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The mechanical stability of graphene as temperature rises is analyzed based on three
different self-consistent phonon (SCP) models. Compared with three-dimensional
(3-D) materials, the critical temperature Ti at which instability occurs for graphene
is much closer to its melting temperature Tm obtained from Monte Carlo simulation
(Ti � 2Tm , K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys.
Condens. Matter 23, 202202). This suggests that thermal vibration plays a significant
role in melting of graphene while melting for 3-D materials is often dominated by
topologic defects. This peculiar property of graphene derives from its high structural
anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC),
defined upon its Lindermann ratios in different directions. For any carbon based
material with a graphene-like structure, the VAC value must be smaller than 5.4 to
maintain its stability. It is also found that the high VAC value of graphene is responsi-
ble for its negative thermal expansion coefficient at low temperature range. We believe
that the VAC can be regarded as a new criterion concerning the vibrational stability
of any low-dimensional (low-D) materials. C© 2013 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4804244]

The experimental success in graphene1 initiated a recent revival of interest in two-dimensional
(2-D) solid state materials due to its peculiar physical properties and application prospect.2, 3 Yet
the mechanism of thermo-stability for this type of new material is not understood. In fact, the
existence and stability of low dimensional crystalline material has long been a fascinating scientific
problem. Peierls and Landau4, 5 proved long ago that 1-D and 2-D crystalline state cannot exist
for materials made up of particles interacting with harmonic potentials. Their conclusion was later
extended by Mermin6 on a rigorous basis using the Bogoliubov’s inequality from statistical physics.
Mermin’s work supported the result that long range crystalline order cannot persist for low-D solids
with particles interacting with harmonic pair potentials. The dilemma between the aforementioned
classic theoretical works (hereafter referred to as PLM theory) and the existence of graphene can be
explained as follow: the materials considered in PLM theory is constrained in the low-D space where
they are defined (e.g. for a 2-D solid discussed in PLM theory, the out-of-plane motion of particles
is forbidden). Suspended graphene violates the assumption of PLM theory by two points: a). the
out-of-plane motion is not forbidden. On the contrary, since there is only one layer of atoms, the out-
of-plane vibrational amplitude is much larger than the in-plane vibrational amplitude; b). the atoms
in graphene are not strictly located in a plane. It is proved experimentally7, 10 and theoretically8, 9

that intrinsic ripples exist for suspended graphene, even at low temperature.11 Therefore, the PLM
theory, although mathematically correct, is not appropriate for suspended graphene.
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According to Mermin,6 the physical state of low-D materials is different from both crystalline
phase and isotropic liquid phase. Thus melting of low-D materials to isotropic liquid phase is still
possible. Kosterlitz, Thouless, Halperin, Nelson, and Young proposed a model (often referred to as
the KTHNY theory)12 aimed at two-dimensional melting. The KTHNY theory suggests that melting
for 2-D solids is a two-stage process, with one initiated by dislocation pairs unbinding and the other
by disclination pairs unbinding. For graphene, the first step of melting according to the KTHNY
theory corresponds to unbinding of the Stone-Wales (SW) defect21 to two separate 5-7 defects
(or called (1,0) dislocations in Ref. 22). Although the SW defect is experimentally observed in
graphene23 and of relatively low formation energy (≈5 ev)24 among possible topological defects, the
unbinding is unlikely to happen. Since the formation energy of one isolated 5-7 defect is calculated
as 7.5 ev,22 replacement of one SW defect by two 5-7 defects is energetically unfavored. Monte Carlo
(MC) simulation on melting of graphene20 indicates a transition from 2-D structure to 1-D chains,
where the melting process is initiated by clustering, rather than unbinding, of SW defects. The
simulation results might be considered as a support of the grain-boundary based melting theory,25

although it is questionable whether clusters of SW defects separating 2-D structure and 1-D chains
can be called grain-boundaries.

Both theoretical models and simulations on graphene suggest that defects play a significant
role in the melting process of 2-D materials, yet another basic question to be understood is the
relation between melting and the vibrational stability of 2-D materials. In classic lattice dynamics,
the atomic motion due to lattice vibration is assumed to be neglectable compared with the lattice
constants, which leads to force constants independent of the vibration. As temperature rises, however,
the atomic motion becomes gradually significant which affects the force constants and eventually
destroys the mechanical stability of the structure. The temperature at which this instability occurs is
called vibrational instability temperature, denoted by Ti . For low-D materials such as graphene, the
vibrational instability is especially important since the out-of-plane vibrational amplitude can be very
large compared with the lattice constants even at low temperature due to its high structural anisotropy.
The self-consistent phonon (SCP) theory13–16 is very effective for analyzing lattice instability due
to large amplitude atomic motion. It is established upon the Born-von Karman theory of lattice
dynamics, where the potential energy between the atoms is written as a Taylor expansion of the
atomic displacements. The basic idea of the SCP theory can be explained as follow: the Taylor series
which represent the atomic potential energy (or more specifically the coefficients in the series) are
related to the vibrational motion of the atoms in a self-consistent manner. In this letter we extended
three self-consistent phonon (SCP) models and calculated the vibrational stability of graphene.

The basic equations of the self-consistent harmonic approximation (SCH), which is the lowest
order SCP theory, are briefly introduced as follow. The phonon frequency having wave vector q and
branch λ is

ω2
qλ =

∑
α,β,k,k ′

εαk(q, λ)εβk ′(q, λ)Dαβ

(
q

kk ′

)
, (1)

where εαk(q, λ) is the phonon polarization vector of the kth atom in the unit cell in the α direction,

Dαβ

(
q

kk ′

)
= 1

m

∑
l ′

φαβ

(
0, l′

kk ′

)
exp

(−iqRl′k ′
)

(2)

is the dynamical matrix and Rl ′k ′ is the equilibrium position of the k ′th atom in the l′th unit cell. The
force constant

φαβ

(
0, l′

kk ′

)
=

〈
∂V 0l′

kk ′

∂uαk(0)∂uβk ′(l′)

〉

= [(2π )3|
|]−1/2
∫

du exp

(
−1

2
uT 
−1u

)
∂V 0l′

kk ′

∂uαk(0)∂uβk ′(l′)
, (3)

is averaged over the relative vibrational displacement vector u = ukk ′(0l′) = uk(0) − uk ′(l′), where
V 0l′

kk ′ is the interaction potential between the kth atom in the 0th unit cell and the k ′th atom in the l′th
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unit cell. The width of the Gaussian distribution is determined by


αβ

(
0, l′

kk ′

)
= 〈

uαkk ′(0l′)uβkk ′(0l′)
〉

= �

m N

∑
q,λ

(eiqR0k − eiqRl′k′ )εαk(q, λ)εβk ′(q, λ) coth

(
�ωqλ

2kB T

)
1

ωqλ

. (4)

Eqs. (1)–(4) are solved iteratively at given temperature and equilibrium bond length (EBL) until
a self-consistent solution of the phonon frequencies is obtained. The SCH model reduces to self-
consistent Einstein approximation (SCE) if the phonon frequency spectrum is replaced by the
Einstein frequency (to achieve this, the other atoms are fixed at their equilibrium position when
constructing the equations of motion for one atom). Both SCH and SCE models expand the potential
to merely quadratic terms. The next-level approximation models where cubic terms are included in
the expansion of the potential are called SCHC model and SCEC model. Consideration of the cubic
terms in the expansion results in a shift of the phonon frequencies and the phonon life time. This is
caused by interaction between phonons which is absent in a harmonic approximation. The phonon
frequency in SCHC/ SCEC model is given by

ω2 = ω2
qλ + 2ωqλ�(q, λ; ω), (5)

where ωqλ is the corresponding phonon frequency obtained in the SCH/SCE model and the expression
of �(q, λ; ω) can be found in Ref. 13.

In SCP models self-consistent solution may exist for a range of EBL and the free energy of
the system can be used to determine the stable EBL at any given temperature. The Helmholtz free
energy in the SCH and SCHC models is given by

FSC H = 1

2

∑
i, j
i �= j

〈
V (ri j )

〉 + kB T
∑
q,λ

ln

[
2 sinh

(
1

2
�ωqλ/kB T

)]
− 1

4

∑
q,λ

�ωqλ coth

(
1

2
�ωi/kB T

)
,

(6)
while the energy expression for the SCE and SCEC models is given by

FSC E = 1

2

∑
i, j
i �= j

〈
V (ri j )

〉 + NkB T
3∑

i=1

ln

[
2 sinh

(
1

2
�ωi/kB T

)]
− 1

4
N

3∑
i=1

�ωi coth

(
1

2
�ωi/kB T

)
,

(7)
where ωi , (i = 1, 2, 3) corresponds to three vibrational frequency of one atom obtained in the SCE
model due to material anisotropy and N refers to the number of atoms in the system.

The 2-D atomic structure of graphene is illustrated in the x-y plane in Figure 1. There are two
carbon atoms in one unit cell (enclosed by dotted lines) and the equilibrium distance between two
nearest neighbors is denoted by a.

The C-C potential LCBOPII17 is used to describe the interaction potential between the carbon
atoms. The short range interaction in LCBOPII is a multi-body potential for its short range interaction:
The potential between atom 1 and 2 in Figure 1 is related to the bond length r12 and the bond angles
α312, α412, α521, and α621. The expansion of the potential between atom 1 and 2 to cubic terms is
given by18

V sr = V0 +
∑
k �=i, j

(
∂V

∂ cos αi jk

)
0

(
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) + 1

2

(
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∂r2
i j
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0

(
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)2

+1

2

∑
k,l �=i, j

(
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)
0

(
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) (
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)

+
∑
k �=i, j

(
∂2V

∂ri j∂ cos αi jk

)
0

(
ri j − r0

) (
cos αi jk − cos α0

) + 1

6

(
∂3V

∂r3
i j

)
0

(
ri j − r0

)3
, (8)
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FIG. 1. Atomic structure of graphene.

where the potential is a function of the bond length ri j and the cosine of the bond angle cos αi jk ,
and (X )0 denotes the value of X at EBL. ri j and cos αi jk can be expanded as functions of the
atomic displacements. At the lowest order expansion, cos αi jk − cos α0 is related to the out-of-plane
displacement and ri j − r0 is related to the in-plane displacement. For example

cos α312 − cos α0 ≈ (2u3 − 1u3)(3u3 − 1u3)

r2
0

r12 − r0 ≈ 2u1 − 1u1,

(9)

where i uα denotes the αth component of the displacement of atom i (the related atomic number is
labeled in Figure 1). Finally the atomic potential related to motion of atom 1 in Figure 1 takes the
following form

�1 = V sr (r12) + V sr (r13) + V sr (r14) + V lr (r15) + V lr (r16) + V lr (r17) + V lr (r18) + V lr (r19)

+ V lr (r110) + V lr (r111) + V lr (r12) + V lr (r113)

= 3V0 + 1

2
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⎧⎨
⎩(2u1 −1 u1)2 +

[
1

2
(1u1 −3 u1) −

√
3

2
(1u2 −3 u2)

]2

+
[

1

2
(1u1 −4 u1) +

√
3

2
(1u2 −4 u2)

]2
⎫⎬
⎭

+1

2
C2

⎧⎨
⎩

[
1

2
(1u2 − 5u2) +

√
3

2
(1u1 − 5u1)

]2

+
[
−1

2
(1u2 − 6u2) +

√
3

2
(1u1 − 6u1)

]2

+(7u2 −1 u2)2

+
[

1

2
(1u2 − 8u2) −

√
3

2
(1u1 − 8u1)

]2

+
[
−1

2
(1u2 − 9u2) −

√
3

2
(1u1 − 9u1)

]2
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TABLE I. Instability temperature Ti and the Lindermann ratios at Ti from three SCP models.

Models Ti (K ) δ1 at Ti δ3 at Ti

SCH 10800 0.258024 1.0754
SCE 12840 0.149722 0.585813
SCEC 9730 0.138471 0.523383

+(10u2 −1 u2)2

}

+1

2
C3

⎧⎨
⎩(12u1 −1 u1)2 +

[
1

2
(1u1 −11 u1) −

√
3

2
(1u2 −11 u2)

]2

+
[

1

2
(1u1 −13 u1) +

√
3

2
(1u2 −13 u2)

]2
⎫⎬
⎭

+ 2Cα

[
(3u3 −1 u3)(2u3 −1 u3) + (3u3 −1 u3)(4u3 −1 u3) + (4u3 −1 u3)(2u3 −1 u3)

]
+ Cα

[
(1u3 −2 u3)(5u3 +6 u3 − 22u3) + (1u3 −3 u3)(7u3 +8 u3 − 23u3)

+ (1u3 −4 u3)(9u3 +10 u3 − 24u3)
]
, (10)

where

C1 =
(

∂2V sr

∂r2
i j

)
0

, C2 =
(

∂2V lr

∂r2
i j

)
r2

, C3 =
(

∂2V lr

∂r2
i j

)
r3

, Cα = 1

r2
0

(
∂V sr

∂ cos αi jk

)
0

,

(11)
and V sr and V lr denote respectively the short range and long range potential. This expression takes
into account up to third nearest neighbor interaction. Replacing the force constants in Eq. (11)
with the averaged ones in Eq. (3), we applied the SCH, SCE and SCEC models to calculate the
vibrational stability of graphene. The instability temperature Ti predicted by the three models and
the Lindemann ratio19 at Ti is listed in Table I. For isotropic solids, Moleko and Glyde13 state without
strict deduction that instability occur when certain phonon frequency calculated as a function of the
lindermann ratio reaches its maximum. Here we show that this conclusion is just an approximation.
Consider the SCE model for isotropic solids, Eqs. (1)–(3) is simplified as13

ω2
E = f (δ) = 1

3m

∑
τ

(
3

2πδ2r2
0

) 3
2

∫
due

− 3u2

2δ2r2
0

(
d2

dr2
+ 2

r

d

dr

)
V (r ) (12)

Eq. (4) is simplified as

δ = 1

r0
[

3�

mωE
coth(

�ωE

2kbT
)]1/2 (13)

Eqs. (12) and (13) are calculated iteratively until a pair of self-consistent Einstein frequency and
Lindermann ratio is obtained. Assume a solution point (ω0, δ0) satisfying Eqs. (12)–(13), then
consider an arbitrarily small disturbance of the Lindermann ratio δp (δp > 0), the corresponding
change of Einstein frequency ωp from Eq. (12) is

ωp = 1

2ω0

[
d f (δ)

dδ

]
δ0

δp, (14)
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FIG. 2. (a) δ1 − δ3 and (b) χ calculated at different temperature by three different SCP models for graphene.

where higher order terms of δp and ωp are omitted. Substitution of Eq. (14) into (13) returns the
new disturbance of the Lindermann ratio δp1 after one cycle of iterative calculation:

δp1 = 3

2r0
[

3�

mω0
coth(

�ω0

2kbT
)]−1/2{− �

mω2
0

coth(
�ω0

2kbT
) − �

2

2kbT mω0
csch(

�ω0

2kbT
)2}ωp (15)

If δp1 > δp for any small δp, solution point (ω0, δ0) is completely unstable. This requires

[
d f (δ)

dδ

]
δ0

<
4r0ω0

3
[

3�

mω0
coth(

�ω0

2kbT
)]1/2

{
− �

mω2
0

coth

(
�ω0

2kbT

)
− �

2

2kbT mω0
csch

(
�ω0

2kbT

)2
}−1

(16)

Notice that the right hand side of Eq. (16) is always negative, thus strictly speaking the instability
point is never at the maximum of f (δ) where d f (δ)

dδ
= 0. When δp1 < δp, solution point (ω0, δ0)

is conditionally stable which means that there exists a local domain near (ω0, δ0) inside which
self-consistent solution can be obtained. Generally speaking, the critical point where self-consistent
solution becomes completely unstable is quite near the maximum, at which self-consistent calculation
already converges very slowly. Thus it is still reasonable and more convenient to consider the
maximum of f (δ) as the critical point where instability occurs.

SCP calculation for isotropic solids supports the Lindermann ratio as a criteria concerning the
vibrational stability. Yet for graphene things are more complicated. Due to its 2-D atomic structure
graphene is strongly anisotropic in that the amplitude of out-of-plane atomic motion is much larger
than the amplitude of in-plane atomic motion. To describe this character, two Lindemann ratios are

defined for graphene, one related to the in-plane atomic motion by δ1 =
√〈

u2
1

〉
/r0 and the other

related to the out-of-plane atomic motion by δ3 =
√〈

u2
3

〉
/r0.

For classic materials, Ti predicted by harmonic models (SCH, SCE) is often 20∼200 times
higher than the melting temperature Tm obtained in experiment. For graphene, MC simulation shows
a melting temperature of 4900K,20 which is approximately half of the temperature Ti predicted by
the three models here. This result suggests that the vibration-initiated instability is vital for graphene
concerning its melting. This phenomenon cannot be explained by the Lindemann ratios which,
according to the results in Table I, are highly model dependent. Define the vibrational anisotropy
coefficient (VAC) for graphene as follow:

χ = δ3

δ1
=

√〈
u2

3

〉
√〈

u2
1

〉 . (17)



052101-7 Y. Hu and B. Wang AIP Advances 3, 052101 (2013)

FIG. 3. (a) ω2
p/ω

2
p0 and (b) ω2

3/ω
2
30 as a function of δ1 (large scale) at different values of VAC.

FIG. 4. ω2
3/ω

2
30 as a function of δ1 (small scale) at different values of VAC.

For any low-D materials, the VAC can be defined in a similar manner. From Eq. (17) we learn
that the VAC reflects the anisotropy of the material due to the atomic structure. The change of
(δ1, δ3) and VAC values during the calculation at different temperatures for three SCP models is
illustrated in Figure 2. We found that the VAC values stay in a narrow range for all the temperature
points calculated. And although defined from the model-dependent Lindermann ratios, the VAC
relies weakly on the models. This means that temperature rising and the chosen model have a
slight impact on the VAC once the structure is maintained. To further explore the relation between
structural anisotropy and low Ti for graphene, we assume the VAC to be an intrinsic parameter
of a structure which does not change with temperature. In this case, the phonon frequencies are
determined as functions of δ1 (notice that δ3 = χδ1) from Eq. (1)–(3). In the SCE model, Eq. (1) is
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FIG. 5. Equilibrium bond length (EBL) predicted by SCH, SCE and SCEC models for graphene.

further simplified for graphene as:

ωp =
√

3 〈C1〉 + 3 〈C3〉 + 6 〈C2〉
2m

,

ω3 =
√

12 〈Cα〉
m

,

(18)

where ωp = ω1 = ω2 denotes the phonon frequency for in-plane motion. For graphene at constantχ ,
we plot the variation of ω2

p/ω
2
p0 and ω2

3/ω
2
30 with δ1 at different VAC values in Figure 3, where ωp0

and ω30 denote respectively the phonon frequency for in-plane vibration and out-of-plane vibration
at 0K. From the results in Table I, vibrational instability occurs at δ1 = 0.149 using the SCE model
(marked by dotted line in Figure 3(b)). This corresponds to a local maximum of ω2

3/ω
2
30 (with the

VAC value equals to 3.91 calculated from Table I), but not to the global maximum at aroundδ1 = 0.5.
From Figure 3(b) we can also see that the local maximum of ω2

3/ω
2
30 depends highly on the VAC

value, that it appears as the VAC value gradually increases. Therefore we come to an important
conclusion that the vibrational instability for graphene is due to lost of self-consistent solution of the
phonon frequency of the out-of-plane vibration, and the critical temperature and critical Lindermann
ratios are closely related to the VAC value of the structure. In Figure 4, it is shown that at different
VAC values, the presence, shape and position of the local maximum change dramatically. Further
calculation indicates that when χ ≥ 3.8 the local maximum appears and when χ ≥ 5.4 the value
of δ1 corresponding to the local maximum becomes smaller than its value for zero-point vibration
(marked by dotted line in Figure 4). This means that for such a graphene-like structure made up of
carbon atoms, its VAC value cannot be larger than 5.4.

By calculating the minimum of the Helmholtz free energy of graphene, the EBL at different
temperatures predicted by the three models is plotted in Figure 5. It is shown that the predicted
EBL is highly dependent on the model. The well-known negative thermal expansion coefficient of
graphene at low temperature range is predicted clearly by using the SCH model, yet not by the
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FIG. 6. Self-consistent in-plane force constant (a) C1, (b) Cα , predicted by SCH, SCE and SCEC models for graphene.

SCE and SCEC models. In the SCE and SCEC models, the phonon spectrum is simplified by two
Einstein frequencies in Eq. (18). This simplification underestimates the vibrational amplitude of the
atoms (proved by the large discrepancy of the Lindermann ratios listed in Table I obtained from
the SCH model and from the SCE, SECS models), and also underestimates the VAC value of the
structure (see Figure 2(b)). The physical reason for the second underestimation is that the phonon
branch for the out-of-plane vibration is low-lying26 and has a different dispersion law from the one
for in-plane vibration.15 Thus the high VAC value of graphene is also responsible for the negative
thermal expansion coefficient of graphene at low temperature range. Notice that the negative thermal
expansion coefficient changes sign at T ≈ 900 K according to Ref. 9 while our SCH model predicts
a critical point of T ≈ 5000 K . This difference is contributed to the neglect of nonlinear effects in
the SCH model, which tends to accelerate the thermal expansion.

The self-consistent force constants 〈C1〉 and 〈Ca〉 predicted by SCH, SCE and SCEC models
are plotted in Figure 6. When temperature rises, the self-consistent force constants are affected
by two factors, lattice expansion and increase of vibrational amplitude, in a rather complicated
manner. Generally speaking, the self-consistent force constants decrease with lattice expansion. For
graphene, as the vibrational amplitude increases, 〈C1〉 first decreases and then increases, while 〈Ca〉
first increases, then decreases, and finally increases. From Figure 6 we can see that the self-consistent
force constants are dominantly affected by the change of lattice constants.

In this work, we extended three SCP models to deal with the vibrational stability of graphene
as temperature rises. A new concept, the vibrational anisotropic coefficient (VAC) is introduced
which characterized the peculiar vibrational properties of graphene, as well as its negative thermal
expansion coefficient at low temperature range. Moreover, provided the atomic interaction and
structure, analyzing the VAC value of the structure gives a criterion regarding the stability of low-D
materials. The SCP models used here did not take into account the effects of any possible topologic
defects, which tend to decrease the stability of the material. Thus the results obtained from the VAC
analysis may be considered as an upper bound for the stability of any low-D materials.
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