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Inmany previous researchwork associatedwith studying the deformation of thefluid interface interactingwith a
solid, the theoretical calculation of the surface energy density on the deformed fluid interface (or its interaction
surface pressure) is often approximately obtained byusing the expression for the interaction energyper unit area
(or pressure) between twoparallelmacroscopic plates, e.g.σ(D)=−A/12πD2 orπ(D)=−A/6πD3 for the van der
Waals (vdW) interaction, through invoking the Derjaguin approximation (DA). This approximation however
would result in over- or even inaccurate-prediction of the interaction force and the correspondingdeformation of
the fluid interface due to the invalidation of Derjaguin approximation in cases of microscopic or submacroscopic
solids. To circumvent the above limitations existing in the previous DA-based theoretical work, a more accurate
and quantitative theoretical model, available for exactly calculating the vdW-induced deformation of a planar
fluid interface interactingwith a sphere, and the interaction forces taking into account its change, is presented in
this paper. The validity and advantage of the newmathematical and physical technique is rigorously verified by
comparison with the numerical results on basis of the previous Paraboloid solid (PS) model and the Hamaker's
sphere-flat expression (viz. F=−2Aa3/(3D2(D+2a)2)), as well as its well-known DA-based general form of
F/a=−A/6zp0

2.
.
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1. Introduction

The interaction of fluid entities with each other or with solid bodies
in the controlled gaseous or liquid environments is of fundamental
importance in many technological and industrial processes, such as
the froth flotation, drug delivery, protein and cell separation and so on.
[1–5] Various techniques, including the surface force apparatus (SFA)
[6,7], the so-called MASIF [8,9], the atomic force microscopy (AFM)
[10,11] and the colloid probe atomic force microscopy (CP-AFM) etc.
[2,8,9,12,13],were employed todetect these interaction forces involving
thedeformedfluid interfaces.However, knowledgeof these interactions
involving fluid interfaces (particularly in cases of microscopic or
submacroscopic solids) and the resulted deformation of the fluid
interface remain limited as yet, despite of great efforts and
corresponding significant progresses in the experimental aspects
made by scientists in recent years [4–6,14–16]. This is not only due to
the complexunderlyingmechanismof surface forces, but alsodue to the
deformation of the fluid interface that makes evaluating the
corresponding interaction energy and quantifying the surface forces
difficult [2–5,8–23].
Recently a physical question ofwhat happens at and to the air-water
interface as a solid is lowered toward the interface has attracted the
scientists' interest. Cortat and Miklavcic [24–26] first performed a
theoretical study bymodeling the solid as a paraboloid shaped object to
investigate this practical and fundamental problem. On the basis of this
paraboloid solid (PS) model [23–25], the variations in the total surface
force on the solid and its induced deformation of the air-water interface
as a function of position of the paraboloid, paraboloid geometry, and
strength of the attractive vdW force have been discussed, and the
stability of the air-water interface subjected to the attractive vdW force
had been extensively studied. Following up Cortat and Miklavcic's
pioneering works [24–26], our group later investigated the universal
and scaling law at the proximity of the paraboloid solid to the
deformable air-water interface both in theory and experiments using
AFM [27,28].

Without doubt the previous PS model has achieved the great
success in the cases of macroscopic solids, nevertheless it seems
unavailable in the cases of microscopic or submacroscopic solids, since
how to exactly compute the vdW interaction energy between a
deformed fluid interface and the paraboloid shaped solid is still
ambiguous for the PS model [22,24–40]. To calculate the surface
energy density of the fluid interface induced by the attractive vdW
interaction of the paraboloid solid, through invoking the Derjaguin
approximation [4–6] all of the corresponding previous theoretical
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Fig. 2. A schematic of the spherical particle-fluid interface system in cross-section.
D(r,z)+a is the distance between the point on the deformablefluid profile {r,z(r)} and the
center of the spherical particle. zp0 denotes the lowest-most point of the spherical particle.
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works [22,24–40] often employed an approximate closed form
expression, which was derived analytically through a straightforward
pairwise integration of interatomic potentials over a unit area of one
surface and an infinite area of another surface (as shown in Fig. 1a)
and given by [3,5,24–28],

σ Dð Þ = −A= 12πD2
� �

orσ Dð Þ = −A = 2D2
� �

ð1Þ

Thewhole interfacial vdWenergywas then evaluated by integrating
σ(D) over thefluid interface, that is [26]UvdW=∬

Λ
σdS=∫

0

∞
σW(r)2πrdr,

where Λ denotes the deformed fluid interface, and dS denotes the
infinitesimal element of the interface.

From a theoretical and mathematical standpoint, the involved
mathematical technique of using Eq. (1) to calculate σ(D) and UvdW

wasapparently basedon the indistinct base assumptionof theDerjaguin
approximation [4–6,25,27] that the characteristic size of the paraboloid
shaped solid should be much larger compared to the separation D, for
which the effects of solid curvature are minimal and the Derjaguin
approximation can apply. However, the previous numerical results
based on the PS model, e.g. Eqs. (11) and (12) in Ref [24] and data of
Table 2 in Ref [25], indicate that the characteristic size of an approaching
microscopic or submacroscopic paraboloid shaped solid with the
paraboloid splay parameter of λ=100~10,000 m−1 is comparable to
(or might be smaller than) its limiting separation from the interacting
greatest-bulging fluid interface. This means that the above-mentioned
base assumption evidently violates when calculating the vdW interac-
tion involved in the microscopic (or submacroscopic) paraboloid
shaped solid in the previous PS model [40,41]. This would thus result
in the gross overestimations of the interfacial vdWinteraction density of
the fluid interface and the corresponding total vdW interaction energy
in cases of themicroscopic or submacroscopic paraboloid shaped solids,
and further lead tomisleading and anomalous theoretical predictions of
the deformation of the air-water interface. [24–28,38,39]

The aim of this paper is to present an accurate and rigorous theo-
retical model system to exactly quantify the non-contact mesoscopic
vdW interaction between an infinite planar fluid interface and a
spherical solid, and the correspondingdeformation of thefluid interface.
This presented theoretical model circumvents the above-mentioned
limitations of the PS model, and may be available for specialized
applications in the factual CP-AFM (or common AFM) experiments
quantifying the mesoscopic interaction between microscopic or
submacroscopic solids and various fluid interfaces. Toward this, (in
Section 2) we derive an analytical expression available for exactly
calculating thevdWsurface energydensity of thefluid interface induced
by an approaching solid, through modeling the interacting solid as a
Fig. 1.Methods of integrating the interaction energies of molecules in condensed phases to o
an infinite planar surface [3]; (b) molecule near a spherical particle; (c) a circular planar su
spherical particle and using Israelachvili's pairwise integration method
[3] or the Hamaker approach [40,42]. Then, (in Section 3) an improved
physical andmathematicalmodel systemof a deformablefluid interface
interacting with a spherical particle (namely the spherical solid (SS)
model, as shown in Fig. 2) is presented. Following, (in Section 4) this SS
model system is employed to further investigate some interesting and
ambiguous problems existing in this field, including the existence of
stable and unstable profiles [25,27] in the SS model system, the roles of
the vdW surface pressure distribution [3–6,43,44] across the fluid
interface in the vdW-induced deformation of the fluid interface, the
force-vs-separation (or the maximum deformation versus the separa-
tion) behaviors involved in the deformed fluid interface and their
corresponding universal and scaling descriptions [27], as well as the
limiting height at which a solid can approach the fluid interface [24].
Through successfully addressing these above practical and fundamental
problems, and comparing with the corresponding numerical results
obtainedby theprevious PSmodel and thepredictionsby theHamaker's
sphere-flat expression [42–44] (F=−2Aa3/(3D2(D+2a)2)) and its
DA-Based form of F /a=−A/6zp02 , the validity and accuracy of this new
mathematical and physical technique is rigorously verified. Finally,
summary and final remarks appear in Section 5.

2. Interaction potentials between a sphere and a planar surface of
unit area

2.1. Interaction between a molecule and a sphere

In a similar manner of Israelachvili's pairwise integration method
[3] (or the Hamaker approach [42], see Fig. 1a) to deduce Eq. (1) (i.e.
btain the interaction energies between two bodies: (a) a planar surface of unit area near
rface of unit area near a spherical particle.

image of Fig.�2
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σ(D)=−A /(12πD2)), we first investigate the interaction between a
molecule (P) and a sphere of volume V, as shown in Fig. 1b. As the
previous treatment [3], the pair potential between two atoms or small
molecules is assumed to be purely attractive and of the form, w(l)=
−C/ ln. With the assumption of additivity, the net interaction energy
of a molecule and the spherical solid made up of like molecules will be
the sum of its interactions with all themolecules in the body. From the
elementary geometry in Fig. 1b, the number of molecules in the unit
volume dV=r2 sin ϕdϕdθdr in the spherical coordinate systemwill be
ρ1r2 sin ϕdϕdθdr, where ρ1 is the number density of molecules in the
sphere. The distance (l) between this unit volume dV and the mol-
ecule (P) satisfies

l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a + dð Þ2 + r2 + 2r a + dð Þ cos ϕ

q
: ð2Þ

The net interaction energy for the molecule (P) at a distance d
away from the sphere of radiusawill therefore be

I d; að Þ = ∫
V
ρ1w lð ÞdV = −2πCρ1∫

a

0
r2dr∫π

0

sinϕ
ln

dϕ

=
−2πCρ1

n−2ð Þ a + dð Þ∫
a

0
rdr

1
a + d−rð Þn−2 −

1
a + d + rð Þn−2

" #

=
−2πCρ1

n−2ð Þ n−3ð Þ ½ 1
dn−3 +

1
2a + dð Þn−3

+
n−3
n−4ð Þ

1
a + dð Þ 2a + dð Þn−4 −

n−3
n−4ð Þ

1
a + dð Þdn−4 �

for; n≥4

ð3Þ

which for n=6 (vdW forces [3]) becomes

I d; að Þ = −πCρ1

6
1
d3

− 1
2a + dð Þ3 +

3= 2
a + dð Þ 2a + dð Þ2 −

3= 2
a + dð Þd2

" #
:

ð4Þ

Fig. 3 exactly shows the relation between I(d ;a) and d/a. It can be
seen that the smaller the distance (d) is (or the larger the sphere
radius (a) is), the larger the vdW interaction energy between a
molecule and a spherical solid is. From Eq. (4) and Fig. 3 we can
further see that if a≫d or if a /d→∞, indicating the sphere is much
larger comparing to the separation, Eq. (4) can be simplified to be

I d; að Þ≈−πCρ1 = 6d
3
; ð5Þ

which had been obtained by Israelachvili [3] to describe the vdW
interaction between a molecular and a infinite planar solid surface.
Fig. 3. Plot of I(d ;a)×a3/−πCρ1/6 versus d/a by using Eq. (4).
2.2. Interactions between a sphere and a planar surface of unit area

We then calculate the interaction energy between a spherical solid
and a circular planar surface, as shown in Fig. 1c. Likewise, we start
with a thin circular sheet of molecules of area πδx02 and thickness dz at
a distance z away from the lowest-point of the sphere. From the
elementary geometry in Fig. 1c and Eq. (3), and with the further
assumption of additivity, the interaction energy between this sheet
and the sphere is ∫δx0

0
I d′; að Þρ22πxdxdz. in the cylindrical coordinate

system, where ρ2 is the number density of molecules in the circular
cylinder and d′ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z + að Þ2 + x2

q
−a. Thus, for the sphere and the

circular planar surface of unit area, we approximately have

σunit D; að Þ = ∫∞

D
ρ2

1
πδx20

∫δx0
0

I d′; a
� �

2πxdxdz; ð6Þ

which can furthermore be rewritten to be

σunit D; að Þ = ∫
∞

D
ρ2H z; a; δx0ð Þdz; ð7Þ

through defining a function such that

H z; a; δx0ð Þ := 2
δx20

∫δx0
0

I d′; a
� �

xdx ð8Þ

It is important to note that Eq. (6) or Eq. (7) exactly characterizes
the average quantity of the surface interaction energy density on the
circular planar surface of area πδx02. But the corresponding analytical
form of Eq. (6) or Eq. (7) seems unavailable due to their too com-
plicated mathematical integration. Nevertheless, this does not pre-
vent us from deducing an analytical expression for exactly describing
the vdW interaction energy between the sphere and a planar surface
of unit area, which is denoted by σ in the following discussion.

From the above discussions in Section 1 we note that determina-
tion of UvdW induced by the approaching solid is often accomplished
by integrating σ over the deformed fluid interface, i.e. UvdW = ∬

Λ
σdS.

From amathematical integral standpoint,σ is obviously signified to be
the limit of σunit (described by Eq. (6) or (7) for n=6) as the area of
the upper circular base of the circular cylinder approaches infinites-
imal (i.e. πδx02→0, see Fig. 1c). Hence, from Eq. (6)–(8) we can obtain

σ = lim
πδx20→0

σunit D; að Þ = lim
δx0→0

∫∞

D
ρ2H z; a; δx0ð Þdz

= ∫∞

D
ρ2 lim

δx0→0
H z; a; δx0ð Þ

� �
dz;

ð9Þ

where

lim
δx0→0

H z; a; δx0ð Þ = lim
δx0→0

2
δx20

∫δx0
0

I d′; a
� �

xdx: ð10Þ

Since d′ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z + að Þ2 + x2

q
−a (see Fig. 1c), for all x in [0,δx0],

d′(x)≥d′(x=0), from Fig. 3 or Eq. (4) it is easy to see that it
satisfies |I(d′(x) ;a)|≤ |I(d′(x=0) ;a)| and the approximation can
be made by I(d′(x) ;a)≈ I(d′(x=0) ;a) as δx0 is much less and
approaches infinitesimal. Eq. (10) can thus be simplified to be,

lim
δx0→0

H z; a; δx0ð Þ≈2I d′ x = 0ð Þ; að Þ
δx20

∫δx0
0

xdx≈I d′ x = 0; að Þ� ð11Þ

i n which d′ x = 0; að Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z + að Þ2 + x2

q
−a

	 

jx=0 = z. F rom

Eqs. (9) and (11) we then obtain σ D; að Þ = ∫∞

D
I z; að Þρ2dz. Finally,
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substituting Eq. (4) into this equation and integrating over z fromD to∞
produces

σ D; að Þ = − A
12π

1
D2 −

1
2a + Dð Þ2 −

3
a2

ln
D

D + 2a
− a

D + 2a
− a

D

	 
� �
;

ð12Þ

where A=π2Cρ1ρ2 is the conventional Hamaker constant [3]. It is clear
that Eq. (12) is a more efficient analytical expression for exactly
calculating the vdW surface energy density without any restrictions of
the size of the sphere and the separation [3–5,39,43,44]. If assuming
D≪a, Eq. (12) can transform into Eq. (1) (i.e.σ(D)≈−A/(12πD2)). The
assumption D≪a is clearly the same as our above-mentioned base
assumption of the Derjaguin approximation [3–5,39]. This thus tells us
that if in cases of the closer separation or large size of the sphere, the
vdW surface energy density can be approximately calculated by using
Eq. (1) through invoking D≪a, as used in the previous researches.

Fig. 4 shows the comparison of the vdW surface energy densities
respectively calculated by using Eqs. (1) and (12). The data curves
describe the variations of the dimensionless vdW interaction energy
(−σ /A) with the surface-to-surface separation distance between the
spherical solid and the unit area plane surface (D, see Fig. 4a), as well
as with the sphere radius (a, see Fig. 4b). It is clear that Eq. (12)
predicts the vdW surface energy density smaller than Eq. (1), and that
this discrepancy becomes more distinct as the base assumption D≪a
is gradually violated due to increasing the separation distance or
decreasing the radius of the sphere. As DNa /28, the relative deviation,
which is defined to be (σEq.1−σEq.12) /σEq.12), is evidently much
Fig. 4. Comparison of the variations of the scaled attractive vdW interaction (−σ /A)
between a spherical solid and a plane surface of unit area with (a) the separation
distance and (b) the size of the spherical particle obtained respectively from Eqs. (1)
and (12). The thin dashed line characterizes the boundary situation ofa≈28D, at which
the deviation (which is defined to be (σEq.1−σEq.12) /σEq.12) is large up to about 10%.
Thereinto, σEq.1 denotes the result calculated by σ(D)=−A /(12πD2), and σEq.12

denotes the one by Eq. (12).
larger than 10%. Such result is quite analogous to the one reported by
Bhattacharjee and Elimelech [39], involved in the comparison of the
vdW interaction energies between a sphere and an infinite flat plate
obtained using the surface element integration (SEI) technique and
the DA one. From Bhattacharjee and Elimelech's previous study [39],
we can know that the use of Eq. (1) to calculate the vdW surface
energy density induced by a sphere is analogous to be a DA technique;
the obvious discrepancy when ab28D as shown in Fig. 4 factually
results from the gross overestimation of the vdW interaction energy
density calculated by Eq. (1) due to the violation of the base as-
sumption (D≪a) in cases of the small sphere (or the large
separation); and that a remarkable improvement can be obtained
by using Eq. (12) through ruling out the limitation of the assumption
D≪a.

Consequently it can be conclude that Eq. (12) is a straightforward
approach, similar to the SEI technique [30,39] but having an analytical
form, to provide a possibility to exactly calculate the vdW surface
energy density in the deformed fluid interface induced by not only a
interacting macroscopic spherical solid but also the microscopic or
submacroscopic one. Moreover emphasis should be placed that
Eq. (12) is different from Hamaker's results [39,42], which char-
acterizes the vdW interaction energy between a sphere and an infinite
surface, despite the last complex term in Eq. (12) being quite similar
to Hamaker's results [39,42], and the first and second terms in Eq. (12)
seemingly decay faster than other terms.1

3. The spherical solid (SS) model system

In this sectionwewould introduce the improvedmathematical and
physical model system based on Eq. (12), as shown in Fig. 2, for
numerically investigating the attractive nonretarted vdW-induced
deformation of a fluid interface interacting with an approaching solid.
This theoretical model considers the approaching solid having a
simplest configuration of a sphere with the radius of a, and has the
major advantage that the exact calculation of the total vdW interaction
energy taking into account the changes of the deformed fluid interface
is available without the restriction of the above-mentioned base
assumption of the Derjaguin approximation. Accordingly, as in the
previous studies [18,24–27,35,36], in the calculations of the equilib-
rium configuration of the liquid surface interacting with a spherical
particle, the balance of three forces is considered:

(1) the surface tension of the fluid interface;
(2) the van derWaals attraction between the spherical particle and

the fluid interface;
(3) the gravitational force acting to oppose the deformation of the

fluid interface.

In cylindrical coordinates the total energy of the deformed fluid
interface {r,z(r)} that accounts for the above three contributions can
be written as [27]

U = 2π∫
∞

0
r γ + σð ÞW rð Þ + G

2
z2

� �
dr; ð13Þ

where W rð Þ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + z2r

p
is an area scaling factor, G=Δρg is the

notation by multiplying the density difference Δρ with the gravita-
tional acceleration g, γ is the surface tension of the fluid interface, and
σ (depicted by Eq. (12)) characterizes the vdW interaction
energy between the spherical particle and a planar surface of unit
1 The calculated results by Eq. (12) shown in Fig. 4 clearly show that with varying
the D /a value, the first term in Eq. (12) is large than the second term and the third
complex one, despite the first and second term, having the square term, seemingly
decay faster than each term in the third complex.

image of Fig.�4


Fig. 5. Stable (a) and unstable (b) solutions of Eq. (15) involved in using Eq. (12) to
calculate the vdW surface energy density (σ), and their behaviors as a function of the
spherical particle heights. The physical parameters are a=100 μm, A=2.0⁎10−19 J,
γ=72mN/m and Δρ=996.910 kg/m3.
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area at (r, z(r)) separated by a distance D(r,z). From Fig. 2, D(r,z)
satisfies

D r; zð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zP0 + a−zð Þ2 + r2

q
−a: ð14Þ

In terms of the fundamental theorem [4,5,27] that an equilibrium
surface profile of the fluid interface {r,z(r)} can be achieved when the
total free energy of the fluid interface is minimum or maximum, an
Euler–Lagrange (E–L) differential equation can then be obtained [27]

d
dr

rzr rð Þ
W

γ + σ r; zð Þð Þ
� �

= r Gz + W
∂σ r; zð Þ

∂z

� �
: ð15Þ

The free fluid surface profile can thus be determined self-
consistently bynumerically solving the above E–L differential equation
with two optimally refined boundary conditions {zr(0)=0, z(∞)=0}
through using the collocation–integration technique [24–28].

After determination of the fluid interface profile {r,z(r)}, the vdW
surface energy density on the interface can be calculated by using
Eqs. (12) and (14), and the corresponding imposed vdW surface
pressure distribution across the deformed fluid interface can also be
obtained by [3–6,23,33,36,37]

Pz r; zð Þ = ∂σ
∂z =

∂σ
∂D

∂D
∂z = −Π Dð Þ ∂D∂z ; ð16aÞ

and

Pr r; zð Þ = ∂σ
∂r =

∂σ
∂D

∂D
∂r = −Π Dð Þ ∂D∂r ; ð16bÞ

where Π(D) is the vdW-induced disjoining pressure acting in the
direction of the normal to the interface at (r, z(r)) separated by a
distance D(r,z), and Pz(r,z) and Pr(r,z) respectively represent the
components of this vdW surface pressures acting in the z-direction
and in the horizontal (or lateral) direction [23,33,36,37]. It is clearly
indicative from Eqs. (16a) and (16b) that the Pz(r,z) and Pr(r,z)
pressures are respectively responsible for the longitudinal and lateral
deformation of the fluid interface. Since the vdW force on the fluid
profile is equal and opposite to the one exerted on the spherical solid,
the vertical component (z axis) of the force acting on the spherical
solid can thus be obtained by integrating the corresponding z-
direction pressure distribution, Pz(r,z), over the deformed fluid
interface, i.e. [23–27,33,36,37]

F = ∫∞
0
Pz r; zð ÞW zrð Þ2πrdr: ð17Þ

From the above analysis, it is clear that with simply replacing the
paraboloid shaped solid by the spherical one, and calculating the vdW
surface energy density by using Eq. (12) instead of Eq. (1), the
improved SS theoretical model enables the calculation of the vdW
surface energy involving the deformed fluid interface to be exact and
thus conquers the above-mentioned disadvantages of the previous PS
model system [25,27]. This thus present a possibility to exactly
investigate the interaction involved in the deformed fluid interface
and the resulted deformation of the fluid interface for cases of the
approaching microscopic or submacroscopic solids.

4. Numerical results and discussion

4.1. Stable and unstable solutions to the E–L equation based on the SS
theoretical model

It was known [24,25] that in the previous PS model there exists
two legitimate solutions to the E–L equation near the mathematical
existence limit [27,29–39], one represents a stable (local minimum
energy) solution, and the other represents the unstable (local
maximum energy) solution. From the mathematical point, in the SS
theoretical model system, the calculation of the vdW surface energy
density (viz. σ) in the E–L differential equation (viz. Eq. (15)) by using
Eq. (12) instead of Eq. (1) would result in a distinct discrepancy of the
calculated energy functional, in particular for cases when the
Derjaguin approximation invalidates. Our first task here is to check
the existence of these two possible stable and unstable solutions to
Eq. (15) based on the SS theoretical model.

We show both stable and unstable profiles obtained by solving
Eq. (15) for a sequence of spherical particle heights (zp0) in Fig. 5. It is
clear that the stable profiles show increasing deformation as the
sphere is lowered, contrarily the unstable ones show the opposite
tendency of diminishing their degree of deformation; and that the
sequences curves converge in both figures to the limiting profile
found at the critical solid height of zp0≈56.0 nm. The overall behavior
in Fig. 5 quite coincides with the one [25,27] previously predicted on
the basis of the PS model, despite the corresponding profile
deformation obtained by the PS model seeming much larger due to
the gross overestimation of the total vdW interaction energy and the
corresponding existence limit might also be modified [25,27–30]. This
coincidence thus presents a straightforward evidence on the validity
of numerical results on the basis of the SS theoretical model, and also
further confirms the rationality of the existence of the unstable fluid
interface previously predicted in the PS model.

For details of the nature of the two above solutions and their states
of stability see the previous refs [24–27]. In this paper we focus
attention only on the stable solution, and to further check and ensure
the validity and advantage of the SS theoretical model to address the
practical problems, which are usually unavailable or poor predicted by
the previous PS model, or remain ambiguous as yet.

image of Fig.�5
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4.2. The vdW surface pressure distribution across the deformed profile
dependent on system parameters

Previous studies [3–6,12–16,18–21,29–39] have suggested that
the deformation of the fluid interface interacting with a solid is
controlled by both the surface pressure across the interface due to the
imposed stress and the surface tension of this fluid interface. But, to
our knowledge, the understanding of the corresponding vdW surface
pressure distribution on the deformed fluid interface induced by the
solid, as well as the effects of the surface tension, still remains limit,
due to the unavailability of exact calculation of the vdW surface
energy density [24–27]. Our main object in this section is to use the SS
model to investigate the vdW surface pressure distributions across the
deformed interface dependent on the system parameters, including
the interacting sphere height (zp0), the vdW interaction strength (A),
the radius of this interacting sphere (a) and the surface tension of the
fluid interface (γ).

From Figs. 8 and 9 we find that the Pz(r,z) and Pr(r,z) distributions
vary regularly with varying the system parameters, better
corresponding to the dependence of the deformation on the system
parameters shown in Figs. 6 and 7. Thereinto, Figs. 8a and 9a, for
example, show that as decreasing the sphereheight, the average Pz(r,z)
strength gradually increases and the corresponding “effective area” [3]
becomes smaller, simultaneously the corresponding average Pr(r,z)
strength increases. This results in the increases of the longitudinal
deformation and the lateral (or horizontal) extent of deformation, as
obviously shown in Fig. 6a and the inset of Fig. 7a. Also, Figs. 6b, 7b, 8b
and 9b (or Figs. 6c, 7c, 8c and 9c), demonstrates the effects of changing
the vdW surface pressure distribution to the longitudinal and lateral
deformation of the fluid interface by varying the Hamaker constant (or
the sphere radius). Through using the special Gauss distribution
formula [45] f xð Þ = f0ffiffiffiffi

2π
p

η
e−2x2 =η2 to fit the histogram data of Fig. 8, at

which η has the physical significance of characterizing the size of the
“effective area” [3] of the vertical component of the vdW interaction,
and P max ≡ f0 =

ffiffiffiffiffiffi
2π

p
η approximately measures the average strength of
Fig. 6. Profiles for (a) different heights of the spherical particle, (b) different strengths of the
tension surface. The physical parameters are a=100 μm, A=2.0⁎10−19 J, γ=72mN
Δρ=996.910 kg/m3 for (b); A=2.0*10−19 J, zp0=200.nm, γ=72mN/m and Δρ=996.91
for (d).
the vdW surface pressure on this effective area, we can then obtain the
corresponding Pmax and η data given in Table 1, to quantitatively and
accurately support the above analysis.

In addition, Figs. 8d and 9d show that both the Pz(r,z) and Pr(r,z)
distribution appears unchangedwith varying the surface tension from
10mN/m to 150mN/m, despite of the prominent changes of the
corresponding longitudinal and lateral deformation as shown in
Figs. 6d and 7d. This obviously indicates that varying the surface
tension in controlling the deformation of the fluid interface is
independent of the vdW surface pressure distribution across the
interface, in cases of weak vdW interaction andmoderate deformation
[29–31]. Whereas, if for cases of strong vdW interaction and great
fluid deformation, the corresponding interaction and deformation
behaviors would be more complex, due to the strong coupled effects
from both the surface tension and the surface pressure distribution
across the deformed interface.

From Table 1 and Figs. 6(a-d) to 9(a,-d) we thus can qualita-
tively conclude that, for cases of the fixed surface tension, the Pz(r,z)
and Pr(r,z) distributions are respectively responsible for the longitu-
dinal and lateral deformation of the fluid interface, the stronger the
average Pz(r,z) and Pr(r,z) strengths are, the larger the longitudinal and
lateral deformationof thefluid interfacewill be; and that for casesofweak
interaction and moderate deformation, the role of the surface tension in
controlling the deformation of the fluid interface is independent of the
vdWsurface pressure distribution across the interface, quite similar to the
effective spring constant of the fluid interface.

4.3. Scaled dependences of Profile Peak and vdW force on height of the
solid

We next are to use the SS model to investigate the dependences of
the deformation peak (z(0)) and the corresponding interacting force
(F) on the spherical particle position (zp0) for various values of
interaction strength and radius of the spherical particle of the μm
order, which is of particular interest for applications in the AFM
vdW interaction, (c) different radius of the spherical particle, and (d) different values of
/m and Δρ=996.910 kg/m3 for (a); a=100 μm, zp0=200.nm, γ=72mN/m and
0 kg/m3 for (c); a=100 μm, zp0=200.nm, A=2.0⁎10−19 J, and Δρ=996.910 kg/m3
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Fig. 7. Normalized profiles of the corresponding profiles shown in Fig. 6.
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Fig. 8. vdW surface pressure (acting in the z-direction) distribution Pz(r) on the deformable fluid interface interacting with a spherical solid for (a) different heights of the spherical
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experiment (in particular the CP-AFM) [2–6,12,13,20–30] quantifying
the mesoscopic interaction between microscopic or submacroscopic
solids and the fluid surfaces.

Open symbol curves in both Figs.10 and 11 respectively illustrate
the general qualitative and specific quantitative behaviors of the
functions, z(0;zp0) and F(zp0), for various values of the radius of the
approaching spherical solid (a ∈ [1,1000]μm) and the interaction
strength (A∈[2500]×10−21 J). Thereinto the leftmost extreme points
of each of the curves are the sets of critical limiting points [24,25] ([zp0,
min, z(0,zp0,min)] and [zp0,min, F(zp0,min)]), determined in terms of the
solvability limits of Eq. (15). These results are clearly in line with the
general expectations: deformation and interacting force increase as
the sphere is lowered toward the fluid interface with the extent of
deformation and vdW force increasing with increasing A and a.
Nevertheless, by comparing with the PS-model predictions in the
range λ∈[100,10,000]m−1 shown as solid symbol curves in Fig. 10 we
see that obvious discrepancies appear, despite the range
λ∈[100,10,000]m−1 in the previous PS model system was claimed
[24,25] to scale the microscopic or submacroscopic size of the
paraboloid solid. Values of z(0) and the vdW force (F) predicted by
Table 1
Values of fitting parameters of the Gauss distribution function[44], f xð Þ = f0ffiffiffiffi

2π
p

η
e−2x2 =η2 , use

(a) (b)

Zp0
(nm)

Pmax

(Pa)
η
(μm)

A
(10−21 J)

Pmax

(Pa)
η
(μm)

85 23.69 3.57 50 10.84 5.81
110 9.00 4.22 200 11.45 5.79
150 3.27 4.99 500 12.69 5.76
200 1.33 5.79 800 14.15 5.73

Note that P max≡f0 =
ffiffiffiffiffiffi
2π

p
η characterizes the maximal vdW surface pressure across the d

characterizing the size of the effective “interacting area”[3] induced by the vertical compon
the previous PSmodel are clearly much larger than those predicted by
the SSmodel, even the results for λ=10,000 m−1 are also quite larger
than the ones for a=1000 μm. In light of the above discussion, these
discrepancies mainly result from the gross overestimation of the vdW
interaction due to the invalidation of the Derjaguin approximation in
the PS model.

Furthermore, scaling both zp0 and F of each data set in Figs. 10b and
11b by corresponding critical values of zp0,min and F(zp0,min) gives rise
to the resultant normalized curves as shown in Fig. 12. In like manner
as in the previous refs [27], through fitting we find that they also obey
the scaling power law given by [27]

F̃ = CF z̃
−bF
p0 ; ð18Þ

at which value of the coefficient bF is approximate 2.0 and increases
dramatically with decreasing zp0 nearby zp0,min. This scaled behavior is
clearly consistent with those reported in the previous refs [27] based on
the PS model. The scaling parameter bF is dependent on both the
geometries of the solid and the fluid interface, and can be used to
indicate the longitudinal deformation and instability of the whole fluid
d for fitting the Pz(r) distribution data of Fig. 8.(a-d).

(c) (d)

a
(μm)

Pmax

(Pa)
η
(μm)

γ
(mN/m)

Pmax

(Pa)
η
(μm)

20 0.33 1.79 10 1.48 5.68
50 1.34 2.86 30 1.40 5.77

100 3.49 3.97 72 1.35 5.79
150 5.71 4.72 150 1.35 5.80

eformed fluid interface (i.e. Pz(r=0)); and η here has the physical significance of
ent vdW surface pressure on the fluid interface.
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Fig. 11. Numerical calculations of the functions z(0, zp0) (a) and F(zp0) (b) with
varying the interaction strength, A, based on the SS model. The physical pa-
rameters are γ=72mN/m, Δρ=996.910 kg/m3, a=100 μm and Hamaker constants
A∈{2,10,50,200,300,500}×10−21 J.
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interface. The larger the value of bF is, the larger the longitudinal
deformation and the less stable the fluid interface will be. Nevertheless,
when the sphere is far from the limiting position and the corresponding
deformation of the air–water interface is very small, value of bF decays
gradually to 2.0 with increasing the sphere radius (as shown in inset
of Fig. 12a), and satisfies bF≈2.01+1.08 e−a */1.69+0.69e−a */8.77+
0.11e−a */136.5, where a*=a/a0 and a0=1 μm. Such behavior is clearly
different and opposite to the dependence of other scaling parameter (b)
on λ reported previously [27]. Various complicated factors lead to this
difference. The main factors are that bF indicates the longitudinal
deformation for thewhole profile whereas b is only for the apex of fluid
interface; and that the results for large z̃p0 shown in Fig. 12a and its inset
equivalently describes the effects of varying the size of a sphere of the
μm order to the vdW interaction between this sub-macroscopic solid
sphere and an infinite less-deformed fluid interface that is far away, at
which both the DA approximation and its base assumption invalidate.

It is known that the well-known DA-based sphere-flat expres-
sion [3–6,42,43] F /a=−A /6zp02 is the simplified format of the
Hamaker's sphere-flat one, F=−2Aa3/(3zp02 (zp0+2a)2), based on
the assumption that a≫zp0 through invoking the Derjaguin approx-
imation. To further validate the behavior in Fig. 12a and its above-
mentioned interpretation, we compare the normalized vdW force
(−F /a) versus zp0 behavior predicted by the SS model to the ones
respectively by F=−2Aa3/(3zp02 (zp0+2a)2) and F /a=−A /6zp02 with
A=2×10−19 J, as shown in Fig. 13. From Fig. 13 it can be seen that
good agreement between the SS-model predictions and the F=
−2Aa3/(3zp02 (zp0+2a)2) one is achieved in the cases of the smaller
sphere far away from the fluid interface, whereas obvious deviations
from the DA-based F /a=−A/6zp02 prediction manifest. The smaller
the sphere radius is (or the larger the zp0 value is), in terms of the

image of Fig.�12
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previous analysis [3,44] more obvious the invalidation of the
Derjaguin approximation is, and more obvious the deviation from
the F /a=−A/6zp02 prediction appears.

From the above analysis it can be seen that, in contrast to the
previous PS model that is available only for themacroscopic paraboloid
solid, the SS theoreticalmodel has the validity and advantage to provide
a more accurate, and quantitative theoretical support to interpret the
force-vs-distance (or the deformation-vs-distance) behaviors detected
in the CP-AFM (or common AFM, or SFA) experiment involving the
microscopic or submacroscopic probes. Corresponding necessary AFM
experiments in our lab are to be performed in future.

4.4. Minimum allowed heights of the microscopic or submacroscopic
spherical particle, and maximum induced deformation of fluid interface

The last problems we are to be concerned are how closely can a
microscopic or submacroscopic solid approach an air–water surface
without becoming wet, and how large the maximum vdW-induced
deformation of the fluid interface. Similar issue for the macroscopic
paraboloid shaped solid had been discussed on basis of the PS model
system [24], but the previous PS-model prediction [24] is valid only in
cases of the macroscopic paraboloid shaped solid when the DA
approximation validates. It is necessary to perform a further
investigation on this practical and fundamental problem on basis of
the SS model system, aiming to give people a more quantitative and
correct understanding of this problem involving note only the
macroscopic solids but also the microscopic or submacroscopic ones.

As the previous studies [24], in this paper our focus is on the
dependences of the critical limiting points, z(0;zp0,min), on the
sphere radius (of a∈[1500]μm) and the Hamaker constant (of
A∈[2500]×10−21 J), and on the comparison with the corresponding
PS-model predictions in the range λ∈[100,10,000]m−1, which were
claimed previously [24,25] to be applicable in experiments quanti-
fying the mesoscopic interaction between microscopic or subma-
croscopic solids and fluid interfaces. Thereinto, values of z(0;zp0,min)
are determined in terms of the solvability limits [34,36–39] of the
governing profile equation, viz. Eq. (15).

Fig. 14 respectively shows critical limiting values of zp0 and z(0) as
functions of the sphere radius (a) and the Hamaker constant (A)
obtained on basis of the SS model. It is clear that, quite similar to the
PS-model prediction shown as dashed and dashed dot curves in
Fig. 14, as the size of the approaching sphere becomes larger or the
vdW interaction strength increases, the limiting height of approach
and the limiting maximum deformation of fluid interface, as well as
the limiting separation between the sphere and fluid interface,
gradually increase, due to the increase of the average surface pressure
Pz(r,z) strength on the fluid interface with increasing a or A (as shown
in Fig. 8b and c).

Nevertheless, the limiting heights of the spheres of (1~1000) μm
order and the corresponding maximum deformation of the air–water
interface, predicted by the SS model system, are obviously smaller
than the PS-model predictions in the range of λ∈[100,10,000]m−1.
The limiting value of z(0) of the air–water interface induced by the
sphere of a=1 μm, for instance (see Fig. 14a), is predicted by the SS
model to be approximate 10.0 nm, whereas the limiting value of z(0)
induced by the paraboloid solid with λ=10,000 m−1 is predicted by
the PS model to be approximate 60.0 nm, in particular the one for
λ=100 m−1 is predicted to be up to 200.0 nm. By comparingwith the
practical expectations [2,4,5], these PS-model predictions seems
grossly overestimated and unreasonably large. In terms of the
previous analysis, we can know that, it mostly results from the
gross overestimation of the vdW interaction by the Derjaguin
approximation technique in the PS model for the cases of the
microscopic or submacroscopic solids; whereas the SS model
conquers such restriction and can thus provide a more accurate,
quantitative and more reasonable prediction to the critical limiting
behavior of a microscopic or submacroscopic solid approaching
toward the air–water interface.

In addition, as in the previous studies [24], from the SS-
model predicted numerical data in Fig. 14 and using the nonlinear
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function (f(a;A)=aα Aβ) to fit these numerical data, we can obtain a
least-squares fits of the form

zp0; min a = 100μm;Að Þ≈ 10−4
� �α1Aβ1 mð Þ ð19aÞ

zp0; min a;A = 2 × 10−19J
� �

≈aα2 2×10−19
� �β2 mð Þ ð19bÞ

with exponent values α1=0.3639, β1=0.3099 and α2=0.2950,
β2=0.3248. From Eq. (19a) and (19b) and in light of the method to
deducing the closed-form analytic expression of zp0,min in the previous
refs [24,25,27], it thus can be possible to assume that the parameter
dependence of zp0,min for the approaching spherical particle toward
the air–water interface be of the form

zp0; min a;Að Þ≈aα a;Að ÞAβ a;Að Þ
; ð20aÞ

Thus, given the maximum height of an isolated sessile drop above
a fixed reference level in a typical CM-AFM experiment, Eq. (20a) can
be used to more quantitatively and correctly determine the minimum
possible substrate-colloidal particle separation. Likewise, the maxi-
mum value of the peak in the air–water profile, z(0), also naturally
follows the trend in the zp0,min values, it thus could also give

z 0; a;Að Þ≈aτ a;Að ÞAμ a;Að Þ
; ð20bÞ

where the exponents α, β, τ and μ in Eqs. (20a) and (20b) are the
functions of the radius of the sphere (a) and the vdW interaction
strength (A).

Consequently, how closely can a microscopic or submacroscopic
solid approach an air–water surface without becoming wet, and how
large the maximum induced deformation of the fluid interface? Com-
paring with the previous forms of zp0,min=10α(λ)Aβ(λ) and z(0)max=
10τ(λ)Aμ(λ) deduced on basis of the PS model system, Eqs. (20a) and
(20b) provide a more correct and quantitative answer to this question.
Note that exact functions of the exponents (e.g. α, β, τ and μ) in
Eqs. (20a) and (20b) can be determined through respectively varying A
and a, in this paper we would not employ larger space to further
reiterate this simple but tortuous fitting work, for details see the
previous Refs[25,27].

5. Summary and final remarks

In this paper we have derived an exact and analytic expression
Eq. (12) for the attractive nonretarded vdW attraction energy
between a spherical particle and a planar surface interface of unit
area by pairwise integrating the interaction of the form w(l)=−C/ln

of all the atoms in the sphere and the unit area planar surface.
Through employing this Eq. (12) technique and modeling the solid as
a spherical particle, an improved spherical solid model system
following the previous paraboloid shaped solid model is thus
developed to more accurately and quantitatively study the vdW-
induced deformation of an infinite plane fluid interface interacting
with an approaching microscopic or submacroscopic spherical solid.

The major advantage of this improved theory is that it provides a
straightforward and available technique for exactly scaling the vdW
surface energy density of the deformed fluid interface and the
corresponding total vdW interaction energy, thus successfully ruling
out the limitations of the previous PS model and other corresponding
theoretical work based on the Derjaguin approximation for cases of
the microscopic or submacroscopic solids. The validity and advantage
of the SS model is evidently and rigorously demonstrated through
applying the improved SS model to successfully numerically-address
some practical and fundamental problems in this field (that are still
ambiguous as yet or poor predicted by the PS model) and comparing
with the corresponding PS-model predicted numerical results and the
predictions by the Hamaker's sphere-flat expression and the general
DA-based technique (viz. F /a=−A /6zp02 ).

We believe that the capability of the SS model to provide exact
results for the interaction energy between a deformed fluid interface
and a spherical solid might be useful in accurate and quantitative
interpretation of AFM (in particular the CP-AFM) data, since the
model of the fluid interface interacting with the sphere well emulates
the practical situation encountered in AFM. The experiment by AFM
with the colloidal probe to experimentally validate the theoretical
prediction concerned in this paper is being performed in our
laboratory, we hope to elaborate on it in a future publication.
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