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Electric, magnetic and magnetoelectric properties of the nano-structured multiferroic

composites were studied by using an energy formulation with the consideration of the

surface, interface, and size effect. Coupled thermodynamic evolution equations with

respect to the spontaneous polarization and magnetization were established, in which

the elastic fields in the matrix and inclusions were solved based on the Eshelby’s

equivalent inclusion concept and the Mori–Tanaka method. Physical properties of the

composite, such as the spontaneous order parameters, piezoelectric/piezomagnetic

properties, and the magnetoelectric coupling effect are highly dependent on the stress

state and the microstructures of the nano-composites. Magnetoelectric coupling voltage

coefficient was unstable in the vicinity of the critical size and disappeared below the

critical size. The model is versatile enough for various composite structures.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Multiferroic/magnetoelectric materials have drawn a continual interest because of the wide and potential applications
such as the emerging field of spintronics, new data-storage media, multiple-state memories and sensors (Garcia et al.,
2010; Nelson et al., 2010). In the past few years, great stride has been made both in single phase and in composite
multiferroic materials. Since the single phase materials always showed weak magnetoelectric (ME) effect even in very low
temperature, an alternative way to the commercial applications is to fabricate multiferroic composites composed of
ferroelectric/piezoelectric (FE) and ferromagnetic/magnetostrictive (FM) phases. Multiferroic nano-heterostructures are
keen of interest because of the large ME coupling effect in the room temperature and the small size for miniaturized
multifunctional devices (Nan et al., 2008; Brintlinger et al., 2010).

The ME effect in multiferroic composites, either ceramic composites or nanostructures, are typically strain mediated
and largely dependent on the efficiency of strain transferred across the interfaces separating the two components (Zheng
et al., 2004). How to tailor and find an optimum stress states to induce the required interaction is crucial to reach large ME
effect (MacManus-Driscoll et al., 2008; Lou et al., 2009). However, stress states in nano-heterostructures are complex
because of the possible existence of the dislocations, coupling effects, different thermal expansion coefficients, and various
defects. Besides, many factors, such as the lattice parameters of each part, substrate, elastic properties, electrostrictive and
magnetostrictive properties can also greatly affect the stress state. Intensive experimental and theoretical studies have
been focused on the strain-mediated nano-heterostructures. Although large ME coupling effect was gained in the room
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temperature (Martin et al., 2010), the ME coupling effect is still much smaller than the theoretical predictions. This may
suggest that there is a large room for the improvement of the material design and the fabrication, but reliable theoretical
models are also needed.

In the past few years, a variety of models have been used, including the effective magnetoelectroelastic model to
predict the effective constants of the composites at the linear stage and the phenomenological models to predict the
behaviors at the nonlinear state. The magnetoelectric composites were first theoretically studied by Harshe et al. (1993a,
1993b) who obtained the expressions for the effective magnetoelectric coefficients. Later on, micromechanics models were
used to estimate the effective properties of piezoelectric/piezomagnetic composite materials (Nan, 1994; Huang et al.,
2009). By using the uniform field concept, exact connections between different components were obtained for the effective
magnetoelectroelastic moduli of fibrous composite (Benveniste, 1995). Furthermore, Li and Dunn (1998) extended
micromechanics approaches to analyze the average fields and effective moduli of heterogeneous media that exhibit full
coupling between stationary elastic, electric, and magnetic fields. They also obtained the closed-form expressions for the
effective moduli of fibrous and laminated composites (Li, 2000). The above models paid more attention on the effective
properties of the composite. However, exact physical properties, which are the key features for use in functional devise
were less concerned and not effectively investigated. Moreover, the linear constitutive equations with respect to the
polarization, magnetization, and external fields are also not in accordance with the experimental results with nonlinear
phenomenon (Slutsker et al., 2007). Using the micromechanics model together with the Landau free energy expansion, Lu
et al. (2007) built a comprehensive model for 1–3 type composites. Critical behaviors were investigated for the Fe/FM
multilayered system (Wang and Woo, 2008). Phase field models were also developed to predict the ME coupling in a
nanocomposite thin film (Zhang et al., 2007a, 2007b; Wu et al., 2010). Analytical evolution fields of the spontaneous
polarization, magnetization and stress were obtained with the use of a generalized Eshelby’s equations and the Fourier
transformation (Ni et al., 2010). However, the effect of the shape and size on the electric, magnetic and magnetoelectric
coupling properties is still less concerned. Moreover, a more general thermomechanical model for composites with
arbitrary-inclusions is of fundamental and technological interest.

In fact, the sets of the physical field equations of such heterogeneous magnetoelectroelastic solids under applied
loadings are easy to set but not easy to be solved analytically because of the position-dependent constitutive coefficients
(Ni et al., 2010). Thus, the estimates of the effective ME coefficients of the multiferroic composites were usually obtained
by using various mean field approximations. The exact solutions for elastic homogeneous inclusion system, which are
widely used in micromechanics analysis of heterogeneous materials are the well-known Eshelby’s solutions because of the
viability of the general ellipsoidal shape and the gentle and explicit solutions (Eshelby, 1957).

In this paper, the phenomenological theory combined with the Eshelby’s inclusion theory was established to investigate
the coupling effect and physical properties of nano-structured multiferroic composites. The stresses of the inclusions and
matrix in the high temperature prototype were solved by using the classical elastic Eshelby’s solutions. The time
dependent order parameters can be derived by using the Ginzburg–Landau theory. Intrinsic properties of the composites
including the phase transition temperatures, dielectric and piezoelectric properties of the FE phase, and piezomagneticity
and the susceptibility of the FM phase were studied.
2. Coupled thermodynamic potential

Suppose that the FE thin film with imbedded FM inclusions was grown on a rigid substrate under high temperature. The
film can be considered to be in-plane infinite and uniform in a large scale. In the fabrication temperature, above both the
phase transition temperatures of the two phases, there is no phase transition occurs and this state is named as the
prototype. FE phase transition and FM phase transition occurred when the temperature was cooled down to the room
temperature. Correspondingly, FE transformation strain eP

ij ¼QijklPkPl and FM phase transition strain eM
ij ¼ lijklMkMl=M2

s

were induced, with Qklij the electrostrictive coefficient, Pk the spontaneous polarization vector, lijkl the magnetostrictive
coefficient, Mk the spontaneous magnetization vector, and Ms the saturation magnetization. Vigor’s notation will be used in
the following. Tensor suffix notation is bold-faced and used only where necessary. It should be noted that the thermal
strain induced during the fabrication is ignored because of the small thermal difference among these two perovskite
materials (Zheng et al., 2004).

Under applied initial strain induced by the substrate, the total free energy for the thin film can be written as the Gibbs
free energy composing of the Landau free energy of the separated FE and FM composites, the coupling elastic energy, and
the surface energy (Lu et al., 2009):

F ¼ ð1�f Þ

Z
v

FE
L dvþ f

Z
v

FM
L dvþ

Z
v

FElasdvþFSurf , ð1Þ

where f is the volume fraction of the FM phase, FE
L and FM

L are the Landau-type bulk free energies of the FE and FM phases
with the consideration of the gradient items induced by the inhomogeneous polarization and magnetization in the surface
and interface. FSurf is the total surface energy, and FElas is the elastic coupling energy.
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2.1. Landau-type bulk free energy

For FE materials with a first order phase transition and FM materials with a second order phase transition, the bulk free
energy densities for each phase are described by the conventional Landau-type expansions with polarization P and
magnetization M served as the order parameters, respectively. It should be noted that the depolarization near the surface
of the film is usually very important in nano-scale. However, proper boundary conditions can effectively suppress such
effect (Woo and Zheng, 2008) in some structures such as the 1–3 type composites used in this work for simplicity.

In the absence of any applied field including electric, magnetic or mechanical fields, the polarization P is only induced
by the spontaneous atomic displacements when going through a ferroelectric phase transformation. With the application
of electric field E (including the external electric filed and depolarization field), another polarization PE is induced and can
be linearly written as PE

¼vbE, where wb is the background dielectric susceptibility and characteristic of the dielectric
background materials. Thus, the electric displacement filed D at constant applied stress and temperature can be expressed
in terms of the spontaneous polarization as (Zheng et al., 2010)

D¼ e0EþPþPE
¼ e0EþvbEþP¼ eEþP, ð2Þ

where e0 is the vacuum dielectric permittivity, e is the total dielectric constant of the background material.
The thermodynamic potential without the surface energy can be obtained from the relation dgP/dE¼�D¼�eE�P with

up to the 6th order Taylor expansions with respect to the spontaneous polarization P¼(P1,P2,P3) for the first order phase
transition. Because of the existence of the inhomogeneous polarization, gradient items were also added. Under mechanical
stress-free and electric-free boundary conditions, the total energy in the FE composite can be expressed as

FE
L ¼ a1ðP

2
1þP2

2þP2
3Þþa11ðP

4
1þP4

2þP4
3Þþa12ðP

2
1P2

2þP2
1P2

3þP2
2P2

3Þ

þa111ðP
6
1þP6

2þP6
3Þþa112½P

4
1ðP

2
2þP2

3ÞþP4
2ðP

2
1þP2

3ÞþP4
3ðP

2
1þP2

2Þ�

þa123P2
1P2

2P2
3þDP

11ðP
2
1,1þP2

2,2þP2
3,3ÞþDP

44ðP
2
1,2þP2

1,3þP2
2,1þP2

2,3þP2
3,1þP2

3,2Þ ð3Þ

where ai,aij and aijk are the expansion coefficients of the Landau free energy. DP
11 and DP

44 are the corresponding gradient
coefficients with the Voigt’s notation.

Similar to the above description of dielectrics, the instant magnetostatic response of ferromagnetics is given by a
constitutive relation B¼m0HþMH

þM, with B the magnetic induction, m0 the vacuum magnetic permeability, MH the field
induced effective magnetization, H the magnetic field, and M the spontaneous magnetization. It can also be written as the
sum of the magnetic induction magnetization and the spontaneous magnetization. The magnetic induction B thus can be
written as

B¼ m0HþlbHþM¼ lHþM, ð4Þ

where lb is the background magnetic susceptibility tensor and l is the total magnetic susceptibility tensor.
The thermodynamic potential for a bulk ferromagnetic material can be obtained from the relation dgm/dH¼�B. Since

most common para-ferromagnetic phase transitions are a kind of the second order phase transition, the Taylor expansions
of the thermodynamic potential can be expanded up to the 4th orders for the material in paramagnetic state with the cubic
symmetry. With consideration of the magnetization gradients, the total energy potential without the surface energy can be
written as

FM
L ¼ b1ðM

2
1þM2

2þM2
3Þþb11ðM

4
1þM4

2þM4
3Þþb12ðM

2
1M2

2þM2
1M2

3þM2
2M2

3ÞþDM
11ðM

2
1,1þM2

2,2þM2
3,3Þ

þDM
44ðM

2
1,2þM2

1,3þM2
2,1þM2

2,3þM2
3,1þM2

3,2Þ ð5Þ

where b1 b11 and b12 are the thermal parameters for bulk FM material, DM
11 and DM

44 are the corresponding gradient
coefficients.
2.2. Surface energy

The surface or interface eliminates all the symmetry elements, which change a vector perpendicular to the surface and
generates a local field conjugated to the polarization component perpendicular to the surface (Bratkovsky and Levanyuk,
2005). The induced relaxation or restriction energy named as the surface energy FSurf can be written as

FSurf ¼

Z
sP

DP
11

P2
i

2dP
i

þDP
44

P2
i

2dP
j

 !
dsþ

Z
sM

DM
11

M2
i

2dM
i

þDM
44

M2
i

2dM
j

 !
ds: ð6Þ

where sP and sM are the surface areas of the FE and FM phase, respectively. dP
i and dM

i (i¼1,2,3) are the extrapolation
lengths for the FE and FM phases, respectively. We employ the usual suffix mutation. A repeated suffix is summed over the
values 1, 2, 3 and suffixes preceded by a comma demote differentiation. The extrapolation lengths describe the difference
of the surface and the bulk (Cottam et al., 1984; Qu et al., 1997).
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2.3. Elastic interaction energy

Since the prototype in the high temperature has no phase transitions, the elastic fields both in the matrix
and the inclusions can be solved by using the Eshelby’s results without piezoelectric and piezomagnetic effects.
When the temperature was cooled down below the phase transition temperatures, cubic to tetragonal phase transitions
happen. The phase transition strains can be regarded as a pre-existed strain applied to the matrix and inclusion and
affect the total energy of the system. The stable polarization and magnetization can be found when the total energy is the
lowest.

Because of the lattice mismatch between the substrate and film, the specimen, which is clamped by the substrate, will
be subjected to a uniform mismatch strains e0 ¼ e0

11 ¼ e0
22 during the fabrication process at high temperature (Lu et al.,

2007). The elastic strains in the matrix and inclusions can be artificially derived by using Mori–Tanaka method
(Benveniste, 1987), which can be divided into three steps: (i) In the high temperature, the average strain field in the
matrix was changed with a perturbation strain e0 because of the distribution of the inclusions; (ii) When the temperature
was cooled down below the FM phase transition temperature (phase transition temperatures of many FM materials are
usually higher than those of common ferroelectric materials), FM phase transition occurred in the inclusion accompanying
with a phase transition strain eM

ij . Together with the possible misfit strain ePM
ij induced by the difference of the lattices

parameters of the two phases, the total induced eigenstrain in the inclusion can be written as eTI
ij ¼ e

PM
ij þe

M
ij . In this state,

the strain in the matrix was changed with another perturbation strain e
00

and was regarded as an average reference strain
in the matrix; (iii) When the temperature was further cooled down below the FE phase transition temperature, FE phase
transition eP

ij occurred and the average strain in the matrix which was regarded as a new average reference strain can be
written as /eijS¼ e0

ijþe
0
ijþe

00
ij�e

P
ij. The average strain in the inclusion thus can be derived based on the Mori–Tanaka

method as (Mori and Tanaka, 1973)

/eI
ijS¼ oeij4þ ~eij�eTI

ij , ð7Þ

where ~eij is the strain corresponding to the stress disturbance.
Using the equivalent inclusion method, the stress of the inclusion has the following expression:

CI
ijkl½/eklSþ ~ekl�eTI

kl � ¼ C0
ijkl½oekl4þ ~ekl�eTI

kl�e
n

kl�, ð8Þ

where CI
ijkl and C0

ijkl are elastic modulus tensors of the prototype FM inclusions and FE matrix, respectively. enkl is a fictitious
strain, also named as equivalent eigenstrain, introduced for the calculation due to the different elastic moduli of the
inclusion and the matrix. By far, the shape of the inclusion is arbitrary. Since the general ellipsoid is versatile enough to
cover a wide variety of particle cases, we just focus on the ellipsoidal inclusion. In the initial state without external electric
field and magnetic field, ~eij has the following relationship with the eigenstrains in the inclusion (Mura, 1987):

~ekl ¼ SklmnðeTI
mnþe

n

mnÞ: ð9Þ

Thus, the average elastic strain in the inclusions can be rewritten as

/eI
klS¼ oekl4þSklmnðenmnþe

TI
mnÞ�e

TI
kl : ð10Þ

Since the prototype is the para-state with cubic symmetry, we adopted the Eshelby’s tensor Sklmn for cubic anisotropy to
calculate the initial disturbance strain without applications of external electric and magnetic fields. Based on the Mori–
Tanaka theory, the strain equilibrium equation with the consideration of external substrate strain can be written as

f/eI
klSþð1�f Þoekl4 ¼ e0

kl: ð11Þ

By substituting Eq. (10) into Eq. (11), the average elastic strain in the matrix is

/eklS¼ e0
kl�fCI

klmnð~emn�eTI
mnÞ: ð12Þ

The fictitious strain e* finally can be found by substituting of Eqs. (10) and (12) into Eq. (8):

en ¼ ½C0
�ð1�cf ÞðC

0
�CI
ÞS��1½ðC0

�CI
Þe0þCIeI��eI ¼Ae0þBeTI ¼Ae0þBðePMþeMÞ, ð13Þ

where

A¼ ½C0
�ð1�f ÞðC0

�CI
ÞS��1½ðC0

�CI
Þ,

B¼ ½C0
�ð1�f ÞðC0

�CI
ÞS��1CI

þI, ð14Þ

with identity matrix I. The fictitious strain is related with the spontaneous eigenstrain and the misfit strain induced by the
lattice mismatch of the two phases or the thermal difference. In this work, the misfit strain is only taken into account.

Substitute Eqs. (13) and (14) back into Eqs. (10) and (12), the average elastic strain in the matrix and in the inclusion
can be yielded as

/eijS¼ ðIijkl�fSijmnAmnklÞe0
kl�fSijmnðImnklþBmnklÞeTI

kl ;

/eI
ijS¼ ½Iijkl�Aijklþð1�f ÞSijmnAmnkl�e0

klþ½ð1�f ÞSijmn�Iijmn�ðImnklþBmnklÞeTI
kl : ð15Þ
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The corresponding elastic stresses are /sijS¼ C0
ijkl/eklS and /sI

ijS¼ CI
ijkl/e

I
klS in the matrix and inclusions, respec-

tively. They are both functions of the order parameters.
The total coupled elastic energy density FElas can be finally calculated by combining the elastic energy in each

composite:

FElas ¼
1
2f/sI

ijS/eI
ijSþð1�f Þ/sijS/eijS: ð16Þ

3. Physical properties of 1–3 type multiferroic heterostructures

1–3 Type multiferroic thin film with the FM pillars (CoFe2O4) embedded in the FE matrix (BaTiO3) grown on a rigid
substrate SrTiO3 has a good connectivity and large contact areas (Zavaliche et al., 2007). BaTiO3 is cubic in the paraelectric
phase and undergoes a cubic to tetragonal phase transition when the temperature is down below the critical phase
transition temperature. The ease direction of the polarization will be along the direction in which BaTiO3 is under stretch,
and/or vertical to the direction in which BaTiO3 is under constraint. CoFe2O4 is unique among ferrites because of its high
values of magneto-crystalline anisotropy and magnetostriction (Chambers et al., 2002). Most importantly, the lattice
parameter is half-comparable with that of BaTiO3. In the highly strained structure, the nano-pillars under constraint will
have ease axis along the vertical direction (Brown et al., 2001). It was assumed that the direction of the single domain
magnetic component is perpendicular to the interface of the film/substrate. The depolarization field may be great in a thin
film, but weak in cylinders, especially in the slim cylinders. For simplicity, the condition P3¼Pa0, P1¼P2¼0 and
M3¼Ma0, M1¼M2¼0 without the depolarization field is first considered.

Both theories and experiments have shown that the in-plane strain distribution is not uniform because of the large
mismatch in the FE/FM interface (Zhang et al., 2007a, 2007b). The order parameters are both functions of x and z. The
Landau free energy for a cubic FE and FM materials thus can be simplified as (Lu et al., 2007)

FE
l ¼ ð1�f Þ

Z
v
a1Pþa11P3þa111P5þDP

11

@P

@z

� �2

þDP
44

@P

@x

� �2
" #

dv, ð17Þ

FM
l ¼ f

Z
v

b1M2þb11M4þDM
11

@M

@z

� �2

þDM
44

@M

@x

� �2
" #

dv: ð18Þ

In the same way, the surface energy can be written as

Fsurf ¼ ð1�f Þ DP
11

Z
s

P2

dP
3

dsþDP
44

Z
s

P2

dP
1

ds

 !
þ f DM

44

Z
s

M2

dM
3

dsþDM
11

Z
s

M2

dM
1

ds

 !
: ð19Þ

Since the composite film is expitaxially grown on a rigid substrate, there is an elastic strain induced by the substrate
which is noted as e0. In fact, e0 is relative with the volume fractions of each part and the lattice mismatch of each phase
with the substrate. Here we just use a series of average value to investigate the substrate effect.

With the average initial strain e0
ij and total eigenstrain of the inclusion eTI

kl , the coupling elastic energy FElas can be
derived by using Eqs. (15) and (16) with the Eshelby’s tensor components for infinitely long cylindrical inclusions with
cubic symmetry (Mura, 1987).

3.1. Time dependent Ginzburg–Landau equations

The temporal evolution of the polarization and magnetization fields can be derived by approaching the total free energy
at a rate proportional to the consequent free energy change (Lu et al., 2009)

@Pðx,z,tÞ

@t
¼�LEð1�f Þ an

1Pþan

11P3þ6a111P5�DP
11

@2P

@z2
�DP

44

@2P

@x2

" #
, ð20Þ

@Mðx,z,tÞ

@t
¼�LMf 2bn

1Mþ4bn

11M3�DM
11

@2M

@z2

 !
�DM

44

@2M

@x2

 !" #
, ð21Þ

with normalized coefficients

an

1 ¼ 2a1þAP
Elas, an

11 ¼ 4a11þBP
Elas,

bn

1 ¼ 2b1þAM
Elas, bn

11 ¼ 4b11þBM
Elas, ð22Þ

where LE and LM are the kinetic coefficients concerning the domain wall mobility. AP
Elas, BP

Elas and AM
Elas, BM

Elas are the linear
and nonlinear coefficients of variations of the elastic coupling energy with respect to the polarization and magnetization
order parameters, respectively. a1 ¼ APðT�TP

c0Þ and b1 ¼ AMðT�TM
c0Þ.
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The corresponding boundary conditions can be expressed as

@P

@z
¼ 8

P

dP
3

z¼ 7
h

2

� �
;

@P

@x
¼�

P

dP
1

ðx¼ lPÞ,
@P

@n
¼ 0, ðx¼ 0Þ;

@M

@z
¼ 8

M

dM
3

z¼ 7
h

2

� �
;

@M

@x
¼�

M

dM
1

ðx¼ lMÞ,
@M

@n
¼ 0, ðx¼ 0Þ, ð23Þ

where lp ¼ ð1�
ffiffiffi
f

p
Þl and lm ¼

ffiffiffi
f

p
l with the considering element length l of the sample, and h is the thickness of the film.

The spontaneous polarization and magnetization are coupled together through the elastic interaction. The energy
minimizing fields served as a result of artificial relaxation process and the steady solutions are the values of the average
order parameters satisfying the conditions that the energy functional is stationary (Ni et al., 2010). We use the finite
difference method to solve the time and spatial differential equations. In each time step, the average polarization and
magnetization were calculated and substituted into the stress formulas for those of the next time step. The spontaneous
polarization and magnetization can be found in the stable state of the coupling equations.

3.2. Linear analysis and phase transition temperatures

Critical temperature, which can be tuned by external strains plays a vital role in the appearances of many physical
properties of the FE and FM materials. The polarizations can be unstable in the vicinity of the critical temperatures and
disappears below the critical temperatures. The critical conditions of the dynamic stability can be studied through a
bifurcation analysis of the nonlinear equations (Wang and Woo, 2009). We should note that the appearance of physical
properties of ferroic materials have a direct relation with the critical properties. Based on the linear analysis theory (Wang
and Woo, 2009), we apply infinitesimal perturbations DP andDM to the trivial stationary solutions P0¼0 and M0¼0.
Neglecting the small higher order terms, Eqs. (20) and (21) become

@DP

@t
¼�LEð1�f Þ an

1DP�DP
11

@2DP

@z2
�2DP

44

@2DP

@x2

 !
, ð24Þ

@DM

@t
¼�LMf bn

1DM�DM
11

@2DM

@z2
�2DM

44

@2DM

@x2

 !
: ð25Þ

By separating variables and applying the boundary conditions, the phase para-ferro transition temperatures can be
finally found as follows:

TP
c ¼ TP

c0�
1

AE
ðDP

11k2
Pzþ2DP

44k2
Px�AP

ElasÞ,

TM
c ¼ TM

c0�
1

AM
ðDM

11k2
Mzþ2DM

44k2
Mx�AM

ElasÞ: ð26Þ

The smallest values of kPz,kPx,kMz,kMx can be found from the boundary conditions. Substituting these results into Eqs.
(26), we can obtain the critical temperatures for the phase transitions.

3.3. Stationary physical properties

With the average polarization /PS¼
R

vPdv/v, the dielectric and piezoelectric coefficients can be calculated based on the
thermal relations by using the following equations:

ePn
33 ¼ e0

�1 @2Ftot

@P2

 !�1

� e0
�1ðan

1/PSþ3an

11/PS2
þ5a111/PS4

Þ
�1; ð27Þ

dPn
33 ¼ 2Q11/PSePn

33, dpn
31 ¼ 2Q12/PSePn

33:

ð28Þ

In the same way, with average magnetization /MS¼
R

vMdv/v, the susceptibility and piezomagnetization coefficients
can be written as

mMn

33 ¼ m0
�1 @2Ftot

@M2

 !�1

� m0
�1ðbn

1/MSþ3bn

11/MS2
Þ
�1, ð29Þ

qMn

33 ¼ 2l11/MSmMn

33 , qMn

31 ¼ 2l12/MSmMn

33 : ð30Þ
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3.4. Magnetoelectric coupling coefficients

Assuming that the two phases are perfectly bonded with ideal interface coupling, the linear magnetoelectric coupling
coefficient can be derived by using an averaging method based on the constitutive equations. With the mechanical
boundary condition ð1�f ÞeP

ii�f eM
ii ¼ 0 ði¼ 1,2Þ and the electric open-circuit condition of D3¼0, the classical longitudinal

magnetoelectric voltage coefficient for 1–3 type is (Liu et al., 2006)

a0E,33 ¼
�2f ð1�f ÞdPn

31qMn

31

½ðsM
11þsM

12Þð1�f ÞþðsP
11þsP

12Þf
2=ð1�f Þ�ePn

33�2ðdPn
31Þ

2f 2=ð1�f Þ
, ð31Þ

where sP
ij and sM

ij are the compliances of the FE and FM phases, respectively. qMn

ij is the modified piezomagnetic coefficient.
dPn

ij and ePn
ij are the modified piezoelectric coefficient and permittivity of the ultra-thin film, respectively.

4. Results and discussions

The parameters taken from Liu et al. (2006, 2007) and the Eshelby tensor calculated for the cylindrical inclusion in BaTiO3

cubic matrix were listed in Table 1. Because of the limited experimental data, gradient coefficients DM
11 and DM

44 were given with
considerable values. The value of the extrapolation lengths are usually about 5–45 nm for BaTiO3 and 43 nm is used here for
the two phases, which may add some discrepancies especially when the volume fraction of portion is very small. The details for
the calculation of the Eshelby tensor for cubic symmetry crystals with column shape are listed in Appendix A.

The length of one element l was taken as 100 nm and the thickness of the film is set as 2000 nm, which can be approximately
regarded as infinite compare with the length of the composites. CoFe2O4 has a maximum magnetostriction of about �590 ppm
in (100) direction and an opposite value of about 120 ppm in the (111) direction. Since there is no exact expression of the
eigenstrain for materials with large magnetostriction, we set l11¼�590 ppm and l12¼l13¼120 ppm for a glance.

As shown in Fig. 1, external compressive strain can enhance the critical temperature of the FE phase, but acts in an opposite
way to that of the FM phase. The difference can be illustrated by the stress effect on the physical properties of the crystals. For
BaTiO3, an in-plane constraint or vertical tensile strain can enhance the polarization along the vertical direction. While for
CoFe2O4 with negative magnetostriction in the (001) direction, a tensile in-plane strain and compressive vertical strain can
Table 1
Parameters of the FE and FM phases.

BaTiO3 CoFe2O4

C0
11 ¼ C0

22 ¼ C0
33 ¼ 1:76� 1011 N=m2 , CI

11 ¼ CI
22 ¼ CI

33 ¼ 2:86� 1011 N=m2

C0
12 ¼ C0

13 ¼ C0
23 ¼ 0:846� 1011 N=m2 , CI

12 ¼ CI
13 ¼ CI

23 ¼ 1:73� 1011N=m2

C0
44 ¼ C0

55 ¼ C0
66 ¼ 0:43� 1011N=m2 CI

44 ¼ CI
55 ¼ CI

66 ¼ 0:453� 1011N=m2

Q11 ¼ 0:11m4=C2 , Q12 ¼�0:043m4=C2. l11¼�590�10�6, l12¼l13¼120�10�6

ap¼0.3994�10�9 m am¼0.838�10�9 m, ~am ¼ 0:419� 10�9 m,

AP ¼ 3:3� 105 m=FK, TP
c0 ¼ 383K, Ms ¼ 300� 103 A=m, TM

c0 ¼ 793K,

a11 ¼ 3:6� 106
� ðT�448:15Þm5=C2F, AM ¼ 9:5� 103 , b11 ¼ 3:75� 106 ,

a111 ¼ 6:6� 109 m9=C4F, DM
11 ¼ 72� 10�16 , DM

44 ¼ 36� 10�16 Jm=A2 ,

DP
11 ¼ 2:7� 10�9 , DP

44 ¼ 0:45� 10�9 m3=F, dM
1 ¼ dM

3 ¼ 43� 10�9 m.

dP
1 ¼ dP

3 ¼ 43� 10�9 m.

S11 ¼ S22 ¼ 0:6899, S12 ¼ S21 ¼ 0:0561, S31 ¼ S32 ¼ 0:2423,S55 ¼ 0:4998, S66 ¼ 0:3097, S44 ¼ 0, S13 ¼ S23 ¼ S33 ¼ 0:

as¼0.3905�10�9 m
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Fig. 1. Phase transition temperatures of (a) matrix BaTiO3 and (b) inclusion CoFe2O4 vs. the volume fraction of ferromagnetic inclusions under different

substrate strains. Inset in (b) is laid out for easy vision.
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enhance the magnetization. For volume fraction less than about 50%, the vertical compressive strain applied to the CoFe2O4

pillars decreases with the increase of the substrate constraint due to the spontaneous polarization-induced stress relaxation,
which can be clearly seen in the inset in Fig. 1(b). With further increase of the volume fractions, the relaxation of the
spontaneous electrostriction becomes less important and the critical temperature increases with the increase of the in-plane
constrain. The sharp decrease of FE phase transition temperature and increase of FM phase transition temperature were related
with the surface and size effect. Since the Mori–Tanaka method cannot give exact prediction when the volume fraction is more
than about 70%, our results just gave some hints about the surface and size effect even though the predicted values may be not
exactly coincident with the experimental results.

As described above, the spontaneous polarization and magnetization are highly dependent on the temperature and the
stress state in the heterostructures (Fig. 2). Since the lattice parameters of the FE phase, FM phase and the substrate are
quite different, the stress states of each composite will vary with different volume fractions. With the decrease of the
temperature and the increase of volume fraction of the FM inclusions, the polarization is enhanced with larger values than
those of bulk counterparts. The magnetization is more complex because of the different stress state with respect to the
volume fraction and the negative magnetostriction. The sharp decrease of the polarization and increase of magnetization
were also related with the surface and size effect as happened in the phase transition temperatures.

The substrate-induced stress effect on the spontaneous polarization and magnetization is displayed in Fig. 3. Although
magnetization and polarization can be greatly enhanced due to the misfit stress, the direct elastic interaction between the
FE-induced eigenstrain and FM-induced eigenstrain is still week, which may be caused by the small magnetostriction and
the clamping effect of the mismatch strain. As illustrated in the inset of Fig. 3(b), the pure magnetization-induced by the
decrease of the polarization is relatively small because of the relative small magnetostriction of the CoFe2O4.

Further studies of the pure magnetization-induced polarization and pure polarization-induced magnetization are displayed in
Fig. 4. The references of them are obtained by setting zero initial magnetization and zero polarization. The pure magnetization-
induced polarization and pure polarization-induced magnetization were derived by comparing the real ones with the references.
The magnitude of the induced polarization is three magnitude order lower than the bulk value. The polarization-induced
magnetization is even worse and only several percent of the saturated magnetization. Because of the complex stress state with
the interplay of the polarization, the induced magnetization showed inverse trend with respect to the temperature.

Physical properties versus the temperature of the FE phase such as the polarization, dielectric, and piezoelectric
properties were shown in Fig. 5. The polarization decreased to zero when the temperature was cooled down below the
phase transition temperature. The dielectric susceptibility versus temperature showed typical Curie–Wiess relationship
and the unstable areas were around the critical points as shown in Fig. 5(b). The piezoelectric properties were also
displayed and the results were in broad agreement with the experimental results available.
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Fig. 2. (a) Spontaneous polarization and (b) relative spontaneous magnetization vs. the volume fraction of ferromagnetic inclusions under different

temperatures.
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Fig. 3. (a) Spontaneous polarization and (b) relative spontaneous magnetization vs. the volume fraction of ferromagnetic inclusions under different

substrate strains. Inset in (b) is laid out for easy vision.



-0.8 -0.6 -0.4 -0.2 0.0 0.2
0.01

0.02

0.03

0.04

0.05

0.06

0.07

T=200K

T=250K

T=300KIn
du

ce
d 

m
ag

ne
tiz

at
io

n
M

/M
s

-0.8 -0.6 -0.4 -0.2 0.0 0.2
2.0

2.5

3.0

3.5

4.0

4.5

5.0

T=200K

T=250K

T=300K

In
du

ce
d 

po
la

ri
za

tio
n

P
(C

/m
2 )

Substrate induced strain � (%) Substrate induced strain � (%)

x10-3

Fig. 4. (a) Induced magnetization and (b) induced polarization vs. substrate-induced strain under different temperatures.

Fig. 5. Physical properties of the matrix BaTiO3 vs. temperature with different volume fractions of ferromagnetic phase: (a) spontaneous polarization, (b)

normalized dielectric susceptibility, (c) piezoelectric coefficient �d31, and (d) piezoelectric coefficient d33.
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Magnetic properties of the FM phase, which were calculated in the similar way are displayed in Fig. 6. The relative
susceptibility and the piezomagnetic coefficient of the materials in such a heterostructure were much smaller than those
given for bulk materials in some literatures, such as the relative susceptibility m/m0was set as 2 (Bichurin et al., 2003) and
125.6 (Li, 2000); the piezomagnetic coefficient q33 was 1885 (Liu et al., 2006) and 699.7 (Li, 2000). Besides the difference of
the single crystal and polycrystalline, the pre-stress on the materials in such a highly strained structure may be the main
cause of the discrepancy.

Using the modified parameters, the longitudinal ME coupling effect can be numerically calculated by using Eq. (31). As
expected, the ME coupling coefficient is temperature dependent and increases with the decrease in temperature (Fig. 7(a)).
In the room temperature, the maximum value of ME voltage coupling coefficients were slightly different with the change
of the substrate strain (Fig. 7(b)). The maximum value was about 0.04 V/cmOe, which was much lower than most
theoretical predictions based on the constitutive theory. The main difference may be caused by the small piezomagnetic
coefficients calculated in this work. The ME coupling coefficient was unstable in the vicinity of the critical point and
became to be zero below the critical thickness. This is quite a coincidence with the physical properties of the typical FE and
FM nano-materials.

5. Summaries and conclusions

By using thermodynamic theory combined with the equivalent inclusion theory, a phenomenological model was
constructed to study the ME coupling effect and the physical properties of nano-structured multiferroic composites.



Fig. 6. Physical properties of the matrix CoFe2O4 vs. temperature with different volume fractions of ferromagnetic phase: (a) relative spontaneous

magnetization, (b) permeability, (c) piezomagnetic coefficient p31, and piezomagnetic coefficient p33.
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Experimental data (open circles) in (b) taken from Liu et al. (2006) were also added for comparison.
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The spontaneous polarization and magnetization were highly dependent on the temperature and substrate stain. Critical
size existed in both the FE and FM phases. Magnetoelectric coupling coefficient was unstable in the vicinity of the critical
size and disappeared below the critical size. Our theoretical approach predicted general trends and agreed in good
quantitative with the experimental data. Base on the results, well matched heterostructures made up of materials with
comparable magnetostriction and electrostriction were suggested for large ME coupling effect.
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Appendix A

For cubic crystal with cylindrical shape and a circular cross-section the Eshelby tensor can be calculated by using the
follow formulation for spheroid (a1¼a2, a1/a3¼r) with r¼0:

Sijnm ¼
1

8pCpqnmðGipiqþGjpiqÞ, ðA:1Þ
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G1111 ¼ G2222 ¼
2p
a

Z 1

0

1�x2

pq
ð1�x2þr2x2Þ m2ð1�x2þr2x2Þþbr2x2

� �
dxþ

p
a

Z 1

0

ð1�x2Þ
2

pðpþqÞ
bð1�x2þr2x2Þþgr2x2
� �

dx,

ðA:2aÞ

G3333 ¼
4p
a

Z 1

0

r2x2

pq
ð1�x2þr2x2Þ m2ð1�x2þr2x2Þþbð1�x2Þ

� �
dxþ

pg
a

Z 1

0

r2x2ð1�x2Þ
2

pðpþqÞ
dx, ðA:2bÞ

G1122 ¼ G2211 ¼
2p
a

Z 1

0

ð1�x2Þ

pq
ð1�x2þr2x2Þ m2ð1�x2þr2x2Þþbr2x2

� �
þ gr2x2
��

þð1�x2Þ bð1�x2þr2x2Þ
� �

dx�
p
a

Z 1

0

ð1�x2Þ
2

pðpþqÞ
bð1�x2þr2x2Þþgr2x2
� �

dx, ðA:2cÞ

G1133 ¼ G2233 ¼
2p
a

Z 1

0

r2x2

pq
2ð1�x2þr2x2Þ m2ð1�x2þr2x2Þþbr2x2

� �
þð1�x2Þ bð1�x2þr2x2Þþgr2x2

� �� �
dx, ðA:2dÞ

G1212 ¼�
pðlþmÞ

a

Z 1

0

ð1�x2Þ
2

pðpþqÞ
mð1�x2þr2x2Þþm0r2x2
� �

dx, ðA:2eÞ

G1313 ¼ G2323 ¼�
2pmðlþmÞ

a

Z 1

0

r2x2ð1�x2Þð1�x2þr2x2Þ

pq
dx�

pm0ðlþmÞ
a

Z 1

0

r2x2ð1�x2Þ
2

pðpþqÞ
dx, ðA:2fÞ

G3311 ¼ G3322 ¼
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Z 1
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pq
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dxþ
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2a

Z 1

0

ð1�x2Þ
3

pðpþqÞ
dx, ðA:2gÞ

where
r¼a1/a3,
a¼m2(lþ2mþm0),
b¼a�1mm0(2lþ2mþm0),
c¼ a�1m02ð3lþ3mþm0Þ,
b¼m(lþ2mþm0),
g¼m0(2lþ2mþm0),
p¼ ð1�x2þr2x2Þ

3
þbr2x2ð1�x2Þð1�x2þr2x2Þþ1

4ð1�x2Þ
2 bð1�x2þr2x2Þþcr2x2
� �

g1=2,0oxo1,
n

q¼ fð1�x2þr2x2Þ
3
þbr2x2ð1�x2Þð1�x2þr2x2Þg

1=2
0oxo1:
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