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Effect of stress loads on the vortex domain structures (VDSs) in ferroelectric nanosheet has been

investigated. Results of phase field simulations show that the different vortex domain structures

can form in free-standing nanosheet from random perturbations. Applying stress loads on

nanosheet, it is found that the domain morphology, especially the size and number of vortices, can

be regularly controlled. These results indicate promising controlling the vortex domain structures

in ferroelectric nanostructures by the mechanical loads. VC 2012 American Institute of Physics.

[doi:10.1063/1.3681379]

Ferroelectric nanostructures (FNs) are attracting increas-

ing attention for their original properties that can be

exploited to develop functional devices.1–5 Especially, low

dimension FNs are found to exhibit vortex domain structures

(VDSs).6–11 With controlling the vortex patterns through

external fields, such as its toroidal moment, it is promising to

use these FNs to design novel nanoscale functional devices.

Nevertheless, contrast with the magnetic dipole vortex phe-

nomenon,12,13 electric dipole vortex in low dimension FNs is

just becoming a heating up topic, due to the challenge in ex-

perimental characterization and theoretical simulations.

The formation of VDS in low dimension FNs is due to

the truncation of long-range interactions (electrostatic and

elastic) at the surfaces, thus strongly depends on boundary

conditions. In the literatures, the mechanism of forming

VDS in FNs and effects of factors like boundary conditions

and size have been theoretically studied by various methods.

An effective Hamiltonian approach was employed to demon-

strate the existence of VDS in nanoparticles, such as BaTiO3

nanodots,6 PZT nanodisks and nanorods.7 The effect of

boundary conditions on the forming of VDS in PZT nanodots

and wires was also discussed.14 Combining first-principles-

based simulations and analytical derivations, Prosandeev and

Bellaiche15 determined the characteristics and signatures of

VDS in ferroelectric nanodots. Based on the phenomenologi-

cal theory, the VDS and vortex switching in FNs have also

been simulated.9,16

Despite the well-known strong coupling between polar-

ization and stress, regularity of the VDS in FNs controlled

by the mechanical loads has not yet been investigated and

discussed. Such kind of study should be instructive for future

applications. In this letter, we present simulations on stress

loads effect on the evolution and equilibrium of VDS in

BaTiO3 ferroelectric nanosheet (FNS) using a phase field

model. Regularity of the stress loads on the domain morphol-

ogy, size, and number of vortices in FNS have been dis-

cussed in depth.

In the following model, the spontaneous polarization

P¼ (P1, P2, P3) is chosen as the order parameter. Therefore,

the electric displacement field D can be expressed as

D ¼ ebEþ P, where E is the electric field and eb the back-

ground dielectric constant tensor.17,18 Since the background

material is the cubic paraelectric phase, the background

FIG. 1. (Color online) (a) Temperature dependence of toroidal moment of

three VDSs in a free-standing FNS. The inserts depict the initial VDSs. (b)

Evolution of free energies at the very beginning stage from random perturba-

tion towards 1-vortex state. The insert depicts the evolution of free energies

during a whole simulation.
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dielectric constants in three axis directions are the same, i.e.,

eb ¼ e11b ¼ e22b ¼ e33b. Based on the phenomenological

theory and taking into account effects of the mechanical

stress, electric field, and surface, the total free energy of the

FNS can be established as a sum of the Landau-Devonshire

energy FLD, gradient energy Fgrad, electrostatic energy Felec,

and surface energy Fsurf. An eighth-order polynomial of the

modified Landau-Devonshire energy density as functions of

the spontaneous polarizations and stresses can be expressed

as19–21
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(1)

where a1 � ðT � Tc0Þ=ð2e0C0Þ is the dielectric stiffness,

with Tc0 and C0 being the Curie-Weiss temperature and

Curie-Weiss constant of the bulk material, and e0 the vacuum

permittivity. aij, aijk, and aijkl are the higher-order stiffness

coefficients. sij and Qij are the elastic compliance and elec-

trostrictive coefficients, respectively. The stress field rij is

determined by the mechanical equilibrium equation, i.e.,

rij;j ¼ 0, where the comma in the subscript denotes spatial

differentiation.

The gradient energy represents the free energy contrib-

uted by the spatial polarization variation. To the lowest order

of Taylor expansion, the gradient energy density takes the

form as fgrad ¼ gijklPi;jPk;l=2, with gijkl being the gradient

energy coefficients. The electric energy density of a given

polarization distribution is written as17,22 felec ¼ �PiEi

� 1
2
ebEiEi. Here, we neglect the free charge carriers, which

might exist and have an influence on vortex formation and

stability.23 Under the open-circuit condition, the total electric

field is equal to the depolarization field, which can be calcu-

lated for a free-charge-absent body by the electrostatic equi-

librium equation as Di;i ¼ 0. Due to truncation at the surface

of the FNS, the spontaneous polarization is inhomogeneous

across the out-of-plane direction. Thus, an additional surface

energy is necessary to describe this intrinsic effect. Using

the so-called extrapolation length deff
i , the surface energy

density of the FNS can be approximately given by

fsurf ¼ D11P2
1

2deff
1

þ D22P2
2

2deff
2

þ D44P2
3

2deff
3

,24 where Dij are the material coef-

ficients related to the gradient energy coefficients.

Integrating the free energy densities over the entire vol-

ume and surfaces yields the total free energy of the FNS as

F ¼
Ð

VðfLD þ fgrad þ felecÞdV þ
Ð

SfsurfdS, with V and S being

the volume and surface of the FNS, respectively. The tempo-

ral evolution of the spontaneous polarization field is

described by the time-dependent Ginzburg-Landau (TDGL)

equation,

@Pi

@t
¼ �M

dF

dPi
; ði ¼ 1; 2; 3Þ (2)

where M is the kinetic coefficient and t is the time.

In the following simulations, we consider BaTiO3 nano-

sheet under either traction free or stress loading boundary

condition. Furthermore, open-circuit condition is employed

to obtain a strong vortex effect. A two-dimensional 10 � 30

discrete grid points at a scale of Dx ¼ Dy ¼ 1nm is

employed. The polarization evolution is solved numerically

by discretizing the TDGL equation in time. At each time

step, the stress and electrostatic fields are obtained by solv-

ing the mechanical and electrostatic equilibrium equations

with given boundary conditions using finite element method.

Values of the material coefficients in our simulation are

listed in Ref. 25.17,20,26

For the FNS under traction-free condition at 0 K, result

shows that different stable VDSs with one, two or three vor-

tices (see the inserts in Fig. 1(a)) can form from various ini-

tial random perturbations. We are particular interested in

how to switch these states into each other by changing the

environment of the FNS. Using these three VDSs as initial

FIG. 2. (Color online) The equilibrium VDSs in a FNS with an initial

3-vortices state under tensile stress loads of (a) 0 GPa, (b) 0.5 GPa, (c)

1.0 GPa, and (d) 1.4 GPa.
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states, we simulated their temperature stability, which can

be characterized by the toroidal moment,3 i.e.,

g ¼ 1
V

Ð
Vr� PdV, with V being the volume of the system and

r the position vector. The corresponding result is depicted in

Fig. 1(a). Note that the 1-vortex state has a much larger to-

roidal moment than the other two states, since adjacent vorti-

ces tend to have anti-vortical directions to minimize the

domain wall energy. At low temperature, the vortices in the

2-vortices state have different sizes, resulting a nonzero to-

roidal moment. The two vortices become to have same size

as temperature increasing, thus a zero plateau of the toroidal

moment appears. The 2-vortices and 3-vortices states are not

stable at high temperature and sudden destabilize into the

1-vortex state at temperature around 280 K and 240 K,

respectively. Moreover, the toroidal moment becomes zero

at temperature around 340 K, manifesting the disappearing

of the 1-vortex state. By tracing free energies during evolu-

tion from random perturbation toward the 1-vortex state as

shown in Fig. 1(b), it can be seen that VDS forms to reduce

the large electrostatic and gradient energies during the very

beginning domain forming stage. Once the VDS forms, the

electrostatic energy remains a small value compared with the

other energies. It clearly indicates the important role of depo-

larization field in the vortex nucleation.

As seen from the above result, changing the ambient

temperature can bring about vortex state transitions but in a

single-directional way. It is interesting to investigate whether

the transitions can be induced by mechanical loads. To ac-

complish this, we perform simulation of excreting a z-direc-

tional traction force s on two surfaces of the FNS to let it in

tensile or compressive strain state, which can be practically

obtained by growing the FNS on a compliant substrate. Our

result indicated that FNS having initial state with high vortex

number is quite sensitive to the tensile stress loads. This is

clearly depicted in Fig. 2 for FNS having an initial 3-vortices

state (Fig. 2(a)). In particular, when s is small (e.g.,

s ¼ 0:5 GPa in Fig. 2(b)), the VDS remains 3-vortices but

with a significant distortion, manifested by the strong tilt of

the initial x-directional domains joining the vortices and an

increase of polarization magnitude within. As s increases to

about 1.0 GPa (see Fig. 2(c)), the initial 3-vortices state

destabilizes into a distorted “S-type” 2-vortices structure.

We obtain a 1-vortex structure in the FNS when s reaches

1.4 GPa, as shown in Fig. 2(d). Note that the VDSs in Fig. 2

are the equilibrium states with stress loads maintaining. Fur-

ther result shows that, after removing the stress loads, the

corresponding equilibrium states of the VDSs in Figs.

2(a)–2(d) are 3-vortices, 3-vortices, 2-vortices, and 1-vortex

states. It can be seen that through applying tensile stress

loads to the FNS, VDSs with more vortices can be success-

fully switched to VDSs with less vortices.

Contrast with the effect of tensile stress loads, compres-

sive stress loads tends to increase the vortex number of the

initial VDS. The simulation result for a FNS having an initial

1-vortex state is depicted in Fig. 3. It shows that with

increasing the magnitude of the compressive traction s, the

initial 1-vortex state in the FNS can evolve into multi-

vortices state. Specifically, the FNS is found to maintain

1-vortex structure when s is between 0 GPa and �0.7 GPa

(see Figs. 3(a) and 3(b)). However, it suddenly destabilizes

into a 5-vortices structure when s ¼ 0:8 GPa as shown in

Fig. 3(c), and remains stable even s reaches �4.0 GPa (Fig.

3(d)). We also found that the 5-vortices structure is not stable

if the stress loads is removed and will evolve into 3-vortices

state. This indicates that we can successfully switch the 1-

vortex state into the 3-vortices state with compressive stress

loads. Therefore, promising controlling the VDSs of FNS

through compressive stress loads can be also achieved.

In summary, effect of stress loads on the VDSs in FNS

has been investigated using the phase-field simulations. For

a given traction-free FNS, it is found that the equilibrium

VDS depends on the initial random perturbations and tem-

perature. The switching between these VDSs can be success-

fully achieved by stress loading and unloading. We believe

that such effect revealed in nanosheet can be also found in

other kinds of FNs with flatten configurations, and it also

indicates promising stress controlling the VDS in FNs, such

as nanobelt, nanowire, nanorod, and nanodot etc.
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