
Meccanica (2006) 41:591–598
DOI 10.1007/s11012-006-9005-y

The scattering of harmonic elastic anti-plane shear waves
by two collinear cracks in anisotropic material plane
by using the non-local theory

Zhen-Gong Zhou · Lin-Zhi Wu · Biao Wang

Received: 20 November 2004 / Accepted: 8 April 2006 / Published online: 31 October 2006
© Springer Science+Business Media B.V. 2006

Abstract In this paper, the dynamic behavior of
two collinear cracks in the anisotropic elasticity
material plane subjected to the harmonic anti-plane
shear waves is investigated by use of the nonlo-
cal theory. To overcome the mathematical diffi-
culties, a one-dimensional nonlocal kernel is used
instead of a two-dimensional one for the anti-plane
dynamic problem to obtain the stress field near
the crack tips. By use of the Fourier transform,
the problem can be solved with the help of a pair
of triple integral equations, in which the unknown
variable is the displacement on the crack surfaces.
To solve the triple integral equations, the displace-
ment on the crack surfaces is expanded in a series
of Jacobi polynomials. Unlike the classical elastic-
ity solutions, it is found that no stress singularity
is present near crack tips. The nonlocal elasticity
solutions yield a finite hoop stress at the crack tips,
thus allowing us to using the maximum stress as
a fracture criterion. The magnitude of the finite
stress field not only depends on the crack length
but also on the frequency of the incident waves
and the lattice parameter of the materials.
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1 Introduction

As is commonly known, one of the principal pos-
tulates of the traditional mechanics of continuous
media is the principle of the local action. This prin-
ciple excludes the action at a distance, and attri-
butes changes occurring at a point of the medium
to thermoenergetic factors acting at the point. Of
necessity then, the classical theory, by restricting
the response of the continuum to strictly local ac-
tions, constitutes a so-called local theory. How-
ever, the application of classical elasticity to micro-
mechanics leads to some physically unreasonable
results. A singularity appearing in a stress field is
a typical one. In fact, the stress at the crack tip is
finite. As a result of this, beginning with Griffith,
all fracture criteria in practice today are based on
other considerations, e.g. energy, and the J-integral
[1] and the strain gradient theory [2].

To overcome the stress singularity in the clas-
sical elastic fracture theory, Eringen [3–5] used
nonlocal theory to discuss the stress near the tip of
a sharp line crack in an isotropic elastic plate sub-
ject to uniform tension, shear and anti-plane shear,
and the resulting solutions did not contain any
stress singularities. This allows us to using the max-
imum stress as a fracture criterion. In [6], the basic
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theory of nonlocal elasticity was stated with empha-
sis on the difference between the nonlocal theory
and classical continuum mechanics. Other results
have been given by the application of nonlocal elas-
ticity to the fields such as a dislocation near a crack
[7, 8] and fracture mechanics problems [9, 10]. The
results of those concrete problems that were solved
display a rather remarkable agreement with exper-
imental evidence. This can be used to predict the
cohesive stress for various materials and the results
close to those obtained in atomic lattice dynamics
[11, 12]. Recently, some fracture problems [13–18]
in the isotropic elastic material, the anisotropic
elasticity material, and the piezoelectric material
have been studied by use of nonlocal theory with
a somewhat different method. In spite of these
efforts, the understanding of the dynamic fracture
process of anisotropic elastic materials is still lim-
ited due to the mathematical complexities. To our
knowledge, the dynamic behavior of two collinear
cracks in anisotropic material plane subjected to
the harmonic anti-plane shear waves has not been
studied by use of the nonlocal theory. Thus, the
present work is an attempt to fill this information
needed. Here, we just attempt to give a theoretical
solution for this kind problem.

In the present paper, the dynamic behavior of
two collinear cracks subjected to the harmonic
anti-plane shear wave is investigated by use of non-
local theory in anisotropic elastic material plane
with Schmidt method [19, 20]. The Fourier trans-
form is applied and a mixed boundary value prob-
lem is reduced to a pair of triple integral equations.
To solve the triple integral equations, the displace-
ment on the crack surfaces is expanded in a series
of Jacobi polynomials. This process is quite differ-
ent from those adopted in [1–12] as mentioned
above. Numerical solutions are obtained for the
stress field near the crack tip. Contrary to the pre-
vious results, it is found that the solution does not
contain any stress singularities near the crack tip.

2 The crack model

It is assumed that there are two collinear symmetric
cracks of length 1 − balong the x-axis in an aniso-
tropic material plane as shown in Fig. 1. The 2b is
the distance between the two cracks (the solution

y

b b

1

x

1

Fig. 1 Geometry and coordinate system for two collinear
cracks

of two collinear cracks of length d − b in aniso-
tropic materials can easily be obtained by a sim-
ple change in the numerical values of the present
paper for crack length 1 − b/d.d > b > 0). In the
present paper, it is also assumed that the propa-
gation direction of the harmonic elastic anti-plane
shear stress wave is vertical to the crack in aniso-
tropic materials. Let ω be the circular frequency
of the incident wave. w0(x, y, t) is the out-of-plane
displacement. τzk0(x, y, t)(k = x, y) is the nonlocal
anti-plane shear stress field. σzk0(x, y, t)(k = x, y) is
the local anti-plane shear stress field. As discussed
in [21], because of the incident waves is the har-
monic anti-plane shear stress wave, all field quan-
tities of w0(x, y, t), τzk0(x, y, t), and σzk0(x, y, t)can
be assumed to be of the forms as follows

[w0(x, y, t), τzk0(x, y, t), σzk0(x, y, t)],
= [w(x, y), τzk(x, y), σzk(x, y)]e−iωt. (1)

In what follows, the time dependence of e−iωt will
be suppressed but understood. −τ0 is a magnitude
of the incident wave. As discussed in [3, 14, 21],
the boundary conditions can be written as follow-
ing (in this paper, we just consider the perturbation
stress field):

τyz(x, 0+) = τyz(x, 0−) = −τ0,

b ≤ |x| ≤ 1, y = 0, (2)

τyz(x, 0+) = τyz(x, 0−), w(x, 0+) = w(x, 0−) = 0,

|x| > 1, |x| < b, y = 0. (3)

3 Basic equation of nonlocal theory

Basic equations of two-dimensional anti-plane
shear of homogeneous, anisotropic, nonlocal elas-
tic solid, with vanishing body force are

∂τxz(x, y)

∂x
+ ∂τyz(x, y)

∂y
= −ρω2w(x, y), (4)



Meccanica (2006) 41:591–598 593

τxz(x, y)

=
∫ ∞

−∞

∫ ∞

−∞
α

(∣∣x′ − x
∣∣ ,

∣∣y′ − y
∣∣)

σxz(x′, y′)dx′dy′, (5)

τyz(x, y)

=
∫ ∞

−∞

∫ ∞

−∞
α

(∣∣x′ − x
∣∣ ,

∣∣y′ − y
∣∣)

σyz(x′, y′)dx′dy′, (6)

where

σxz(x, y) = c55
∂w(x, y)

∂x
+ c45

∂w(x, y)

∂y
,

σyz(x, y) = c45
∂w(x, y)

∂x
+ c44

∂w(x, y)

∂y
, (7)

where −ρω2w(x, y)e−iωt = ρ
∂2w0(x,y,t)

∂t2
=

ρ
∂2(w(x,y)e−iωt)

∂t2
in Eq. 4. c44, c45, and c55 are the

material constants of the classical elasticity. ρ is
the density of the materials. The only difference
from the classical elasticity is in the stress constitu-
tive equations (5) and (6). The stress τxz(x, y) and
τyz(x, y) at a point (x, y) depend on the ∂w(x,y)

∂x and
∂w(x,y)

∂y at all points of the body. α(|x′ − x|, |y′ − y|)
is known as the influence function and it is a func-
tion of the distance d = √

(x′ − x)2 + (y′ − y)2. The
expressions (7) are the classical Hooke’s law.

4 The triple integral equation

Substitution of Eqs. 5 and 6 into Eq. 4 and using
Green-Gauss theorem leads to
∫ ∞

−∞

∫ ∞

−∞
α

(∣∣x′ − x
∣∣ ,

∣∣y′ − y
∣∣)

[
c55

∂2w(x′, y′)
∂x′2

+ 2c45
∂2w(x′, y′)

∂x′∂y′ + c44
∂2w(x′, y′)

∂y′2

]
dx′dy′

−
[∫ −b

−1
+

∫ 1

b

]
α

(∣∣x′ − x
∣∣ ,

∣∣y′ − y
∣∣) [

σyz(x′, 0+)

−σyz(x′, 0−)
]

dx′ = −ρω2w(x, y). (8)

Here the surface integral may be dropped since the
displacement field vanishes at infinity.

As mentioned in [3], it can be obtained that
[σyz(x, 0+) − σyz(x, 0−)] = 0. What now remains

is to solve the integrodifferential equation (8) for
the function w. It is impossible to obtain a rigorous
solution at the present stage. It seems obvious that
in the solution of such a problem we encounter
serious if not unsurmountable mathematical diffi-
culties and will have to resort to an approximate
procedure. In the given problem, as discussed in
[22, 23], the nonlocal interaction in the y-direction
can be ignored. In view of our assumptions, it can
be given as

α
(∣∣x′ − x

∣∣ ,
∣∣y′ − y

∣∣) = α0(
∣∣x′ − x

∣∣)δ(y′ − y), (9)

where α0(
∣∣x′−x

∣∣)= 1√
π
(β/a) exp[−(β/a)2(x′ −x)2],

δ(y′ − y) a pulse function. β a constant and can be
obtained by experiment, and a is the characteristic
length. The characteristic length may be selected
according to the range and sensitivity of the phys-
ical phenomena. For instance, for the perfect crys-
tals, a may be taken as the lattice parameter. For
granular materials, a may be considered to be the
average granular distance and for fiber compos-
ites, the fiber distance, etc. In the present paper, a
is taken as the lattice parameter.

From Eq. 8, we have∫ ∞

−∞
α0(|x′ − x|)

[
c55

∂2w(x′, y)

∂x′2

+ 2c45
∂2w(x′, y)

∂x′∂y
+ c44

∂2w(x′, y)

∂y2

]
dx′

= −ρω.2w(x, y) (10)

Introduce a coordinate transformation

x̂ = x′ − ey, ŷ = cy, (11)

where e=c45/c44, c = µ/c44, µ=(c44c55 − c2
45)

1/2.
From Eq. 10, we have∫ ∞

−∞
α0

(∣∣x̂ − u)
∣∣)µ0[∂

2w(x̂, ŷ)

∂ x̂2 + ∂2w(x̂, ŷ)

∂ ŷ2 ]dx̂

= −ρω2w(u, y′), (12)

where u = x − ey and µ0 = (c44c55 − c2
45)/c44.

To solve the problem, the Fourier cosine trans-
form of Eq. 12 with u can be given as follows:

ᾱ0(|s|)µ0

[
−s2w̄(s, ŷ) + ∂2w̄(s, ŷ)

∂ ŷ2

]
= −ρω2w̄(s, ŷ).

(13)

A superposed bar indicates the Fourier cosine
transform through the paper.
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From Eq. 9, we have

ᾱ0(s) = exp

(
− (sa)2

4β2

)
. (14)

Because of the symmetry, it suffices to consider the
problem for x ≥ 0, |y| < ∞. The solution of Eq. 13
can be given as follows

w(x, y)

= w(x̂, ŷ)

=




2
π

∫ ∞

0
A(s)e−γ ŷ cos(sx̂)ds, ŷ ≥ 0,

− 2
π

∫ ∞

0
A(s)eγ ŷ cos(sx̂)ds, ŷ ≤ 0,

=




2
π

∫ ∞

0
A(s)e−cγ y cos(sx − esy)ds, y ≥ 0,

− 2
π

∫ ∞

0
A(s)ecγ y cos(sx − esy)ds, y ≤ 0,

(15)

where γ =
√

s2 − ω2/c2
1ᾱ0, c1 = √

µ0/ρ.
It is easily verified from (4) and (10) that the

relevant displacement and stress components in a
physical anisotropic solid are related to those in
the corresponding isotropic solid by

σxz(x, y) = (µ/c44)σx̂ẑ(x̂, ŷ) + (c45/c44)σŷẑ(x̂, ŷ),

(16)

σyz(x, y) = σŷẑ(x̂, ŷ), (17)

σx̂ẑ(x̂, ŷ) = µ
∂w(x̂, ŷ)

∂ x̂
, (18)

σŷẑ(x̂, ŷ) = µ
∂w(x̂, ŷ)

∂ ŷ
. (19)

Substituting Eq. 13 into Eq. 3 and applying Eqs. 4,
18, and 19, it can be obtained

τyz(x, y) = −2µ

π

∫ ∞

−∞

∫ ∞

−∞
α

(∣∣x′ − x
∣∣ ,

∣∣y′ − y
∣∣)

×∂w(x′, y′)
∂y′ dx′dy′

= −2µ

π

{∫ ∞

0

[∫ ∞

−∞
α

(∣∣x′ − x
∣∣ ,

∣∣y′ − y
∣∣)

×∂w(x′, y′)
∂y′ dx′

]
dy′

+
∫ 0

−∞

[∫ ∞

−∞
α

(∣∣x′ − x
∣∣ ,

∣∣y′ − y
∣∣)

× ∂w(x′, y′)
∂y′ dx′

]
dy′

}

= −2µ

π

∫ ∞

0
γ e−cγ yA(s)ds

×
∫ ∞

−∞
[α0

(∣∣x′ − x
∣∣) cos

(
sx′ − esy

)

+ α0
(∣∣x′ − x

∣∣) cos(sx′ + esy)]dx′. (20)

Using Eqs. 16–18, it can be obtained

τxz(x, y) = − 2µ2

πc44

∫ ∞

0
se−cγ yA(s)ds

×
∫ ∞

−∞
[
α0

(∣∣x′ − x
∣∣) sin(sx′ − esy)

− α0
(∣∣x′ − x

∣∣) sin(sx′ + esy)
]

dx′

+ c45

c44
τyz(x, y). (21)

From the relations [24],∫ ∞

−∞
exp(−px′2)

{
sin ξ(x′ + x)

cos ξ(x′ + x)

}
dx′

= (π/p)1/2 exp

(
− ξ2

4p

) {
sin(ξx)

cos(ξx)

}
(22)

the boundary conditions (6) and (7) can be
expressed as:

τyz(x, 0) = −4µ

π

∫ ∞

0
γ ᾱ0(s)A(s) cos(sx)ds

= −τ0, b ≤ x ≤ 1, (23)

∫ ∞

0
A(s) cos(sx)ds = 0, x > 1, 0 < x < b. (24)

The stress τxz along the crack line can be expressed
as:

τxz(x, 0) = c45

c44
τyz(x, 0). (25)

To determine the unknown function A(s), the pre-
vious pair of triple integral equations (23) and (24)
must be solved.

5 Solution of the triple integral equation

The only difference between the classical and non-
local equations is in the influence function ᾱ0(s), it
is logical to utilize the classical solution to convert
the system Eqs. 23 and 24 to an integral equa-
tion of the second kind, which is generally better
behaved. For the lattice parameter a → 0, then
ᾱ0(s) equals to a nonzero constant and Eqs. 23
and 24 reduce to a pair of triple integral equations
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for the same problem in classical elasticity. As dis-
cussed in [14–21], the triple integral equations (23)
and (24) cannot be transformed into a Fredholm
integral equation of the second kind, because ᾱ0(s)
does not tend to a nonzero constant C(C �= 0)for
s → ∞. Of course, the triple equations (23) and
(24) can be considered to be a single integral equa-
tion of the first kind with discontinuous kernel. It is
well-known in the literature that integral equations
of the first kind are generally ill-posed in sense
of Hadamard, i.e. small perturbations of the data
can yield arbitrarily large changes in the solution.
This makes the numerical solution of such equa-
tions quite difficult. To overcome the difficult, the
Schmidt method [19, 20] is used to solve the triple
integral equations (23) and (24). The displacement
w on the crack surface can be represented by the
following series:

w(x, 0) =
∞∑

n=0

bnP
( 1

2 , 1
2 )

n

(
x − 1+b

2
1−b

2

)

×

1 −

(
x − 1+b

2

)2

(
1−b

2

)2




(1/2)

,

for b ≤ x ≤ 1 and y = 0 (26)

w(x, 0) = 0, for x > 1, 0 < x < b and y = 0,

(27)

where bn are unknown coefficients, P(1/2,1/2)
n (x) is

a Jacobi polynomial [24]. The Fourier transform of
Eqs. 26 and 27 are [25]

A(s) = w̄(s, 0) =
∞∑

n=0

bnFnGn(s)
1
s

Jn+1

(
s

1 − b
2

)

(28)

where

Fn = 2
√

π
�(n + 1 + 1

2 )

n! ,

Gn(s) =




(−1)n/2 cos

(
s

1 + b
2

)
, n = 0, 2, 4, 6, . . .

(−1)

n + 1
2 sin

(
s 1+b

2

)
, n = 1, 3, 5, 7, . . .

,

�(x) and Jn(x) are the Gamma and Bessel func-
tions, respectively.

Substituting Eq. 28 into Eqs. 23 and 24, it can
be shown that Eq. 24 is automatically satisfied.

Equation (23) reduces to

4µ

π

∞∑
n=0

bnFn

∫ ∞

0

γ

s
ᾱ0(s)Gn(s)Jn+1

(
s

1 − b
2

)
cos(sx)ds = τ0

b ≤ x ≤ 1 and y = 0. (29)

For a large s, the integrands of Eq. 29 almost all de-
crease exponentially. So the semi-infinite integral
in Eq. 29 can be evaluated numerically. Thus Eq.
29 can be solved for coefficients bn by the Schmidt
method [19, 20]. Here, it was omitted. It can be
seen in [13–20].

6 Numerical calculations and discussion

The coefficients bn are known, so that the entire
stress field can be obtained. However, in fracture
mechanics, it is important to determine the stress
τyz and τxz in the vicinity of the crack tips. τyz and
τxz along the crack line can be expressed as:

τyz(x, 0) = −4µ

π

∞∑
n=0

bnFn

∫ ∞

0

γ

s
ᾱ0(s)Gn(s)Jn+1

×
(

s
1 − b

2

)
cos(sx)ds for y = 0, (30)

τxz(x, 0) = c45

c44
τyz(x, 0) for y = 0. (31)

When the lattice parameter a �= 0, the semi-infinite
integration and the series in Eq. 30 are convergent
for any variable x, it gives a finite stress all along
y = 0, so there is no stress singularity at crack tips.
At b < x < 1, τyz/(−τ0) is very close to unity, and
for x > 1, τyz/(−τ0) possesses finite values dimin-
ishing from a finite value at x = 1 to zero at x =
∞. Since a/[β(1 − b)]>1/100 represents a crack
length of less than 100 atomic distances [5], and for
such submicroscopic sizes, other serious questions
arise regarding the interatomic arrangements and
force laws, we do not pursue solutions valid at such
small crack sizes. In the computation, the mate-
rial constants are assumed to be c44 = 2.77 GPa,
c55 = 0.64 GPa, and c45 = 0.57 GPa. From the
works in [26–29], it can be seen that the Schmidt
method is performed satisfactorily if the first ten
terms of infinite series to Eq. 29 are retained. This
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Fig. 2 The stress along the crack line versus x for
b = 0.1, a/β = 0.001 and ω/c1 = 0.2

Schmidt method can be applicable to obliquely
incident anti-plane waves. In this case, the −τ0
should be changed into−τ0(θ). It depends on the
incident angle θ . It is independent of the variable
x. The solving processes are the same as ones in
the present paper. On the other hand, this method
can be also extended to solve the problem of in-
plane time-harmonic waves. However, the solving
processes are more complex than the present paper.

The results are plotted in Figs. 2, 3, 4, 5, 6, 7, 8 and
9. The following observations are very significant:

(1) The maximum stress value does not occur at
the crack tip, but slightly away from it as shown
in Figs. 2, 3, 4, and 5. This phenomenon has
been thoroughly substantiated by Eringen [30].
The maximum stress value is finite, thus allow-
ing us to using the maximum stress value as
a fracture criterion. The distance between the
crack tip and the maximum stress point is very
small, and it depends on the crack length, the
material properties and the lattice parameter.
Contrary to the classical elasticity solution, it
is found that no stress singularity presents at
the crack tip, and also the present results con-
verge to the classical ones when far away from
the crack tip as shown in Figs. 2, 3, 4, and
5. Simultaneously, for the nonlocal solution,
the smaller the lattice parameter is, the more
closer to the classical solution as shown in Figs.
2, 3, 4, and 5.

(2) The stress at the crack tip becomes infinite as
the lattice parameter distance a → 0. This is
the classical continuum limit of square root
singularity.
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12

yz
/
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t
t

Fig. 3 The local enlarge graph of Fig. 2 near the outer tip
of the right crack
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Fig. 4 The local enlarge graph of Fig. 2 near the inner tip
of the right crack

xz
/ 0

0.0 0.5 1.0 1.5 2.0

0

1

2

3

x

t
t

Fig. 5 The stress along the crack line versus x for
b = 0.1, a/β = 0.001 and ω/c1 = 0.2

(3) The effect of the lattice parameter of the aniso-
tropic composite materials on the stress field
near the crack tip decreases with increase of
the lattice parameter as shown in Fig. 6. This
phenomenon is the same as one in [3–5].

(4) The stress values of τyz and τxz at the crack
tips increases with increase of the crack length
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Fig. 6 The stress at the crack tips line versus a/β for
ω/c1 = 0.2 and b = 0.1
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Fig. 7 The stress at the crack tips versus b for ω/c1 = 0.2,
and a/β = 0.001
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Fig. 8 The stress at the crack tips versus b for ω/c1 = 0.2,
and a/β = 0.001

as shown in Figs. 7 and 8. Note this fact; experi-
ments indicate that materials with smaller
cracks are more resistant to fracture than those
with larger cracks. This is similar with results of
the classical theory. For the classical theory, the
stress intensity factors increase with increase of
the crack length. It can be also obtained that

yz
/

0

0( , 0) /yz b  

0(1,0) /yz  

1/ c

8

7

0.0 0.5 1.0 1.5 2.0

9

10

11

12

t
t

t

tt

t

w

Fig. 9 The stress at the crack tips versus ω/c1 for b = 0.1
and a/β = 0.001

the left tip’s stress fields are greater than the
right tip’s ones for the right crack as shown in
Figs. 7 and 8.

(5) The dynamic stress values of τyz at the crack
tips tend to increase with the frequency reach-
ing a peak for ω/c1 ≈ 1.1 and then to decrease
in magnitude as shown in Fig. 9. This conclu-
sion is the same as in the classical fracture the-
ory [31] for the stress intensity factor. From
the results, it can be concluded that the stress
fields near the crack tips can be deduced by
adjusting the frequency of incident waves in
engineering practices.

(6) The stress values of τyz at the crack tips do not
depend on the material properties as shown
in Eqs. 29 and 30. However, the stress of τyz

depends on the crack length, on the frequency
of the incident waves and the lattice parameter
of the materials. This is the same as the anti-
plane shear fracture problem in the isotropic
homogeneous materials.

(7) The stress values of τxz depend on the material
properties, on the crack length, the frequency
of the incident waves and the lattice parame-
ter of the materials as shown in Eq. 31. The
variations of the stresses τyz and τxz have a
same tendency with the crack length, the fre-
quency of the incident waves or the lattice
parameter of the materials as shown in Eq. 31.
The variations of the stress τxz with the crack
length, the frequency of the incident waves
or the lattice parameter of the materials can
be obtained through Eq. 31 from the present
results. Here, they are omitted. However, the
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amplitude values of τxz are different. The stress
of τyz is larger than the stress of τxz.
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