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The mechanisms for heterogeneous cubic ? tetragonal martensite nucleation due to different types of
microscopic defects (voids, stress-concentration site, inertial inclusion and pre-existing nucleus) and
the temporal evolution of martensite morphology are monitored with finite element simulation of phase
filed model. The results demonstrate that the nucleation prefers to occur around void and stress-concentration
site initially; high residual stress exists around inertial inclusion; pre-existing nucleus promotes nearby
martensite phase to develop on it. The effects of various defects on heterogeneous nucleation are different,
and stress relaxation behavior is the dominant factor which characterizes the whole microstructure evolution
process.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction From above, we can conclude the involvement of microscopic
Martensitic transformation (MT) is a diffusionless solid-state
phase transformation, and can be commonly observed in various
metal, alloys and ceramics. Materials undergoing this phase trans-
formation have some special properties, such as steel strengthen-
ing and shape-memory effects (Bhattacharya, 2003; Patoor et al.,
2006). In order to understand the phenomena and predict the un-
ique properties, the mechanisms of nucleation and the morphology
evolution of the martensite phase have become important issues.
MT is generally believed to occur by heterogeneous nucleation.
Several theories have been proposed to simulate the process. Olson
and Cohen (1975) postulated that the intersection of slip bands
produced as a result of plastic deformation acts as a nucleation site
for martensite. Suzuki et al. (1977) suggested that the local stress
concentration near the grain boundaries due to the pile-up of dis-
locations would aid the martensite nucleation. Clapp (1973) ex-
pressed the view that the localized soft mode near a lattice
defect may play a key role in the nucleation. In recent years, there
is much fundamental research has been done on the theory of MT
nucleation (see Olson et al., 1986; Olson and Roytburd, 1995; Reid
et al., 1999; Levitas and Javanbakht, 2010). Moreover, much effort
has also been made to clarify them experimentally. For example,
Zhang et al. (1992) observed by optical microscopy that grain
boundary triple junctions and twin boundaries are favorable nucle-
ation sites for thin plate martensite. Saburi and Nenno (1986)
found that martensite prefer to nucleate at certain stress concen-
trations such as dislocation tangles in the matrix, surface steps,
boundary dislocation, and metal oxides.
ll rights reserved.
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defects (such as grain boundary, dislocation and inclusion) may
play an important role in martensite nucleation. Due to the rapid
dynamics of MT, the different types of heterogeneous martensite
nucleation and the specific morphology evolution are still un-
known. Till now, numerical simulation methods have become
helpful tools for modeling microstructure evolution. For example,
Li et al. (2004) investigated the effects of defects on martensite
nucleation by molecular dynamics simulation. However this meth-
od is restricted by its computation capability. During the past ten
years, phase field (PF) model has been extensively studied and
been applied to MT (Chen, 2002; Moelans et al., 2008; Yamanaka
et al., 2010). In particular, Khachaturyan and co-workers have
developed phase-field microelasticity theory, and propose PF mod-
el on the basis of the time-dependent Ginzburg–Landau (TDGL)
kinetic equations (Khachaturyan, 1983; Wang and Khachaturyan,
1997; Artemev et al., 2001; Ni et al., 2007). Zhang et al. (2007)
adopted PF microelasticity model to study heterogeneous MT
nucleation triggered in the undercooled parent phase. In their
works, the numerical solution to TDGL equations is obtained in
the reciprocal space using Fourier transformation.

As we know, a cubic to tetragonal MT involves different variants
of martensite. In order to reduce elastic strain energy, domains
with a different variant of the tetragonal phase generally interact
with each other and arrange in a self-accommodating manner,
which is known as self-accommodation MT (Bhattacharya et al.,
2004; Wang and Li, 2010). In the present work, a finite element
framework of PF model for MT is proposed on the basis of TDGL
equations, and it is applied to simulate the heterogeneous
cubic ? tetragonal martensite nucleation. The influences of differ-
ent microscopic defects (including voids, stress-concentration
sites, inert inclusions and pre-existing martensite nucleus) on
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martensite nucleation are investigated. The relaxation progresses
for multi-variant martensites are also monitored.

2. Finite element framework for phase field model

Based on diffuse-interface description, PF model describes a
microstructure by the evolution of a set of continuum phase-field
variables. For the purpose of describing MT, long-range order
parameter field fgPðrÞ; p ¼ 1; :::; ng is used to describe spatial
phase evolution, where r is the coordinate vector and n is the num-
ber of all possible orientations of martensite variants. The austenite
phase under high temperature corresponds to zero order parame-
ters (g1; :::;gn ¼ 0); the pth martensite phase under low tempera-
ture is ðgp ¼ 1Þ, and narrow interface between the two different
phases ð0 < gp < 1Þ. The total free energy of the system, F, is de-
fined as

F ¼ Fbulk þ F int þ Felast; ð1Þ

where Fbulk, Fint and Felast denotes the bulk chemical free energy, the
interfacial energy and the elastic strain energy, respectively. The
bulk chemical energy can be expressed as a conventional Landau
polynomial of order parameters, written as
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where Df is the transformation driving force that represents the dif-
ference between the specific free energies of the martensitic and
parent phase; p denotes the pth orientation variant of MTs; A, B
and C are the expansion coefficient of the Landau polynomial
expansion. The value of A, B and C are chosen to set g as close to
either 0 or 1. In the cases of cubic ? tetragonal MT, p = 1,2 and 3,
corresponding to three orientation variants of the tetragonal phase
whose tetragonality axes are along the three h100i directions in the
cubic phase.

The gradient energy, describing non-local effects due to the
inhomogeneity of order parameters, is given as
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where bijðpÞ is the positively defined gradient energy coefficient
tensors.

The elastic strain energy is derived as a coupled function of
strain and order parameter (Khachaturyan, 1983):
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where Cijkl is the elastic coefficient matrix; and the elastic strain
tensor eel is define as a deviation of the total strain e from the stress
free strain (eigen strain) e0, i.e.,

eel
ij ¼ eij � e0

ij: ð5Þ

The total strain e conform to the usual geometric equation
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For proper MTs, the total stress-free stain e0 is related to order
parameter as

e0
ij ¼
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where e00
ij ðpÞ is the pth transformation-induced eigen strain. For the

cubic ? tetragonal transformation, the pth variants of e00
ij ðpÞ are gi-

ven by the following matrices:
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Here the components of these matrices are e1 ¼ ðat � acÞ=ac and
e3 ¼ ðct � acÞ=ac , where at , ct and ac are the crystal lattice parame-
ters along the a and c axes of the tetragonal phase and that along a
axis of the cubic phase, respectively.

The evolution of phase field is governed by TDGL kinetic equa-
tions. The obtained linear dependence of the rate on the transfor-
mation driving force is the TDGL equations. That is
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dF
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where L̂pq is the matrix of kinetic coefficients. The variation of the
functional free energy F is given as

dF ¼ dFbulk þ dF int þ dFelast; ð12Þ
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Substituting Eqs. (12, 13a–c) into Eq. (11) results in
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where the stress rij ¼ Cijkleel
kl. This equation resembles the heat

transfer equation and the underlined part can be treated as the heat
source. The analogy was suggested by Levitas et al., and the finite
element solutions are presented in their works (Levitas and Lee,
2007; Levitas et al., 2009, 2010). When material tensors are isotro-
pic, we have bij ¼ bdij and L̂pq ¼ L̂dpq, where d is the Kronecker delta.

The thermo-mechanical equilibrium equations and boundary
conditions are identical with conventional ones and are abbrevi-
ated in this paper. Till now, a system of coupled thermoelasticity
and heat transfer problem is constructed. A finite element formu-
lation can be developed by applying the isoparametric interpola-
tions for node displacement and order parameters. The algorithm
is implemented into the finite element software ‘‘Comsol’’.

3. Numerical simulation

A two-dimensional plane-strain simulation of cubic ? tetrago-
nal MT in a square domain with dimensions of 50 nm � 50 nm is
considered. An ellipsoidal heterogeneous site (aspect ratio of semi
axis a : c ¼ 5 : 1, a = 5 nm) is located at the center of the austenitic
domain (shown in Fig. 1). The angle between the orientation of one
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axis of the ellipsoid and the x-axis of the Cartesian coordinate sys-
tem is 45�. The following material parameters are used (Idesman
et al., 2008): Young’s modulus E = 198 300 MPa; Poisson’s ratio
m = 0.33; density q ¼ 5850 kg/m3; the isotropic gradient energy
coefficient b = 2.33 � 10�10 N; the isotropic kinetic parameter of
the TDGL equation L̂ = 2596.5 m2/N s; the chemical driving force
Df ¼109 J/m3; the expansion coefficient of the Landau polynomial
expansion A = 0.14, B = 12.42, C = 12.28; the variants of the trans-
formation-induced eigen strain are given by e00

ij ð1Þ ¼
0:1 0
0 �0:1

� �
and e00

ij ð2Þ ¼
�0:1 0

0 0:1

� �
.

The initial conditions are as follows: the initial random distribu-
tion of the order parameters g1 and g2 with values between 0 and 1
is given. The whole boundary are prescribed as zero thermo fluxes
(@g
@n ¼ 0, n w is the outward normal to the boundary). The observation

time t ¼ 6� 10�10 s is subdivided into 300 time steps with a time
increment Dt ¼ 2� 10�12 s. Need to mention, all the final morphol-
ogies below refer to the solution at the end of the observation time.
4. Results and discussions

To gain a basic understanding of the effects of microscopic de-
fects on the evolution of MT heterogeneous nucleation, we assume
the ellipsoidal site as a void, stress-concentration site, inert inclu-
sion and pre-existing nucleus, respectively. For comparison, the
morphologies of homogenous nucleation are simulated firstly.

4.1. Homogenous nucleation

Here an ideal nucleation in a homogenous system is simulated
(Levitas and Lee, 2007; Levitas et al., 2010). The martensite mor-
phologies of variant 1 at the initial, the intermediate and the final
stage are shown in Fig. 2(a–c) respectively, where the red domains
represent martensite phases of variant 1 (g1 ¼ 1), the blue domains
represent austenite or martensite phases of variant 2 (g1 ¼ 0), and
the domains with other colors represent the transitional phase
from austenite to martensite phase (0 < g1 < 1). We notice that
the initial randomly distributed order parameters converge to
either 0 or 1 finally and correspond to a well-organized microstruc-
ture. Fig. 2(d) shows the final morphology of variant 2, where the
red domains represent martensite phases of variant 2 (g2 ¼ 1)
and the blue domains represent austenite or martensite phases
Fig. 1. An austenitic domain with an ellipsoidal heterogeneous site at the center.
of variant 1 (g2 ¼ 0). Comparing figures (c) and (d), we can see that
interfaces separate two sets of fine twins and a self-accommodated
twinned microstructure is constructed. The twin structure of
variant 1 and 2 is the result of energy minimization.

4.2. Void

Assume the ellipsoidal site as a void (Levitas et al., 2009). The
simulated nucleation and the final martensite phases of variant 1
are shown in Fig. 3(a) and (b), those of variant 2 are shown in
(c and d) respectively. What the colors represent are the same with
above. From figures (a) and (c), we can see that the initial favorable
nucleation sites locate at the endpoints of the major axis of
ellipsoid. As we know, MTs are driven by the decrease of the
bulk-chemical free energy from austenite to martensite phase
but at the cost of increased bulk elastic energy and the gradient
energy at the interface. Because void or free surface is in favor of
elastic strain energy release, it lowers down the energy barrier of
the transformation. So the nucleation chooses to occur at the
easiest points. In the following process, stress relaxation is mainly
achieved by phase grow-up and coalescence. From figures (b) and
(d), we can also see that, due to the interference of the void, the
symmetry of the final morphology is broken.

4.3. Stress-concentration site

Grain boundary junction or dislocation may cause local stress
concentration. In this case, the influence of stress concentration
on nucleation is investigated. Assume the central ellipsoid site is
under a uniform tensile stress p ¼ 1� 109 N=m2. Fig. 4 (a) and
(b) illustrate the nucleation and the final martensite morphologies
of variant 1 respectively, while (c) and (d) are of variant 2. From (a)
and (c), we can see that nucleation happens along the major axis of
the ellipsoid initially. According to the analysis of stress distribu-
tion, the maximum stress values locate there, that proves nucle-
ation also preferentially happens at stress concentration sites.
The stress field may stimulate MT of one variant and hinder MT
of the other variant depending on whether it is in favor of relaxa-
tion of the transformation-induced stress or not. We can infer from
(b) and (d), the tensile stress is in favor of MT of variant 1, because
the volume fractions of martensitic phase 1 is obviously higher
than that of variant 2. If we change tensile stress into compressive
stress p ¼ �1� 109 N=m2, all the pictures are on the contrary, i.e.,
pictures (a and b) are of variant 2 and (c and d) are of variant 1.
Besides, the final microstructure merges into two part and is
separated into martensite phase of variant 1 and 2 by one interface.
That shows the external stress also helps the phase coalesce to
eliminate the interfaces, and therefore relaxes the bulk strain
energy and the gradient energy at the interfaces.

4.4. Inert inclusion

Impurities are commonly observed in metal and alloys. We con-
sider the ellipsoid site as an inertial inclusion, which means it is
incapable of phase transformation. Fig. 5(a) and (b) show the
nucleation and the final martensite morphologies of variant 1
respectively, while (c) and (d) are of variant 2. At first stage, no
obvious favorable nucleation sites are observed in figures (a) and
(c). The twin structure of martensite variant 1 and 2 are rather uni-
formly distributed and surround the inert inclusion. Along with the
relaxation progress, the inclusion begins to constrain the develop-
ment of the martensite phases, stress concentration occurs around
the ellipsoid. In order to reduce the strain energy, the defect is
totally trapped in the martensite phase of variant 2, as shown in
figures (b) and (d). It can be concluded that the embedded
inclusion may bring in high residual stress around it in the process



(a) (b) (c) (d)

Fig. 2. Evolution of the homogenous martensitic nucleation. Pictures (a–c) are the initial, the intermediate and the final martensite morphologies of variant 1, respectively.
Picture (d) is the final morphology of variant 2.

(a) (b) (c) (d)

Fig. 3. Evolution of the heterogeneous martensitic phase with an ellipsoid void at the center. Pictures (a and b) correspond to the nucleation and the final martensite
morphologies of variant 1 respectively, and (c and d) are of variant 2.

(a) (b) (c) (d)

Fig. 4. Evolution of the heterogeneous martensitic phase with an central ellipsoid site under tensile stress. Pictures (a and b) correspond to the nucleation and the final
martensite morphologies of variant 1 respectively, and (c and d) are of variant 2.

(a) (b) (c) (d)

Fig. 5. Evolution of the heterogeneous martensitic phase with an ellipsoid inert inclusion at the center. Pictures (a and b) correspond to the nucleation and the final
martensite morphologies of variant 1 respectively, and (c and d) are of variant 2.
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of MT, which shall be harmful to the whole martensite mechanical
properties.

4.5. Pre-existing nucleus

Finally, let us consider an ellipsoidal pre-existing nucleus at the
center of the austenite domain (Levitas and Javanbakht, 2010). The
initial conditions are zero order parameters, g1 ¼ g2 ¼ 0, for the
whole specimen except the initial martensitic embryo located,
where intermediate values of the order parameters (g1 ¼
g2 ¼ 0:5) are given. Fig. 6(a) and (b) shows the nucleation and
the final martensite morphologies of variant 1 respectively, while
(c) and (d) are of variant 2. Figures (a) and (c) show that follow-
up martensite phase grows on the pre-existing nucleus. If we tune



Fig. 6. Evolution of the heterogeneous martensitic phase with an ellipsoidal pre-existing nucleus at the center. Pictures (a and b) correspond to the nucleation and the final
martensite morphologies of variant 1 respectively, and (c and d) are of variant 2.
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the shape or orientation of the embryo, the martensite phase will
adjust to grow on it accordingly. The nucleus is a driving source of
the phase transformation, and plays a key role on the evolution of
martensite phase. An initial nucleus can stimulate and influence near-
by MT to develop on it. That is identical with experiments observation,
i.e., MT develop at a rapid rate once initial nucleation forms.
5. Conclusions

In this paper, a finite element framework of PF model for MT is
proposed on the basis of TDGL equations, and it is applied to inves-
tigate the relationship of the heterogeneous nucleation with
microscopic defects (including void, stress-concentration site, inert
inclusion and pre-existing martensite nucleus). Numerical results
show, in the absence of any defects, homogenous cubic to tetrago-
nal MT usually arrange themselves in a fine structure of twining
phases. Under influence of various defects, nucleation choose an
optimum path to reduce the system free energy. Nucleation prefers
to occur around void and stress-concentration site. Void lows
down the energy barrier of MT because elastic strain energy can
be released around it. Stress concentration may stimulate MT of
one variant but hinder MT of the other variant depending on it is
in favor of stress relaxation of transformation-induced strain or
not. Besides, external stress also helps coalescence of martensite
phase. The embedded inertial inclusion constrains MT and brings
in high residual stress around it. Pre-existing nucleus can promote
nearby martensite phase to develop on it.

To be concluded, microstructure evolution is to reduce the sys-
tem free energy, and stress relaxation behavior is the dominant
factor which characterizes the whole microstructure evolution
process. Understanding the mechanisms of various heterogeneous
nucleation may help us to design a specific purposed martensite
microstructure.
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