiffiffi
vðrÞ

p
ψðrÞ

h i
þ ΔrzψðrÞ ¼ E ψðrÞ ð1Þ

where r¼(rx, ry), and rx, ry and rz are the Pauli spin matrices, and
ψðrÞ ¼ ψAðrÞ;ψBðrÞ

� �T is the two-component wave function. It is
assumed that the velocity variation in this model is slow enough
on the scale of the lattice constant. Taking into account the
conservation of the momentum along y direction for the graphene
DVBs in Fig. 1, we can conveniently introduce an auxiliary spinor
ΦðrÞ ¼

ffiffiffiffiffiffiffiffi
vðxÞ

p
ψðxÞeikyy and further reduce Eq. (1) as the following
form

−iℏvðxÞð∂x∓kyÞΦAðBÞðxÞ ¼ ðE7ΔÞ ΦBðAÞðxÞ ð2Þ

For the j region [j¼(i), (ii), (iii), (iv) or (v)] in Fig. 1 with Fermi
velocity vj, Eq. (2) can be further rewritten as

d2

dx2
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" #
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Using Eqs. (2) and (3), we can obtain the wave functions for
Dirac fermions in any one of five regions in graphene DVBs, as
follows:
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For region (iv),

ΦðivÞðx; yÞ ¼ eiq2x e−iq2x
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For region (v),
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In Eqs. (4)–(8), s¼ sign Eð Þ, β¼ ℏvFk=ðE þ ΔÞ with k2 ¼
ðE2−Δ2Þ=ðℏvF Þ2, kx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−k2y

q
, q1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=ζ21−k

2
y

q
, q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=ζ22−

q
k2y ,

θ¼ arctanðky=kxÞ, θ1 ¼ arctanðky=q1Þ and θ2 ¼ arctan ðky=q2Þ.
Obviously, there is M1 ¼M3 ¼M5 in Eqs. (4), (6) and (8). By using
the continuity of wave functions at left (L) and right (R) boundaries
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of any velocity interface, we can obtain
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According to Eqs. (9) and (10), the reflection coefficient r and

the transmission coefficient t are obtained by

rðkyÞ ¼
���rðkyÞ���exp iμrðkyÞ

� �¼M21=M11 ð11Þ

tðkyÞ ¼
���tðkyÞ���exp iμtðkyÞ

� �¼ 1=M11 ð12Þ

where μr(ky) is the reflection phase and μt(ky) is the
transmission phase.

The stationary-phase approximation shows that the GH shifts
of reflected (transmitted) beam result from the negative gradient
of the reflection (transmission) phase in direction [25]. Owing to
the pseudospin of Dirac fermions, the upper (+) and lower (−)
components of reflected (transmitted) beam have their corre-
sponding lateral shifts, which can be written as

τ7r ¼−dμr=dky0∓τ ð13Þ

τ7t ¼−dμt
0=dky0∓τ ð14Þ

where τ is the relative displacement between upper and lower
components of the incident beam, subscript 0 in these expressions
denotes the values taken at ky¼ky0 and μt

0 ¼ μt þ q1W1 þ kxW2 þ
q3W3 is the total transmission phase [33]. Usually, the average
shifts τr; t ¼ ðτþr; t þ τ−r; tÞ=2 are used to denote the GH shifts. Owing
to ky ¼ E=ℏvF sin θ¼ kF sin θ, dμr=dky and dμt=dkyat incident angle
θ can be rewritten as

dμr=dky ¼
1

kF cos θ
dμr=dθ

dμt=dky ¼
1

kF cos θ
dμt=dθ

Therefore, the GH shifts in Eqs. (13) and (14) can also be
rewritten as

τrkF ¼ −
1

cos θ
dμr=dθ ð15Þ

τtkF ¼−
1

cos θ
dμt

0=dθ ð16Þ

Because the average shift is used to denote the GH shift, the
reflected and transmitted GH shifts are independent of the relative
displacement τ between upper and lower components. In other
words, it is not necessary to require τ in Eqs. (13)–(16).

In order to compare with graphene double velocity barriers, we
also consider single graphene velocity barrier with width W and
magnitude ζvF. By using the continuity of wave functions at the
boundaries, we can easily obtain the reflection coefficient r and
the transmission coefficient t

r¼
���r���expðiμrÞ ¼ sin ðqWÞð sin θ− sin θ′Þð cos θ þ i sin θÞ

cos ðqWÞ cos θ cos θ′þ i sin ðqWÞð sin θ sin θ′−1Þ
ð17Þ

t ¼
���t���expðiμtÞ ¼ cos θ cos θ′

cos ðqWÞ cos θ cos θ0 þ i sin ðqWÞð sin θ sin θ′−1Þ
ð18Þ

where θ and θ′ are the incident and refraction angles, respectively,
and q¼(kF2/ζ2 – ky

2)1/2 with kF¼E/ħvF is the x component of
wavevector in the barrier region. According to Eqs. (17) and (18),
the reflection and transmission phases can be obtained by
μr ¼ θ−arctan
sin ðqWÞð sin θ sin θ′−1Þ
cos ðqWÞ cos θ cos θ′

� �
ð19Þ

μt ¼ arctan
sin ðqWÞð sin θ sin θ′−1Þ
cos ðqWÞ cos θ cos θ′

� �
ð20Þ

Because the resonant tunneling peaks with perfect transmis-
sion in graphene single velocity or DVBs require electron to
transmit perfectly through these barriers, i.e., t¼1 or r¼0
(qW¼nπ) in Eqs. (17) and (18) for any one barrier. Therefore, the
resonant condition in graphene DVBs is given by q1W1¼q3W3¼nπ,
where n is an integer value. Owing to q1 and q3 as the longitudinal
wave vector in first and second velocity barriers in graphene DVBs,
the resonant condition can be rewritten asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2−Δ2Þ=ðζ1ℏvF Þ2−k2y

q
W1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2−Δ2Þ=ðζ3ℏvF Þ2−k2y

q
W3 ¼ nπ

ð21Þ
3. Results and discussion

3.1. Resonant tunneling through a graphene DVBs

Fig. 2 shows a few contour plots of transmission probability T

(T ¼
���t���2) of electrons through graphene DVBs. Symmetric and

asymmetric structures are used: W1¼W3¼50 nm and ζ1¼ζ3¼0.5
for the symmetric structure; W1¼30 nm, W3¼70 nm and ζ1¼ζ3¼
0.5 for the asymmetric structure induced by widths of barrier and
W1¼W3¼50 nm, ζ1¼0.3 and ζ3¼0.7 for the asymmetric structure
induced by the magnitudes of barrier; and in all cases W2¼100 nm
and ζ2¼1. Compared with the transmission in Fig. 2(a), the forbidden
region of transmission in Fig. 2(b) obviously exists near the zero
energy owing to the energy gap. In the case of Δ¼0 meV, the
transmissions at small incident angle are nearly perfect as shown in
Fig. 2(a), (c) and (d), which is a typical transmission feature for
graphene-based structures [12–14,34]. One remarkable result indi-
cates that the transmissions exhibit highly resonant and anisotropic
behaviors in all these structures. From Fig. 2(a), (c) and (d), it can also
be observed that the resonant tunneling exists inside the whole
energy range and there is no transmission gap. Usually, a transmis-
sion gap occurs if total internal reflection (TIR) angle θc can be equal
to zero, because the transmission gap forbids transmission in all
directions. It has been demonstrated that in graphene electrostatic
barrier structure a transmission gap can happen at E¼V [13], where
V is the potential magnitude, since θc ¼ arcsin E−Vð Þ=E� �

is equal to
zero at E¼V. However, the TIR angle θc ¼ arcsin ζL=ζR

� �
is impossibly

equal to zero in graphene velocity barrier, with left and right
velocities ζLvF and ζRvF at the velocity barrier interface, respectively.
Therefore, there is no transmission gap in graphene velocity barrier.
As a result, at the incident interface in Fig. 2(a), there is ζL¼1, ζR¼0.5
and θc¼arcsin(2). This means that incident electron in any direction
can transmit, which is similar to the light from a denser medium into
a thinner one. In other words, there are no bound states in our
graphene DVB structure with ζ1o1 and ζ3o1. Therefore, the
resonant tunneling in graphene DVB results from the typical Fabry–
Pérot resonance and is never related to transmission gap as well as
bound states. It should be mentioned that velocity barriers with
ζ141 and ζ341 should be considered, but calculated results show
that the resonant transmission in this situation is weak. Hence, we
only pay attention to the double velocity barriers with ζ1o1 and
ζ3o1.

Fig. 3 further shows the transmission probability as a function
of incident angle at some specific incident energies. It can be seen
that the perfect transmission is suppressed with energy gap and
the resonance is obviously enhanced with increasing the incident



Fig. 2. Contour plots of transmission probability T as a function of energy E and angle θ. (a)W1¼W3¼50 nm, ζ1¼ζ3¼0.5 and Δ¼0 meV. (b)W1¼W3¼50 nm, ζ1¼ζ3¼0.5 and
Δ¼10 meV. (c) W1¼30 nm, W3¼70 nm, ζ1¼ζ3¼0.5 and Δ¼0 meV. (d) W1¼W3¼50 nm, ζ1¼0.3, ζ3¼0.7 and Δ¼0 meV. In all cases W2¼100 nm and ζ2¼1. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Angular dependence of the transmission probability (T), for different values of energy (E). The physical parameters are identical to those in Fig. 2(a) and (b). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Transmission probability (T) as a function of energy (E) at different incident
angles. The physical parameters are identical to those in Fig. 2(a) and (b). For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. Transmission probability (T) as a function of energy (E) for different widths
and magnitudes of barriers with θ¼50˚. (a) W1¼W3¼50 nm, Δ¼10 meV. (b)
ζ1¼ζ3¼0.5 and Δ¼10 meV. In all cases W2¼100 nm and ζ2¼1. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Conduction as a function of energy (E) for different energy gap with
ζ1¼ζ3¼0.5, W1¼W3¼50 nm, W2¼100 nm and ζ2¼1. The inset shows the con-
duction for energy from −50 meV to 50 meV. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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energy. Fig. 4 shows the transmission probability as a function of
incident energy at some specific incident angles. The resonant
transmission is enhanced with increasing the incident angle and
the resonant energy locations of peaks satisfy the resonant
condition in Eq. (21). On the other hand, the resonant condition
also shows that the resonant tunneling is obviously dependent on
the widths and magnitudes of two barriers, energy gap and the
energy of incident electron. As shown in Fig. 5, the widths and
magnitudes of two barriers have an obvious influence on the
resonant transmission. Although the resonant condition is consis-
tent between DPBs and DVBs, there is an obvious difference on the
resonant tunneling. For graphene DPBs, the resonant tunneling
peak happens inside the transmission gap at nonzero incidence
angle since the bound states only occurs inside the transmission
gap [13]. For graphene DVBs, the resonant tunneling peak appears
at some specific energy positions without limits of transmission
gap, due to the Fabry–Pérot resonance, as shown in Figs. (2),
(4) and (5).

In order to evaluate the effect of the resonant tunneling on the
conductance in graphene DVBs, we calculate the angularly aver-
aged conductance by using G¼ G0

R π=2
−π=2 T E; E sin θð ÞE cos θdθ with

G0 ¼ 2e2Ly=h
2vF and Ly as the sample size along the y direction

[18], and plot the results in Fig. 6. Note that forbidden region of
conduction near zero energy is enhanced with increasing the
energy gap, as presented by the inset in Fig. 6. More importantly,
the conductance exhibits oscillations induced by the resonant
tunneling through the graphene DVBs. Different from the oscil-
lated conductance appearing inside the transmission gap for
graphene DPBs, the oscillated conductance happens inside the
whole energy range for graphene DVBs. The wide energy range of
oscillated conduction may have good application in quantum
interference based on graphene-based nanostructure [17–20].

3.2. Goos-Hänchen shift in graphene DVBs

Fig. 7 shows the GH shift as a function of Fermi energy at some
specific incident angles, where structure parameters are chosen as
ζ1¼ζ3¼0.5, W1¼W3¼50 nm,W2¼100 nm, ζ2¼1 and Δ¼0 meV. It
can be observed the GH shifts in graphene DVBs have obvious
peaks and these peaks are enhanced by increased incident angles.
According to the analytical expression of GH shifts in Eqs. (15) and
(16), the dependence of GH shifts on the incident angle is the
reciprocal of cosine function for angle. Therefore, the greater the
incident angle is, the bigger the GH shifts are. In addition, as
shown in Fig. 7, the energy locations of these peaks for GH shifts
are exactly corresponding to those of resonant transmission in
graphene DVBs. Owing to the Fabry–Pérot resonant condition, only
electron beams with incident energy near the resonant energy
positions can transmit through the graphene DVBs. In other words,
electron beams with energies deviating from the resonant energy
locations are reflected totally and exhibit usual GH shifts. There-
fore, only these electron beams satisfying the resonant condition
in Eq. (21) exhibit unusually enhanced GH shifts due to the Fabry–
Pérot resonance. Thus, these enhanced GH shift peaks are corre-
sponding to the tunneling peaks.

On the other hand, the resonant condition in Eq. (21) also
indicates the Fabry–Pérot resonance in graphene DVB is dependent
on width and magnitude of velocity barrier. Therefore, the GH
shifts will also rely on the barrier width and magnitude. Fig. 8
shows the GH shift as a function of Fermi energy with different
widths and magnitudes of barriers, respectively. Obviously, the GH



Fig. 8. The GH shift as a function of energy for different widths and magnitudes of
barriers with θ¼701. (a) W1¼W3¼50 nm, Δ¼0 meV. (b) ζ1¼ζ3¼0.5 and Δ¼0 meV.
In all cases W2¼100 nm and ζ2¼1. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The GH shift as a function of energy at some specific incident angles with
ζ1¼ζ3¼0.5, W1¼W3¼50 nm, W2¼100 nm, ζ2¼1 and Δ¼0 meV. (a) The GH shift
of reflected beams. (b) Corresponding transmission probability. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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shifts with enhanced magnitudes occur and are tuned by the
barrier width and velocity magnitude and have positive or
negative values. For example, the maximum of GH shift induced
by velocity barrier magnitudes in Fig. 8(a) is 1705.7 at energy
position 129.4 meV and the maximum magnitude of GH shift
induced by barrier widths in Fig. 8(b) is 1184.8 but negative at
energy position 125.7 meV. In fact, the electron beams in this
Fabry–Pérot structure are subjected to multiple reflections and
interferences leading to the bigger phase gradient in direction. In
other words, owing to the Fabry–Pérot resonance, the multiple
reflections and interferences reshape the electron wavepacket and
induce the bigger phase gradient of electron wavepacket in the
incident angle, which enhances the GH shift, as supported by Eqs.
(15) and (16).

Although a previous work has shown that velocity can control the
Goos–Hänchen shift of reflected electron beams at graphene p–n
interface [32] and it is also shown that giant GH shifts can exist in
graphene DPBs [31], there is remarkable difference on the enhanced
GH shifts between DPBs and DVBs. The difference should be attri-
buted to the different underlying physic mechanisms between DPBs
and DVBs. The enhanced GH shifts in graphene DPBs arise from the
bound states inside the transmission gap [31]. However, in this
present work, the enhanced GH shift with giant magnitude in
graphene DVBs origins from the Fabry–Pérot resonance, which
reshapes electron wavepacket and induces the bigger phase gradient
in direction. As long as the energy of incident electron at a greater
incident angle satisfies the resonant condition in Eq. (21), these
incident electron beams will exhibit enhanced GH shifts. Therefore,
the enhanced GH shifts in graphene DVBs occur at wide energy
range without the limits of the transmission gap. Owing to multi-
resonant energy positions satisfying the resonant condition, multi-
GH shift peaks with giant magnitudes occur. These enhanced GH
shift peaks may strengthen the ability of application in valley or spin
beam splitters, which require GH shifts of electron beams to have
large magnitude in order to effectively split the valley or spin
electron beams [29,35].
4. Conclusion

In summary, we have investigated the transmission and GH
shift for Dirac fermions through graphene DVBs. The transmission
exhibits strong resonant behaviors and relies on the induced
energy gap, widths and magnitudes of double barriers and the
incident angle. The resonant tunneling is a direct consequence of
Fabry-Pérot resonance and leads to oscillated conduction at wide
energy range, which may have potential application in quantum
interference based on graphene-based devices. The GH shifts in
graphene DVBs are obviously enhanced up to giant magnitude and
these enhanced GH shift peaks are corresponding to the tunneling
peaks, owing to the Fabry–Pérot resonance inducing the bigger
phase gradient in direction at these resonant energy locations.
Therefore, different from single giant GH shift peak inside the
transmission gap in graphene DPBs, multi-GH shift peaks with
giant magnitudes occur in graphene DVBs without the limits of
transmission gap. These special properties of GH shifts in gra-
phene DVBs may have potential application in valley or spin beam
splitter based on the graphene-based nanostructure.

To achieve the real spin or valley splitter with obvious splitting
distance, in the near future, we will further present the spin- and
valley-dependent giant GH shifts in the presence of the Zeeman
interaction under magnetic field [36], spin–orbit interaction
[37,38], or local strain effect [5,39].
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