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Between Two Homogeneous Layers of Finite Thickness
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Abstract. In this paper, the behavior of an interface crack for a functionally graded strip sandwiched
between two homogeneous layers of finite thickness subjected to an uniform tension is resolved using
a somewhat different approach, named the Schmidt method. The Fourier transform technique is
applied and a mixed boundary value problem is reduced to two pairs of dual integral equations in
which the unknown variables are the jumps of the displacements across the crack surface. To solve
the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in
a series of Jacobi polynomials. This process is quite different from those adopted in previous works.
Numerical examples are provided to show the effects of the crack length, the thickness of the mate-
rial layer and the materials constants upon the stress intensity factor of the cracks. It can be obtained
that the results of the present paper are the same as ones of the same problem that was solved by
the singular integral equation method. As a special case, when the material properties are not con-
tinuous through the crack line, an approximate solution of the interface crack problem is also given
under the assumption that the effect of the crack surface interference very near the crack tips is neg-
ligible. Contrary to the previous solution of the interface crack, it is found that the stress singularities
of the present interface crack solution are the same as ones of the ordinary crack in homogenous
materials.
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1. Introduction

The analysis of functionally graded materials has become a subject of increasing
importance motivated by a number of potential benefits achievable from the use of
such novel materials in a wide range of modern technological practices. The major
advantages of graded materials, especially in elevated temperature environments, stem
from the tailoring capability to produce a gradual variation of its thermomechanical
properties in the spatial domain [1]. In particular, the use of a graded material as an
interlayer between bonded media, is one of the highly effective and promising appli-
cations in eliminating various shortcoming resulting from stepwise property mismatch
inherent in piecewise homogeneous composite media [2–4].

From the fracture mechanics viewpoint, the presence of a graded interlayer would
play an important role in determining the crack driving forces and fracture resistance
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parameters. In an attempt to address the issues pertaining to the fracture analy-
sis of bonded media with such transitional interfacial properties, a series of solu-
tions to certain crack problems was obtained by Erdogan and his associates [5–7].
Among them there are the solutions for a crack in the non-homogeneous interlay-
er bounded by dissimilar homogeneous media [5]; and for a crack at the interface
between homogeneous and non-homogeneous materials [6,7]. Similar problems of
delamination or an interface crack between a functionally graded coating and a sub-
strate were considered in [8–10]. The dynamic crack problem for non-homogeneous
composite materials was considered in [11] but the authors considered the FGM layer
as a multi-layered homogeneous medium. The crack problem in FGM layers under
thermal stresses was studied by Erdogan and Wu [12]. They considered an uncon-
strained elastic layer under statically self-equilibrating thermal or residual stresses and
the layer contained an embedded or surface crack perpendicular to its boundaries.

In this paper, the same problem that was treated by Shbeeb and Binienda [10] is
reworked using a somewhat different approach, named the Schmidt method [13–16].
The Fourier transform technique is applied and a mixed boundary value problem is
reduced to two pairs of dual integral equations in which the unknown variables are the
jumps of the displacements across the crack surface. To solve the dual integral equa-
tions, the jumps of the displacements across crack surfaces are expanded in a series of
Jacobi polynomials. This process is quite different from those adopted in the references
[1–12] as mentioned above. In the previous works [1–12], the unknown variables of
dual integral equations are the dislocation density functions. This is the major differ-
ence. The numerical results are the same as in [10] when the material properties are
continuous through the crack line. It is also proved that the Schmidt method is per-
formed satisfactorily. On the other hand, as discussed in [17], an exact solution of the
interface crack problem had been given in [18] in spite of the incomprehensibility in
fracture mechanics. However, from an engineering viewpoint, it is more desirable to
seek a solution that is physically acceptable. Hence, the solving process of the present
paper is expanded to solve the special case problem when the material properties are
not continuous through the crack line. In this case, an approximate solution of the
interface crack problem is given under the assumption that the effect of the crack sur-
face interference very near the crack tips is negligible as discussed in [19–21]. For this
special case (From practical view points, researchers in the field of functionally graded
materials will not pay their attention in this case), it is found that the stress singularities
of the present interface crack solution are the same as ones of the ordinary crack in
homogeneous materials, while much problems have to be considered when the material
properties are not continuous through the crack line.

2. Formulation of the Problem

The geometry of the problem is shown in Figure 1. Both the coating and the sub-
strate, which are perfectly bonded to the FGM layer, are isotropic and homogeneous,
and have h1 and h3 as their respective thickness. The FGM layer thickness is h2,
and is denoted as material 2. Crack problems in the non-homogeneous materials do
not appear to be analytically tractable for arbitrary variations of material properties.
Usually, one tries to generate the forms of non- homogeneities for which the problem
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Figure 1. Geometry of the interface crack for a functionally graded layer sandwiched between two
homogeneous layers.

becomes tractable. Similar to the treatment of the crack problem for isotropic non-
homogeneous materials in [5,6], we assume the shear modulus of the FGM layer is
assumed to be as follows

µ(2) =µeβy, (1)

where β is a constant. If µ=µ(3) and β = 1
h2

ln(µ(1)/µ(3)), the problem in this paper
will return to the same problem as discussed in [10].

The constitutive relations for the non-homogeneous material are written as

σ (j)
x (x, y)= µ(j)eβy

k(j) −1

[
(1+k(j))

∂u(j)

∂x
+ (3−k(j))

∂v(j)

∂y

]
, (j =1,2,3), (2)

σ (j)
y (x, y)= µ(j)eβy

k(j) −1

[
(1+k(j))

∂v(j)

∂y
+ (3−k(j))

∂u(j)

∂x

]
, (j =1,2,3), (3)

τ (j)
xy (x, y)=µ(j)eβy

[
∂u(j)

∂y
+ ∂v(j)

∂x

]
, (j =1,2,3), (4)

where u(j)(x, y)and v(j)(x, y)represent (The superscript j = 1,2,3 corresponds to the
coating layer, the FGM layer and the substrate layer, respectively.) the displacement
components in the x- and y-directions, respectively. σ

(j)
x , σ

(j)
y and τ

(j)
xy (j = 1,2,3)

represent the Cartesian components of stress. µ(j) (j = 1,2,3) is the shear modulus.
k(j) = 3 − 4η(j) (j = 1,2,3) for plane strain, k(j) = (3 − η(j))/(1 + η(j)) (j = 1,2,3) for
the plane stress. η(j) (j = 1,2,3) is the Poisson’s ratio. The Poisson’s ratio for the
FGM layer, η(2), is taken to be a constant; owing to the fact that its variation within
a practical range has an insignificant influence on the stress fields near the crack tips
[5–7]. We assume that β �=0 for the graded interlayer and β =0 for the coating layer
and the substrate layer. In this paper, we just consider the plane strain problem.

In the absence of body forces, the elastic behavior of the medium with the variable
shear modulus in equation (1) is governed by the following equations

(1+k(j))
∂2u(j)

∂x2
+ (k(j) −1)

∂2u(j)

∂y2
+2

∂2v(j)

∂x∂y
+ (k(j) −1)β

(
∂u(j)

∂y
+ ∂v(j)

∂x

)
=0,

(j =1,2,3), (5)
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(1+k(j))
∂2v(j)

∂y2
+ (k(j) −1)

∂2v(j)

∂x2
+2

∂2u(j)

∂x∂y
+β

[
(1+k(j))

∂v(j)

∂y
+(3−k(j))

∂u(j)

∂x

]
=0,

(j =1,2,3). (6)

3. Solution

Because of the symmetry, it suffices to consider the problem for x � 0, |y|<∞. The
system of above governing equations is solved, using the Fourier integral transform
technique to obtain the general expressions for the displacement components as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(1) = 2
π

∫ ∞

0
2s2{[−A1(s)+(1− sy)A2(s)]e−sy+[A3(s)+(1+sy)A4(s)]esy} sin(sx)ds

v(1) = 2
π

∫ ∞

0
2s2{[−A1(s)− (k(1) −1+sy)A2(s)]e−sy

+[−A3(s)+ (k(1) −1− sy)A4(s)]esy} cos(sx)ds (7)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(2) = 2
π

∫ ∞

0

4∑
i=1

Bi(s)e−λiy sin(sx)ds,

v(2) = 2
π

∫ ∞

0

4∑
i=1

mi(s)Bi(s)e−λiy cos(sx)ds,
(8)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(3)= 2
π

∫ ∞

0
2s2{[−C1(s)+(1− sy)C2(s)]e−sy+[C3(s)+(1+sy)C4(s)]esy} sin(sx)ds,

v(3) = 2
π

∫ ∞

0
2s2{[−C1(s)− (k(3) −1+ sy)C2(s)]e−sy + [−C3(s)+ (k(3) −1− sy)

C4(s)]esy} cos(sx)ds (9)

and from equations (2)–(4), the stress components are obtained as

σ (1)
y = 2µ(1)

π

∫ ∞

0
2s3{[2A1(s)+ (k(1) −1+2sy)A2(s)]e−sy

+[−2A3(s)− (1−k(1) +2sy)A4(s)]esy} cos(sx)dx, (10)

τ (1)
xy = 2µ(1)

π

∫ ∞

0
2s3{[2A1(s)+ (−3+k(1) +2sy)A2(s)]e−sy

+[2A3(s)+ (3−k(1) +2sy]esy} sin(sx)ds, (11)

σ (2)
y = 2µeβy

π(k(2) −1)

∫ ∞

0

4∑
i=1

[−(k(2) +1)mi(s)λi + s(3−k(2))]Bi(s)e−λiy cos(sx)ds,

τ (2)
xy = 2µeβy

π

∫ ∞

0

4∑
i=1

[−λi −mi(s)s]Bi(s)e−λiy sin(sx)ds,

(12)
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σ (3)
y = 2µ(3)

π

∫ ∞

0
2s3{[2C1(s)+ (k(3) −1+2sy)C2(s)]e−sy

+[−2C3(s)− (1−k(3) +2sy)C4(s)]esy} cos(sx)dx (13)

τ (3)
xy = 2µ(3)

π

∫ ∞

0
2s3{[2C1(s)+ (−3+k(3) +2sy)C2(s)]e−sy

+[2C3(s)+ (3−k(3) +2sy]esy} sin(sx)ds (14)

where s is the transform variable, Ai , Bi and Ci , i =1,2,3,4, are arbitrary unknowns,
λi(s), i =1,2,3,4, are the roots of the characteristic equation

λ4 −2λ3β + (β2 −2s2)λ2 +2βs2λ+ s4 + 3−k(2)

k(2) +1
β2s2 =0 (15)

and mi(s) i =1,2,3,4, are expressed for each root λi(s) as

mi(s)= −(k(2) +1)s2 + (k(2) −1)λ2
i −β(k(2) −1)λi

−2sλi + sβ(k(2) −1)
. (16)

Equation (16) can be rewritten as the following form

(λ2 −λβ − s2)2 + 3−k(2)

k(2) +1
β2s2 =0. (17)

The roots may be obtained as

λ1 =
β +

√
β2 +4

(
s2 + iβs

√
3−k(2)

k(2)+1

)

2
, λ2 =

β +
√

β2 +4
(
s2 − iβs

√
3−k(2)

k(2)+1

)

2
, (18)

λ3 =
β −

√
β2 +4

(
s2 + iβs

√
3−k(2)

k(2)+1

)

2
, λ4 =

β −
√

β2 +4
(
s2 − iβs

√
3−k(2)

k(2)+1

)

2
. (19)

From equations (10) to (14), it can be seen that there are 12 unknown constants (in
Fourier space they are functions of s), i.e., Ai , Bi and Ci , i =1,2,3,4, which can be
obtained from the following conditions:

σ (1)
y (x, h1 +h2)=0, τ (1)

xy (x, h1 +h2)=0, (20)

σ (1)
y (x, h2)=σ (2)

y (x, h2), τ (1)
xy (x, h2)= τ (2)

xy (x, h2), (21)

u(1)(x, h2)=u(2)(x, h2), v(1)(x, h2)=v(2)(x, h2), (22)

σ (3)
y (x,−h3)=0, τ (3)

xy (x,−h3)=0, (23)

σ (2)
y (x,0)=σ (3)

y (x,0)=−σ0, τ (2)
xy (x,0)= τ (3)

xy (x,0)=0, |x|� l, (24)
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σ (2)
y (x,0)=σ (3)

y (x,0), τ (2)
xy (x,0)= τ (3)

xy (x,0), |x|>l, (25)

u(2)(x,0)=u(3)(x,0), v(2)(x,0)=v(3)(x,0), |x|>l. (26)

To solve the problem, the jumps of the displacements across the crack surfaces can
be defined as follows:

f1(x)=u(2)(x,0)−u(3)(x,0), (27)

f2(x)=v(2)(x,0)−v(3)(x,0), (28)

wheref1(x) is an odd function, f2(x) is an even function.
Applying the Fourier transform and the boundary conditions (20)–(26), it can be

obtained

[X1]
[

A1(s)

A2(s)

]
+ [X2]

[
A3(s)

A4(s)

]
=0, (29)

[X3]
[

A1(s)

A2(s)

]
+ [X4]

[
A3(s)

A4(s)

]
= [X5]

[
B1(s)

B2(s)

]
+ [X6]

[
B3(s)

B4(s)

]
, (30)

[X7]
[

A1(s)

A2(s)

]
+ [X8]

[
A3(s)

A4(s)

]
= [X9]

[
B1(s)

B2(s)

]
+ [X10]

[
B3(s)

B4(s)

]
, (31)

[X11]
[

C1(s)

C2(s)

]
+ [X12]

[
C3(s)

C4(s)

]
=0, (32)

[X13]
[

C1(s)

C2(s)

]
+ [X14]

[
C3(s)

C4(s)

]
= [X15]

[
B1(s)

B2(s)

]
+ [X16]

[
B3(s)

B4(s)

]
, (33)

[X17]
[

B1(s)

B2(s)

]
+ [X18]

[
B3(s)

B4(s)

]
− [X19]

[
C1(s)

C2(s)

]
− [X20]

[
C3(s)

C4(s)

]
=

[
f̄1(s)

f̄2(s)

]
, (34)

where the matrices [Xi ] (i =1,2,3, . . .,20) can be seen in Appendix A.
A superposed bar indicates the Fourier transform. If f (x) is an even function, the

Fourier transform is defined as follows:

f̄ (s)=
∫ ∞

0
f (x) cos(sx)dx, f (x)= 2

π

∫ ∞

0
f̄ (s) cos(sx)ds. (35)

Iff (x)is an odd function, the Fourier transform is defined as follows:

f̄ (s)=
∫ ∞

0
f (x) sin(sx)dx, f (x)= 2

π

∫ ∞

0
f̄ (s) sin(sx)ds. (36)
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By solving 12 equations (29)–(34) with 12 unknown functions, substituting the solu-
tions into equations. (12) and applying the boundary conditions, it can be obtained

σ (2)
y (x,0)= 2

π

∫ ∞

0
[d1(s)f̄1(s)+d2(s)f̄2(s)] cos(sx)ds =−σ0, 0�x � l, (37)

τ (2)
xy (x,0)= 2

π

∫ ∞

0
[d3(s)f̄1(s)+d4(s)f̄2(s)] sin(sx)ds =0, 0�x � l, (38)

∞∫
0

f̄1(s) sin(sx)ds =0, x > l, (39)

∞∫
0

f̄2(s) cos(sx)ds =0, x > l, (40)

where d1(s), d2(s), d3(s) and d4(s) are known functions (see Appendix A). To deter-
mine the unknown functions, f̄1(s) and f̄2(s), the above two pairs of dual integral
equations (37)–(40) must be solved.

4. Solution of the Dual Integral Equations

To solve the problem, the jumps of the displacements across the crack surfaces can
be represented by the following series: (When the material properties are not contin-
uous through the crack line, as mentioned above, the problem is solved under the
assumptions that the effect of the crack surface overlapping very near the crack tips
is negligible. These assumptions had been used in [19–21]. It can be obtained that the
jumps of the displacements across the crack surface are finite, differentiable and con-
tinuous functions. Only in this case, the jumps of the displacements across the crack
surfaces can be represented by the following series:)

f1(x)=
∞∑

n=0

anP
(1/2,1/2)

2n+1

(x

l

)(
1− x2

l2

) 1
2

, for 0�x � l, (41)

f1(x)=0, for x > l, (42)

f2(x)=
∞∑

n=0

bnP
(1/2,1/2)

2n

(x

l

)(
1− x2

l2

) 1
2

for 0�x � l, (43)

f2(x)=0 for x > l, (44)
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where an and bn are unknown coefficients, P
(

1
2 ,

1
2 )

n (x) is a Jacobi polynomial [22]. The
Fourier transforms of Eqs. (41)–(44) are [23]

f̄1(s)=
∞∑

n=0

anG
(1)
n

1
s
J2n+2(sl), G(1)

n =√
π(−1)n

�(2n+2+ 1
2)

(2n+1)!
, (45)

f̄2(s)=
∞∑

n=0

bnG
(2)
n

1
s
J2n+1(sl), G(2)

n =√
π(−1)n

�(2n+1+ 1
2)

(2n)!
, (46)

where �(x) and Jn(x) are the Gamma and Bessel functions, respectively.
Substituting equations (45)–(46) into equations (37)–(40), it can be shown that

equations (39)–(40) are automatically satisfied. After integration with respect to x in
[0, x], equations (37)–(38) reduce to

2
π

∞∑
n=0

∫ ∞

0

1
s2

[d1(s)anG
(1)
n J2n+2(sl)

+d2(s)bnG
(2)
n J2n+1(sl)] sin(sx)ds =−σ0x, 0�x � l, (47)

∞∑
n=0

∫ ∞

0

1
s2

[d3(s)anG
(1)
n J2n+2(sl)+d4(s)bnG

(2)
n J2n+1(sl)]

×[cos(sx)−1]ds =0, 0�x � l. (48)

From the relationships [22].

∫ ∞

0

1
s
Jn(sa) sin(bs)ds =

⎧⎪⎪⎨
⎪⎪⎩

sin[nsin−1(b/a)]
n

, a >b,

ansin(nπ/2)

n[b+√
b2 −a2]n

, b>a,
(49)

∫ ∞

0

1
s
Jn(sa) cos(bs)ds =

⎧⎪⎪⎨
⎪⎪⎩

cos[nsin−1(b/a)]
n

, a >b,

ancos(nπ/2)

n[b+√
b2 −a2]n

, b>a,
(50)

the semi-infinite integral in equations (47)–(48) can be modified as:∫ ∞

0

d1(s)

s2
J2n+2(sl) sin(sx)ds = δ1

2n+2
sin

[
(2n+2) sin−1

(x

l

)]

+
∫ ∞

0

1
s

[
d1(s)

s
− δ1

]
J2n+2(sl) sin(sx)ds, (51)

∫ ∞

0

d2(s)

s2
J2n+1(sl) sin(sx)ds = δ2

2n+1
sin

[
(2n+1) sin−1

(x

l

)]

+
∫ ∞

0

1
s

[
d2(s)

s
− δ2]J2n+1(sl) sin(sx)ds, (52)
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∫ ∞

0

d3(s)

s2
J2n+2(sl) cos(sx)ds = δ2

2n+2
cos

[
(2n+2) sin−1

(x

l

)]

+
∫ ∞

0

1
s

[
d3(s)

s
− δ2]J2n+2(sl) cos(sx)ds, (53)

∫ ∞

0

d4(s)

s2
J2n+1(sl) cos(sx)ds = δ1

2n+1
cos

[
(2n+1) sin−1

(x

l

)]

+
∫ ∞

0

1
s

[
d4(s)

s
− δ1]J2n+1(sl) cos(sx)ds, (54)

where

lim
s→∞ d1(s)/s = δ1, lim

s→∞ d2(s)/s = δ2, lim
s→∞ d3(s)/s = δ2, lim

s→∞ d4(s)/s = δ1,

δ1 = µ(2)µ(3)[(−1+k(3))µ(2) +µ(3) −µ(3)k(2)]
(µ(2) +µ(3)k(2))(µ(3) +µ(2)k(3))

,

δ2 =−µ(2)µ(3)(µ(2) +k(3)µ(2) +µ(3) +µ(3)k(2))

(µ(2) +µ(3)k(2))(µ(3) +µ(2)k(3))
.

δ1 = µ(k(3) −k(2))

(1+k(2))(1+k(3))
and δ2 =− µ(2+k(2) +k(3))

(1+k(2))(1+k(3))
for µ=µ(3) and β = 1

h2
ln(

µ(1)

µ(3)
).

These constants can be obtained by using Mathematica (R). When µ = µ(3) and
β = 1

h2
ln(µ(1)/µ(3)), we have the same case as in [10]. The semi-infinite integral in

equations (47) and (48) can be evaluated directly. Equations (47)and (48) can now
be solved for the coefficients an and bn by the Schmidt method [13,14]. For briefly,
equations (47) and (48) can be rewritten as

∞∑
n=0

anE
∗
n(x)+

∞∑
n=0

bnF
∗
n (x)=U0(x), 0�x � l, (55)

∞∑
n=0

anG
∗
n(x)+

∞∑
n=0

bnH
∗
n (x)=0, 0�x � l, (56)

where E∗
n(x), F ∗

n (x), G∗
n(x) and H ∗

n (x) and U0(x) are known functions. The coeffi-
cients an and bn are unknown.

From equation (56), it can be obtained:

∞∑
n=0

bnH
∗
n (x)=−

∞∑
n=0

anG
∗
n(x). (57)
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It can now be solved for the coefficients bn by the Schmidt method [13–16]. Here

the form −
∞∑

n=0
anG

∗
n(x) can be considered as a known function temporarily. A set of

functions Pn(x), which satisfy the orthogonality condition

∫ l

0
Pm(x)Pn(x)dx =Nnδmn, Nn =

∫ l

0
P 2

n (x)dx (58)

can be constructed from the function, H ∗
n (x), such that

Pn(x)=
n∑

i=0

Min

Mnn

H ∗
i (x), (59)

where Mij is the cofactor of the element dij of Dn, which is defined as

Dn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d00, d01, d02, . . . , d0n

d10, d11, d12, . . . , d1n

d20, d21, d22, . . . , d2n

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
dn0, dn1, dn2, . . . , dnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, dij =
∫ l

0
H ∗

i (x)H ∗
j (x)dx. (60)

Using equations (57)–(60), it can be obtained that

bn =
∞∑

j=n

qj

Mnj

Mjj

with qj =−
∞∑
i=0

ai

1
Nj

∫ l

0
G∗

i (x)Pj (x)dx. (61)

Hence, it can be rewritten

bn =
∞∑
i=0

aiK
∗
in, K∗

in =−
∞∑

j=n

Mnj

NjMjj

∫ l

0
G∗

i (x)Pj (x)dx. (62)

Substituting equation (62) into equation (55), it can be obtained

∞∑
n=0

anY
∗
n (x)=U0(x), Y ∗

n (x)=E∗
n(x)+

∞∑
i=0

K∗
niF

∗
i (x). (63)

So it can now be solved for the coefficients an by the Schmidt method again as men-
tioned above. With the aid of equation (62), the coefficients bn can be obtained.

5. Stress Intensity Factors

The coefficients an and bn are known, so that the entire stress field can be obtained.
However, in fracture mechanics, it is important to determine stresses σ (2)

y and τ (2)
xy in

the vicinity of the crack tips. In the case of the present study, σ (2)
y and τ (2)

xy along the
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crack line can be expressed as:

σ (2)
y (x,0)= 2

π

∞∑
n=0

∫ ∞

0

1
s

[d1(s)anG
(1)
n J2n+2(sl)+d2(s)bnG

(2)
n J2n+1(sl)] cos(sx)ds,

= 2
π

∞∑
n=0

∫ ∞

0

{[
(
d1(s)

s
− δ1)+ δ1

]
anG

(1)
n J2n+2(sl)

+
[(

d2(s)

s
− δ2

)
+ δ2

]
bnG

(2)
n J2n+1(sl)

}
cos(sx)ds, (64)

τ (2)
xy (x,0)= 2

π

∞∑
n=0

∫ ∞

0

1
s

[d3(s)anG
(1)
n J2n+2(sl)+d4(s)bnG

(2)
n J2n+1(sl)] sin(sx)ds,

= 2
π

∞∑
n=0

∫ ∞

0

{[
(
d3(s)

s
− δ2)+ δ2

]
anG

(1)
n J2n+2(sl)

+
[(

d4(s)

s
− δ1

)
+ δ1

]
bnG

(2)
n J2n+1(sl)

}
sin(sx)ds. (65)

An examination of equations (64) and (65) shows that, the singular parts of the stress
fields can be obtained from the relationships as follows [22]:

∫ ∞

0
Jn(sa) cos(bs)ds =

⎧⎪⎪⎨
⎪⎪⎩

cos[nsin−1(b/a)]√
a2 −b2

, a >b,

− ansin(nπ/2)√
b2 −a2[b+√

b2 −a2]n
, b>a,

∫ ∞

0
Jn(sa) sin(bs)ds =

⎧⎪⎪⎨
⎪⎪⎩

sin[nsin−1(b/a)]√
a2 −b2

, a >b,

ancos(nπ/2)√
b2 −a2[b+√

b2 −a2]n
, b>a.

The singular parts of the stress fields can be expressed, respectively, as follows (l <x):

σ =−2δ2

π

∞∑
n=0

bnG
(2)
n H (1)

n (x), (66)

τ = 2δ2

π

∞∑
n=0

anG
(1)
n H (2)

n (x), (67)

where H(1)
n (x)= (−1)nl2n+1√

x2−l2[x+√
x2−l2]2n+1 , H(2)

n (x)= (−1)n+1l2n+2√
x2−l2[x+√

x2−l2]2n+2 .

The stress intensity factors KI and KII can be given as follows

KI = lim
x→l+

√
2(x − l) ·σ =− 2δ2√

πl

∞∑
n=0

bn

�(2n+1+ 1
2)

(2n)!
, (68)
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KII = lim
x→l+

√
2(x − l) · τ =− 2δ2√

πl

∞∑
n=0

an

�(2n+2+ 1
2)

(2n+1)!
. (69)

After obtaining the stress intensity factors from equations (68) to (69), the strain
energy release rate at the crack tip may be evaluated as follows

G(l)= π(k +1)

8µ
[K2

I (l)+K2
II(l)], (70)

where k =3−4η(2) for plane strain, k = (3−η(2))/(1+η(2))for the plane stress.

6. Numerical Calculations and Discussion

To check the numerical accuracy of the Schmidt method, the values of

2
[

9∑
n=0

anE
∗
n(x)+

9∑
n=0

bnF
∗
n (x)

]
/(πσ0) and U0(x)/σ0 are given in Table 1 for βl = 0.5,

h1/l = 0.5, h2/l = 1.0, h3/l = 100.0. In Table 2, the values of the coefficients an and
bn are given for βl =0.5, h1/l =0.5, h2/l =1.0, h3/l =100.0.

As discussed in the works [13–16] and the above discussion, it can be found that
the Schmidt method is performed satisfactorily if the first ten terms of infinite series
in equations (55) and (56) are retained. The behavior of the sum of the series keeps
steady with the increasing number of terms in equations (55) and (56). At −l �x � l,
y =0, it can be obtained that σ (2)

y /σ0 is very close to negative unity. Hence, the solu-
tion of this paper can also be proved to satisfy the boundary conditions in equation
(24). The homogeneous substrate, material ‘3’, may be stiffer or softer with respect
to homogeneous layer of ceramics, material ‘1’. The normalized non-homogeneity
constant βl is varied between –3 and 3, which covers most of the practical cases.
For the case in which the material constants of the material layers are different,

Table 1. Values of 2
[

9∑
n=0

anE
∗
n(x)+

9∑
n=0

bnF
∗
n (x)

]
/(πσ0)

and U0(x)/σ0 for βl = 0.5, h1/l = 0.5, h2/l = 1.0,
h3/l =100.0

2
[

9∑
n=0

anE
∗
n(x)+

9∑
n=0

bnF
∗
n (x)

]
/(πσ0)

x Real part Imaginary part U0(x)/σ0

0.1 −0.10001 0.0 −0.1
0.2 −0.20011 0.0 −0.2
0.3 −0.30006 0.0 −0.3
0.4 −0.40002 0.0 −0.4
0.5 −0.50012 0.0 −0.5
0.6 −0.60025 0.0 −0.6
0.7 −0.70012 0.0 −0.7
0.8 −0.80023 0.0 −0.8
0.9 −0.90018 0.0 −0.9
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Table 2. Values of an and bn for βl =0.5, h1/l =0.5, h2/l =1.0, h3/l =100.0

2an/(πσ0) 2bn/(πσ0)

n Real part Imaginary part Real part Imaginary part

0 0.265475D-03 0.0 −0.132231D-01 0.0
1 −0.469872D-04 0.0 −0.130567D-03 0.0
2 0.145972D-05 0.0 −0.516438D-04 0.0
3 −0.675762D-06 0.0 −0.106555D-04 0.0
4 0.822353D-07 0.0 −0.413480D-05 0.0
5 −0.158663D-07 0.0 −0.160736D-05 0.0
6 0.567221D-08 0.0 −0.720552D-07 0.0
7 −0.255342D-08 0.0 −0.520275D-08 0.0
8 0.103451D-08 0.0 −0.102215D-08 0.0
9 0.554138D-09 0.0 −0.564321D-09 0.0

the material constants of the ceramic layer are assumed as µ(1) = 15.0(×109N/m2)

and η(1) =0.2, respectively. The material constants of the substrate layer are assumed
asµ(3) = 77.8(×109N/m2) and η(3) = 0.33, respectively. The material constants of
the functionally graded materials are assumed as µ(2) = 45.0eβy(×109N/m2) and
η(2) = 0.28, respectively. The dimensionless stress intensity factors K/σ

√
l and the

normalized strain energy release rate are calculated numerically. The results of this
paper are shown in Figures 2–10. From the results, the following observations are
very significant:

(i) It can be seen that the results of this paper is the same as ones in Ref. 10
when µ = µ(3) and β = 1

h2
ln(µ(1)/µ(3)) as shown in Figure 2 and Table 3. It is also

proved that the Schmidt method is performed satisfactorily. However, in Ref. 10, the
unknown variables of dual integral equations are the dislocation density functions,
and the case of µ �=µ(3) or β �= 1

h2
ln(µ(1)/µ(3)) was not examined.

(ii) As the results given in Ref. 10, the stress intensity factors KII/σ0
√

l of this
paper is not equal to zero for βl = 0. This phenomenon is cased by the thickness
of the layer. This is quite different from ordinary cracks in homogeneous materials.

Table 3. Verification of the model (h1/l =0.5, h2/l =1.0,h3/l =100.0)

βl K∗
I (l)/(σ0

√
l) KI(l)/(σ0

√
l) K∗

II(l)/(σ0

√
l) KII(l)/(σ0

√
l)

−3.0 2.24 2.232 −0.58 −0.592
−2.5 2.03 2.029 −0.47 −0.479
−2.0 1.85 1.841 −0.38 −0.375
−1.5 1.67 1.667 −0.29 −0.284
−1.0 1.52 1.515 −0.21 −0.202
−0.5 1.39 1.383 −0.14 −0.133

Where K∗
I (l)/(σ0

√
l) and K∗

II(l)/(σ0

√
l) are Shbeeb’s results [10].

KI(l)/(σ0

√
l) and KII(l)/(σ0

√
l) are this paper’s results.
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Figure 2. Influence of h1/l and h2/l on the normalized Mode-I SIF for h3/l =100.0 under a uniform

normal stress loading when µ=µ(3) and β = 1
h2

ln
(

µ(1)

µ(3)

)
.

However, it can be obtained that the stress intensity factor KII/σ0
√

l tends to zero
with the increase in the thickness of the medium layers for βl = 0 as shown in Fig-
ure 2.

(iii) When the material properties are not continuous along the crack line, an
approximate solution of the interface crack problem is given under the assumption
that the effect of the crack surface interference very near the crack tips is negligible.
It can be obtained that the stress singularities of the present paper are the same as
ones of the ordinary crack in homogeneous materials when the material parameters
don’t continue through the crack line. During the solving process for this case, the
mathematical difficulties would not be met, i.e. the oscillatory stress singularity and
the overlapping of the crack surfaces do not appeared near the interface crack tips,
while much problems have to be considered when the material properties of the mate-
rial layers are different.

(iv) The stress intensity factor KI/σ
√

l decreases with the increase in the normal-
ized non-homogeneity constant βl as shown in Figures 2 and 4. The shear stress
intensity factor KII/σ

√
l increases with the increase in the normalized non-homoge-

neity constant βl as shown in Figures. 3 and 5. A similar tendency was obtained
in Ref. 10. However, the absolute values of the stress intensity factors for the case
µ �= µ(3) and β �= 1

h2
ln(µ(1)/µ(3)) are larger than the ones for the case µ = µ(3) and

β = 1
h2

ln(µ(1)/µ(3)) as shown from Figures 2–5.
(v) When µ �=µ(3) and β �= 1

h2
ln(µ(1)/µ(3)), the stress intensity factor KI/σ

√
l tends

to decrease with the increase in the thickness of the non-homogeneous layer, until
reaching a minimum at h2/l ≈ 0.8, then it increases in magnitude as shown in Fig-
ure 6. However, the shear stress intensity factor KII/σ

√
l tends to increase with the

increase in the thickness of the non-homogeneous layer until reaching a peak, then
it decreases in magnitude as shown in Figure 6. Hence, the stress field can reach a
minimum value by changing the thickness of the non-homogeneity layer. This is quite
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Figure 3. Influence of h1/land h2/l on the normalized Mode-II SIF for h3/l =100.0 under a uniform

normal stress loading when µ=µ(3) and β = 1
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(
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)
.
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Figure 4. Influence of h1/l and h2/l on the normalized Mode-I SIF for h3/l =100.0 under a uniform

normal stress loading when µ �=µ(3) and β �= 1
h2

ln
(

µ(1)

µ(3)

)
.

different from the results as shown in Figure 6. For µ=µ(3) and β = 1
h2

ln(µ(1)/µ(3)),
the stress intensity factor KI/σ

√
l tends to increase with the increase in the thick-

ness of the non-homogeneous layer. The shear stress intensity factor KII/σ
√

l tends
to decrease with the increase in the thickness of the non-homogeneous layer as shown
in Figure 7.

(vi) As shown in Figure 8, the stress intensity factor KI/σ
√

l tends to decrease
with the increase in the thickness of the ceramic layer. However, the shear stress
intensity factor KII/σ

√
l tends to increase with the increase in the thickness. This

phenomenon is consistent with the crack in homogeneous materials.
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Figure 5. Influence of h1/l and h2/l on the normalized Mode-II SIF for h3/l=100.0 under a uniform

normal stress loading when µ �=µ(3) and β �= 1
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µ(1)
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)
.
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Figure 6. Influence of h2/l on the normalized Mode-I and Mode-II SIF for h1/l = 1.0, h3/l = 10.0

and βl =−2.0 under a uniform normal stress loading when µ �=µ(3) and β �= 1
h2

ln
(

µ(1)

µ(3)

)
.

(vii) Figures 9 and 10 show the effect of the normalized non-homogeneity con-
stant βl on the normalized strain energy release rate G/G0 for uniform normal trac-
tions σ (2)

y (x,0)=−σ0, σ (2)
xy (x,0)=0, where

G0 = π(k +1)

8µ
σ 2

0 l (71)



Interface Crack for a Functionally Graded Strip Sandwiched 95

0.0 0.7 1.4 2.1 2.8

0.0

0.8

1.6

I 0/K lσ II 0/K lσ

2 /h l
Figure 7. Influence of h2/l on the normalized Mode-I and Mode-II SIF for h1/l = 1.0, h3/l = 100.0

and βl =−2.0 under a uniform normal stress loading when µ=µ(3) and β = 1
h2

ln
(

µ(1)

µ(3)

)
.
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Figure 8. Influence of h1/l on the normalized Mode-I and Mode-II SIF for h2/l =0.25, h3/l =100.0

and βl =−2.0 under a uniform normal stress loading when µ=µ(3) and β = 1
h2

ln
(

µ(1)

µ(3)

)
.

is the corresponding value for a homogeneous infinite medium with elastic constants
µ and k. It can be noticed that the normalized strain energy release rate is signifi-
cantly reduced by a small additional thickness of the functional graded material layer
or the ceramics materials. The normalized strain energy release rate G/G0 decreases
with the increase in the normalized non-homogeneity constantβl as shown in Figures
9 and 10. These conclusions are the same as ones in Ref. 10. However, the normal-
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Figure 9. Influence of h1/l and h2/l on the normalized strain energy release rate for h3/l = 100.0

under a uniform normal stress loading when µ=µ(3) and β = 1
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Figure 10. Influence of h1/l and h2/l on the normalized strain energy release rate for h3/l = 100.0

under a uniform normal stress loading when µ �=µ(3) and β �= 1
h2

ln
(

µ(1)

µ(3)

)
.

ized strain energy release rates for the case µ �=µ(3) and β �= 1
h2

ln(µ(1)/µ(3)) are larger
than the ones for the case µ=µ(3) and β = 1

h2
ln(µ(1)/µ(3)).

(viii) It can be concluded that the stress intensity factors can be reduced by sev-
eral methods: stiffer coating application, thicker functional graded material layer, and
additional layer of homogeneous ceramics. The most optimum combination depends
on the stiffness ratio of the ceramics with respect to the substrate.
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Appendix A

[X1]= e−s(h1+h2)

[
2 k(1) −1+2s(h1 +h2)

2 k(1) −3+2s(h1 +h2)

]
,

[X2]= es(h1+h2)

[−2 k(1) −1−2s(h1 +h2)

2 3−k(1) +2s(h1 +h2),

]

[X3]=2s2e−sh2

[−1 1− sh2

−1 1−k(1) − sh2

]
, [X4]=2s2esh2

[
1 1+ sh2

−1 k(1) −1− sh2

]
,

[X5]=
[

e−λ1h2 e−λ2h2

m1(s)e−λ1h2 m2(s)e−λ2h2

]
, [X6]=

[
e−λ3h2 e−λ4h2

m3(s)e−λ3h2 m4(s)e−λ4h2

]
,

[X7]=2µ(1)s3e−sh2

[
2 k(1) −1+2sh2

2 k(1) −3+2sh2

]
, [X8]=2µ(1)s3esh2

[−2 k(1) −1−2sh2

2 3−k(1) +2sh2

]
,

[X9]=µeβh2

[
[−(k(2)+1)m1(s)λ1+s(3−k(2))]e−λ1h2

k(2)−1
[−(k(2)+1)m2(s)λ2+s(3−k(2))]e−λ2h2

k(2)−1
[−λ1 − sm1(s)]e−λ1h2 [−λ2 − sm2(s)]e−λ2h2

]
,

[X10]=µeβh2

[
[−(k(2)+1)m3(s)λ3+s(3−k(2))]e−λ3h2

k(2)−1
[−(k(2)+1)m4(s)λ4+s(3−k(2))]e−λ4h2

k(2)−1
[−λ3 − sm3(s)]e−λ3h2 [−λ4 − sm4(s)]e−λ4h2

]
,

[X11]= esh3

[
2 k(3) −1−2sh3

2 k(3) −3−2sh3

]
, [X12]= e−sh3

[−2 k(3) −1+2sh3

2 3−k(3) −2sh3

]
,

[X13]=2µ(3)s3
[

2 k(3) −1
2 k(3) −3

]
, [X14]=2µ(3)s3

[−2 k(3) −1
2 3−k(3)

]
,

[X15]=µ

⎡
⎣ −(k(2) +1)m1(s)λ1 + s(3−k(2))

k(2) −1
−(k(2) +1)m2(s)λ2 + s(3−k(2))

k(2) −1
−λ1 − sm1(s) −λ2 − sm2(s)

⎤
⎦ ,
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[X16]=µ

⎡
⎣ −(k(2) +1)m3(s)λ3 + s(3−k(2))

k(2) −1
−(k(2) +1)m4(s)λ4 + s(3−k(2))

k(2) −1
−λ3 − sm3(s) −λ4 − sm4(s)

⎤
⎦ ,

[X17]=
[

1 1
m1(s) m2(s)

]
, [X18]=

[
1 1

m3(s) m4(s)

]
, [X19]=2s2

[−1 1
−1 1−k(3)

]
,

[X20]=2s2
[

1 1
−1 k(3) −1

]
, [Y1]=[X3]−[X4] [X2]−1 [X1] ,

[Y2]=[X7]−[X8] [X2]−1 [X1] ,

[Y3]=[Y1]−1 [X5]− [Y2]−1 [X9] , [Y4]= [Y2]−1 [X10]− [Y1]−1 [X6] , [Y5]= [Y4]−1 [Y3] ,

[Y6]=− [X13] [X11]−1 [X12]+ [X14] , [Y7]= [X15]+ [X16] [Y5] , [Y8]= [Y6]−1 [Y7] ,

[Y9]=[X17]+[X18] [Y5] , [Y10]=− [X19] [X11]−1 [X12]+ [X20] , [Y11]= [Y9]− [Y10] [Y8] ,

[Y12]= [X15]+ [X16] [Y5] , [Y13]= [Y12] [Y11]−1 =
[

d1(s) d2(s)

d3(s) d4(s)

]
.
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