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c The conductance of graphene wave-
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c Goos–Hänchen shift in graphene
waveguide can be controlled by
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The influence of velocity on the guided modes, localized current density inside the channel and the

Goos–Hänchen shift at the interface of graphene waveguide in the presence of a velocity barrier is

investigated theoretically. It is found that each guided mode has a cutoff velocity determining the

appearance of the oscillating wave mode and the velocity in the barrier regions can control the number

of guided modes and the distribution of localized current density inside the channel. The number of

guided modes and the conduction of graphene waveguide along the channel present a quantized

feature for velocity. Finally, it is also indicated that the Goos–Hänchen shift at the interface of graphene

waveguide can be well controlled by changing the velocity in barrier region.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Graphene, an atomic layer of crystalline carbon [1], has zero
band gaps near the Dirac point and linear dispersion which leads
to many novel electronic properties [2,3], and has shown poten-
tial application prospect in graphene-based nanoelectronic device
[4–6]. Experimentally, P (hole-like) or N (electron-like) regions in
graphene can be achieved by using a combination of top/bottom
electrostatic gates [7]. Theoretically, the Dirac equation describing
propagation for carriers in graphene-based p or n regions shows
ll rights reserved.

x: þ86 20 8411 3293.

).
the similarity of the Helmholtz equation describing electromag-
netic wave propagation in optic medium. As a result, electrons or
holes in graphene-based medium behave like photons and exhibit
analogous wave phenomena. For example, owing to the helicity
nature of Dirac fermions [8], electronic negative refractive effect
can be created by the interband scattering at the interface of a
graphene bipolar p–n junction [9]. The electronic negative refrac-
tion based on graphene PN junction is applied to a Veselago lens
or electronic prism instead of two-dimensional electron gas
(2DEG) systems in conventional semiconductor device. It is also
shown that the electron supercollimation can be achieved by an
array of periodic graphene PN junction [10], which is called
graphene superlattice leading to many unique electronic trans-
port properties [11–13]. In addition, as an analogy of optical
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Goos–Hänchen shift, which is referred to a lateral shift between
the reflected beam and the incident beam occurring at the
interface of two different materials on total internal reflection
[14], the quantum Goos–Hänchen effect for Dirac fermions is
found at the interfaces of graphene PN junction [15], strained
barrier and magnetic barrier [16–18]. A most recent work also
shows the giant Goos–Hänchen shift occurs at the interface of
graphene double potential barriers [19].

As one of the novel nanoelectronic devices, graphene wave-
guide has triggered extensive research interest in theory and
experiment. Recently, the electron waveguide has been suggested
by using graphene in the presence of magnetic field owing to
magnetic confinement [20,21], local strain due to the strain-
induced confinement [22], multiple segments of armchair-edged
nanoribbons due to geometric constraints of the structure [23],
and electrostatic potential owing to the confinement of the
quantum well [24–28]. The bound states of electron in graphene
quantum well have been theoretically investigated by Pereira
et al. [24] and Zhang et al. [25]. The guided efficiency and
localized current density inside the channel of waveguide were
experimentally demonstrated by Williams et al. [28]. Here, we
pay attention to the graphene waveguide induced by electric
confinement, in the presence of a velocity barrier. On one hand,
the gate-controlled guiding of electrons in graphene is experi-
mentally shown with different carriers’ densities in different
regions, which can lead to a distribution of carriers’ velocity.
Instead of doped graphene, most recent investigations show that
the Fermi velocity of charge carriers is made to vary in space by
placing a grounded metal plane close to graphene [29], or by
modulating a two-dimensional electron with a long-wavelength
periodic potential of honeycomb symmetry [30]. On the other
hand, it is demonstrated that the distribution of velocity in
graphene has a strong influence on electronic transport through
velocity-modulated nanostructures [31–36], such as a velocity
barrier in graphene investigated by Raoux et al. [29,31], velocity-
modulated graphene superlattices demonstrated by Krstajić and
Vasilopoulos [32] and graphene with correlated disorder in
velocity profiles shown by Esmailpour et al. [36].

Based on the previous method used to investigate the guided
modes and Goos–Hänchen shift [15–17,24,25], in this paper, we
will present the influence of velocity on transport properties
of graphene waveguide in the presence of a velocity barrier,
including the guided modes as main characteristics of waveguide,
localized current density inside the channel of waveguide and the
Goos–Hänchen shift at the PN interface of waveguide on total
internal reflection. The guided modes and Goos–Hänchen shift in
graphene quantum well can be controlled by the magnitude of
potential well [15,25]. However, in this present work, it is found
that a velocity barrier can be also used to manipulate the bound
states and the Goos–Hänchen shift of electron in graphene
waveguide.
2. Theory

The massless Dirac–Weyl model for the graphene-based med-
ium, where the Fermi velocity v and potential barrier V change as
the functions v¼v(r) and V¼V(r) of the 2D position r, respec-
tively, is well described by [29,35]

�i_
ffiffiffiffiffiffiffiffiffi
vðrÞ

p
r � rr½

ffiffiffiffiffiffiffiffiffi
vðrÞ

p
wðrÞ�þVðrÞwðrÞ ¼ E wðrÞ, ð1Þ

where r¼(rx, ry) is the Pauli spin matrices, w(r)¼[cA(r), cB(r)]T

is the two-component wave function consisting of the smooth
enveloping functions wA(r) and wB(r) associated with the A and B
sublattices of graphene, and E is the eigenenergy. When using the
model, it is assumed that the velocity variation is slow enough on
the scale of the lattice constant. Considering the y directional
momentum as a constant and the velocity varying only along
the x direction as v¼v(x) in the velocity-modulated graphene
quantum well, as shown in Fig. 1, a auxiliary spinor can be
introduced and written in the form as ^(r)¼v(r)1/2 w(r)¼v(x)1/2

w(x) exp (iky), and then, the Dirac equation can be reduced as

�i_vðxÞð@x8kyÞFA Bð ÞðxÞ ¼ ðE�VðxÞÞFBðAÞðxÞ ð2Þ

The confined states are caused by total internal reflection (TIR)
at the p–n interfaces. In other words, the guiding of Dirac
fermions is localized in the middle well region and the evanescent
states exist in left and right barrier regions. Thus, in the quantum
well regime, the wave functions of the bound states satisfying
Eq. (2) are written as

FLAðxÞ ¼ aekðxþw=2Þ, ðxo�w=2Þ,

FLBðxÞ ¼ ig1aekðxþw=2Þ, ðxo�w=2Þ,

FMAðxÞ ¼ CsinðkxxÞþDcosðkxxÞ, ð�w=2rxrw=2Þ,

FMBðxÞ ¼�i½CcosðkxxþyÞ�DsinðkxxþyÞ�, ð�w=2rxrw=2Þ,

FRAðxÞ ¼ be�kðx�w=2Þ, ðx4w=2Þ,

FRBðxÞ ¼ ig2be�kðx�w=2Þ, ðx4w=2Þ,

8>>>>>>>>><
>>>>>>>>>:

ð3Þ

where k¼(ky
2
�k2)1/2 with k¼(E�V)/:z1vF (vFEc/300) owing to

the TIR, kx¼sign(E)(kF
2/z2

2
�ky

2)1/2 with kF¼E/:vF, the incident angle
y satisfies y¼arctan(ky/kx), a and b are the amplitude of the left
and right evanescent waves respectively, g1¼(�kþky)/k and
g2¼(kþky)/k. This expression k¼(E�V)/:z1vF and kx¼sign(E)(kF

2/
z2

2
�ky

2)1/2 have the advantage, which can well describe the
propagating states and evanescent states in a unified form [26].
In fact, the definition is consistent with the expression k¼s09E�
V9/:z1vF with s0 ¼sign(E�V) [25], owing to E�V¼s09E�V9. For
EoV, the tunneling through potential barrier is called Klein
tunneling and clearly demonstrates interband scattering at the
p–n junction0s interface due to the helicity nature of the Dirac
fermions [8]. For z2¼1 and z141, a velocity well is combined
with the graphene quantum well, as shown in Fig. 1, on the other
hand, a velocity barrier is applied to the structure for z2¼1
and z1o1. Using the continuity of wave functions at the bound-
aries x¼7w/2, FLA(–w/2)¼FMA(–w/2), FLB(–w/2)¼FMB(–w/2),
FMA(w/2)¼FRA(w/2) and FMB(w/2)¼FRB(w/2), the coefficient
ratio D/C in Eq. (3) can be obtained by

D=C ¼
�g1sinðkxw=2Þþcosð�kxw=2þyÞ
�g1cosðkxw=2Þþsinð�kxw=2þyÞ

¼
g2sinðkxw=2Þþcosðkxw=2þyÞ
�g2cosðkxw=2Þþsinðkxw=2þyÞ

, ð4Þ

Substituting g1¼(–kþky)/k and g2¼(kþky)/k into Eq. (4), we
can further give the bound states’ eigenmodes satisfying the
following transcendental equation:

½z1z2ky
2
�EðE�VÞ�sinðkxwÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
�z2
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2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2ky
2
�ðE�VÞ2

q
cosðkxwÞ ¼ 0 ð5Þ

Eq. (5) can be further rewritten as

tanðkxwÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
�z2

2ky
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1

2ky
2
�ðE�VÞ2

q
=½EðE�VÞ�z1z2ky

2
� ð6Þ

In order to describe the right-hand-side of Eq. (6), we can
conveniently define F(kxw) as a function of kxw with the following
dimensionless form:

FðkxwÞ ¼ kxw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkywÞ2�ðkwÞ2

q
=½kF wkw=z2�ðkywÞ2�

Goos–Hänchen (GH) effect, as an interference effect on total
internal reflection, can be explained by the stationary-phase
approximation [18,19,37], or the Gaussian beam method



Fig. 1. (a) Cross-section view of barrier regions under the grounded metal plane.

(b) Schematic diagram of the graphene waveguide in the presence of a velocity

barrier, where the yellow shaded regions denote the barrier regions below the

grounded metal plane. (c) The distribution of Fermi velocities in three regions is

indicated by the slope of the linear spectrum of quasiparticles in graphene, with

the Fermi energy EF locating in valence bands of barrier regions and conduction

bands of well regions.
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[15–17]. In this present work, the later is used. Owing to the
symmetry of the velocity-modulated graphene quantum well, the
reflection phases and GH shifts at interfaces x¼7w/2 are the
same. Therefore, we can only consider the reflection at the
interface x¼w/2. Using Eq. (2), left and right wave functions at
the p–n interface x¼w/2 can be written as

FALðxÞ ¼ eikxxþre�ikxx, ðxrw=2Þ,

FBLðxÞ ¼ eiðkxxþyÞ�re�iðkxxþyÞ, ðxrw=2Þ,

FARðxÞ ¼ be�kðx�w=2Þ, ðx4w=2Þ,

FBRðxÞ ¼ ig2be�kðx�w=2Þ, ðx4w=2Þ,

8>>>><
>>>>:

ð7Þ

where y is the incident angle and r is the reflection coefficient.
The wavevector kx in the left well region should be real with
E4:z2vFky if incident energy is positive, and the wavevector in
the right barrier’s region is imaginary with (E�V)2/:2z1

2vF
2
�ky

2r0,
owing to the TIR, therefore, the TIR angle can be defined by

yc ¼ arcsin ½z2ðE�VÞ=z1E� ð8Þ

Taking into account the continuity of wave functions at the p–
n interface x¼w/2, we can obtain the reflection coefficient r,

r ky

� �
¼ eijr ¼

�ig2þeiy

ig2þe�iy eikxw, ð9Þ

where jr is the reflection phase. By using the Eq. (9), the
reflection phase can be obtained by

jr ¼ 2d�kxw, ð10Þ

where d satisfies tand¼tanyþss0g2secy with s¼sign(E) and
s0 ¼sign(E�V). When a finite-sized incident Gaussian electron
beam is considered, the wave function of the incident and
reflection beam satisfying Eq. (2) can be assumed to be

Finðx,yÞ ¼

Z 1
�1

dkyuðky�kÞeikyyþ ikxðkyÞx
1

eiyðkyÞ

� �
, ð11aÞ

Frðx,yÞ ¼

Z 1
�1

dkyrðkyÞuðky�kÞeikyy�ikxðkyÞx
1

eiyðkyÞ

� �
ð11bÞ

In the above wave function, a Gaussian envelope is taken by
uðky�kÞ ¼ exp ð�ðky�kÞ2=2D2

k Þ so that the wavepacket is sharply
peaked at ky ¼ k with kAð0,kF Þ and the incident angle is given by
y(ky)A(0,p/2). The ky dependent y(ky), kx(ky) and r(ky) are approxi-
mately expanded by Taylor series and retained with the first
order term, and then the upper GH shifts tA, lower GH shifts tB

and the average shifts t¼(tAþtB)/2 can be obtained by [17]

tA ¼�j0rðkÞþ2k0xðkÞx,

tB ¼�j0rðkÞþ2y0ðkÞþ2k0xðkÞx,

t¼�j0rðkÞþy
0
ðkÞþ2k0xðkÞx:

8>><
>>:

ð12Þ

In the above expression, a coordinate-dependent term 2k0xðkÞx

and an opposite term �j0rðkÞ make all the GH shifts be indepen-
dent of the choice of the coordinate of the interface at which total
internal reflection will take place. Substituting the reflection
phase of Eq. (10) into Eq. (12), the upper, lower and average GH
shifts of electron beam at the interfaces of the velocity and
potential barrier can be obtained by

tAkF ¼�2 z2sec2fþ ss0g2kF=kþ z2ss0g2secytan y
secfþg2

2secyþ2ss0g2tan y ,

tBkF ¼ 2z2secy�2 z2sec2yþ ss0g2kF=kþz2ss0g2secytan y
secyþg2

2secyþ2ss0g2tan y ,

tkF ¼ z2secy�2 z2sec2yþ ss0g2kF=kþ z2ss0g2secytan y
secyþg2

2secyþ2ss0g2tan y :

8>>>><
>>>>:

ð13Þ
3. Results and discussion

3.1. Guided modes

Eq. (6) shows that the dispersion relation of bound states is
decided by the combination of potential barrier and velocity
barrier. Previous works have presented the influence of potential
on guided modes, so we focus on the modulation on guided
modes from the velocity barrier. The confinement of electron is
caused by the reflection at the interfaces of graphene waveguide,
thus, the dispersion relation of bound states can determine the
guided modes. To obtain the guided modes, the graphical method
is proposed to solve the transcendental Eq. (6). As shown in Fig. 2,
the intersections between the solid curves tanðkxwÞand the
dashed curves F(kxw) demonstrate the existence of guided modes.
From Fig. 2(a) to Fig. 2(f), it is clearly seen that the number of
guided modes first increases with increasing the velocity z1 of
barrier regions and then reaches maximum. In addition, the
change of modes is quite obvious if z1 is small. As shown in
Fig. 2(a)–(c), the numbers of guided modes denoted by the
intersections are 2, 3 and 5, respectively. This means that one
can adjust the distribution of velocity in graphene waveguide to
control the appearance of the higher-order modes. Experimen-
tally, it is convenient to adjust the distribution of velocity by
changing the distance between the grounded metal plane and
graphene [29].

Fig. 3 further presents the number M(z1) of guided modes as a
function of the velocity z1 in barrier regions at some specific
incident energies. In spite of different incident energies, it is
clearly shown that the number of guided modes first increases
and then maintains a maximum. More importantly, there is a
cutoff velocity, which determines the appearance of the funda-
mental mode. As shown in the inset of Fig. 3, when the number of
guided mode is equal to 1, the cutoff velocities of fundamental
mode corresponding to the incident energies 60 meV, 65 meV,
and 75 meV are 0.34, 0.38 and 0.47, respectively. In other words,
the cutoff velocity increases with the increase of the incident
energy. In addition, from the inset of Fig. 3, it is also shown that



Fig. 2. Graphical determination of kxw for oscillating guided modes, with the intersections denoting the existence of guided modes. The solid and the dashed curves denote

tan(kxw) and F(kxw), respectively, where physical parameters are chosen to be: V¼40 meV, w¼200 nm, z2¼1 and E¼60 meV, (a) z1¼0.34, (b) z1¼0.38, (c) z1¼0.48,

(d) z1¼0.68, (e) z1¼1.08, and (f) z1¼2.08.

Fig. 3. The number M(z1) of guided modes as a function of the velocity z1 of

barrier region with physical parameters V¼40 meV, w¼200 nm, z2¼1,

E¼60 meV, E¼65 meV and E¼75 meV. The inset shows the number of guided

modes for the velocity z1 from 0.3 to 0.7.
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the first-order mode, second-order mode and higher order mode
have similar cutoff velocities. In previous works [24,25], it is
shown the magnitude of potential in barrier can be use to control
the guided modes. However, in this present work, a velocity
barrier can also be well applied to control the guiding of the
electron wave in graphene waveguide, owing to the cutoff
velocity of each mode.

3.2. Wavefunctions of guided modes and localized current density

In order to demonstrate how a velocity barrier controls the
charge carriers conveyed along the channel of graphene wave-
guide, the wavefunctions of guided modes and the localized
current density are presented in this section. As an example, the
guided modes with the highest-order in Fig. 2(b)–(d) are calcu-
lated and discussed. According to Fig. 2(b)–(d), the highest orders
of guided modes are second-order, fourth-order and fifth-order,
respectively. The corresponding wave functions FA and � iFB of
the highest-order guided modes, as functions of the distance of
the graphene waveguide are shown in Fig. 4(a)–(c). It is clearly
seen that the wavefunctions are standing waves with the number
of peaks equal to the number of modes in the well region and
decay exponentially in the barrier regions. In spite of the similar
characteristics between the two states FA and � iFB, a tiny shift
occurs and results from the different phases between the two
wave functions. Owing to the confinement of quantum well,
electron mainly propagates along the y-directional channel and
yields the y-directional flux. Fig. 4(d)–(f) shows the contour plots
of the current densities Jy along the y coordinate for the highest-
order guided modes. From Fig. 4(d)–(f), it can be seen that parts of
currents can tunnel through the p–n interface and increase with
the increase of the order. These tunneling currents are carried by
many transverse modes, which lead to a redistribution of current
at the p–n interface and the interface conductance. However, as
shown in Fig. 4(d)–(f), most of currents inside the conductor are
carried by a discrete number of modes. In addition, the higher the
order of the guided mode is, the more the number of the channel
conveying the current is. As each conducting mode independently
contributes to 2e2/h conductance, the accumulated conduction is
decided by all the conducting modes and can be expressed by
(2e2/h)M(z1) with the number of guided modes M(z1). Because the
number of guided modes M(z1) is quantized for velocity z1, as
previously shown in Fig. 3, the conductance (2e2/h)M(z1) along
the channel should be quantized for velocity z1. It is known that



Fig. 4. Corresponding to the highest-order guided modes in Fig. 2(b)–(d), the wave function of the highest-order guided modes as a function of the distance of graphene

waveguide: (a) kxw¼7.45, (b) kxw¼12.95, and (c) kxw¼15.86 with the corresponding probability current density: (d), (e) and (f), respectively.
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conductance of graphene waveguide has a quantized feature for
incident energy [15,16]. However, in the presence of a velocity
barrier, the conductance of graphene waveguide can present a
steplike feature for velocity.
3.3. Goos–Hänchen effect

For a graphene waveguide, the electron wave inside the
channel is subject to multiple reflections at the interface of
waveguide and the GH shift occurs, as shown in Fig. 1. In the
case of E4V, the interface is created by a unipolar n–n junction,
on the other hand, the interface becomes the one induced by a
bipolar p–n junction with EoV. Fig. 5(a) and (b) present the GH
shifts as functions of the incident angle at the interface with V/
E¼1.5 and 0.5, respectively, at some specific velocities. It is
clearly shown that the velocity has a strong influence on the GH
shift in the two cases. As shown in Fig. 5(a), all the GH shifts at the
n–n interface are positive and the angle range of the GH effect is
enlarged with increasing the velocity z1. In Fig. 5(b), it is seen that
an angle occurs with yn¼arcsin[(sinyc)

1/2] determining the sign
change of GH shift at the p–n interface with V/E¼0.5 [15].
Furthermore, it is obviously shown that the angle yn increases
with increasing the velocity z1 of barrier regions.

Fig. 5(c) further presents the GH shift as a function the velocity
z1 with fixed V/E¼0.1 at some specific incident angles. It is
indicated that the GH shift decreases with increasing the velocity
ratio z1. Considering the incident angles as a constant with y¼201,
the GH shift as a function of the velocity z1 at the n–n or p–n
junctions is shown in Fig. 5(d). It can be seen that the GH shift at
the n–n interface obviously decreases and the magnitude of the
negative GH shift at the p–n interface decreases and the negative
GH shift can become positive with increasing the velocity.
All results indicate that the GH shift can be controlled by
changing the magnitude of the velocity barrier. It is known that
the Goos–Hänchen shift at the n–n or p–n interfaces of graphene
waveguide can obviously change the conduction by lifting the
degeneracy of spin and valley [15,17]. In addition, previous works
have shown that the width and magnitude of quantum well can
be adjusted to control the conduction of graphene waveguide
along the channel [15]. However, in this present work, it is
indicated that a velocity barrier can be used to manipulate the
conduction of graphene waveguide. Finally, it should also be
mentioned that the electronic tunneling through a standard
graphene double barrier has been investigated and used to assess
the lateral shifts of reflected and transmitted beams [19,38].
Similarly, one can also use the reflection and transmission
through a double velocity barrier to present the lateral shifts of
reflected and transmitted beams.
4. Conclusion

In this paper, we investigate the influence of velocity on the
guided modes, localized current density inside the channel and
the Goos–Hänchen shift at the n–n or p–n interfaces of graphene
waveguide in the presence of a velocity barrier. It is found that a
cutoff velocity determining the appearance of each guided mode
occurs. Furthermore, the number of guided modes and the
localized current density inside the channel can be controlled
by the velocity of the barrier regions. The conductance of
graphene waveguide along the channel presents a quantized
feature for velocity. At last, it is also shown that the Goos–
Hänchen shift at the interfaces of graphene waveguide can be
well controlled by the velocity barrier. The velocity-controlled
guided mode and Goos–Hänchen shift in graphene waveguide



Fig. 5. Dependence on the angle of incidence y of the GH shift tkF, calculated from Eq. (13) for: (a) z1¼3, 2, 1.5, 1 and 0.7 with V/E¼1.5, (b) z1¼3, 2, 1, 0.7 and 0.6 with

V/E¼0.5. Dependence on the velocity z1 of the GH shift tkF, calculated from Eq. (13) for: (c) y¼201, 301, 401 and 501 with V/E¼0.1, (d) V/E¼0.4 or 1.6, and 0.8 or 1.2 with

y¼201.
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also demonstrate electronic analogies of optical behaviors in low-
dimensional electron gas system [39,40].
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