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Abstract. In this paper, the dynamic behavior of a Griffith crack in a piezoelectric material strip subjected to
the harmonic anti-plane shear waves is investigated by use of the non-local theory for impermeable crack surface
conditions. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-
dimensional one for the anti-plane dynamic problem to obtain the stress and the electric displacement near at the
crack tip. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral
equations. These equations are solved using the Schmidt method. Contrary to the classical solution, it is found
that no stress and electric displacement singularity is present near the crack tip. The non-local dynamic elastic
solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the maximum
dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the thickness of the
strip, the circular frequency of incident wave and the lattice parameter.
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1. Introduction

In the theoretical studies of crack problems in piezoelectric materials, several different elec-
tric boundary conditions on the crack surfaces have been proposed by numerous researchers
[1–12]. For the impermeable crack problems in piezoelectric materials, some significant re-
sults have been obtained in [1–6]. The conducting crack problems in the piezoelectric ma-
terials were also studied in [7, 8]. Recently, the behavior of two collinear permeable cracks
in a piezoelectric layer bonded to two half spaces was studied in [9]. Dunn [10], Zhang and
Tong [11] and Sosa and Khutoryansky [12] avoided the common assumption of electric im-
permeability and utilized more accurate electric boundary conditions at the rim of an elliptical
flaw to deal with anti-plane problems in piezoelectricity. They analyzed the effects of electric
boundary conditions at the crack surfaces on the fracture mechanics of the piezoelectric ma-
terials. However, these solutions contain stress and electric displacement singularities. These
phenomena are not reasonable according to the physical nature. In fact, the stress near the
crack tip is finite, so beginning with Griffith, all fracture criteria in practice today are based
on other considerations, for example, energy, as well as the J-integral.
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In order to remove the stress singularity of classical elastic theory, Eringen [13–15] used
the non-local theory to discuss the state of stress near the tip of a sharp line crack in an
elastic plane subjected to uniform tension, shear and anti-plane shear loadings. In contrast
to this local approach of zero-range internal interactions, the modern non-local continuum
mechanics, originated and developed in the last four decades, postulates that the local state
at a point is influenced by the action of all particles of the body. In [16], the basic theory
of non-local elasticity was stated with emphasis on the difference between the non-local
theory and classical continuum mechanics. The basic idea of non-local elasticity is to es-
tablish a relationship between macroscopic mechanical quantities and microscopic physical
quantities within the framework of continuum mechanics. In [17], the same problem which
was treated by Eringen [15] was reworked by use of a somewhat different approach. The
dynamic behaviors of a Griffith crack and two cracks in the elastic materials subjected to the
harmonic anti-plane shear waves were investigated by use of the non-local theory in [18, 19].
The scattering behaviors of the harmonic stress waves by the Mode-I and Mode-II cracks
were studied by use of the non-local theory in [20, 21]. These solutions did not contain any
stress singularity, thus resolving a fundamental problem that has remained unsolved for over
many years. This enables us to employ the maximum stress hypothesis to deal with fracture
problems in a natural way. To our knowledge, the dynamic electro-elastic behavior of the
piezoelectric material strip with a crack subjected to harmonic elastic anti-plane shear wave
and in-plane electric loading has not been studied by use of the non-local theory.

In the present paper, the scattering of the harmonic anti-plane shear elastic waves by a
Griffith impermeable crack in piezoelectric material strip is investigated by use of the non-
local theory. The traditional concept of linear elastic fracture mechanics and the non-local
theory are extended to include the piezoelectric effects. To obtain the theoretical solution,
and discussing the probability of using the non-local theory to solve the dynamic fracture
problem in the piezoelectric material strip, one has to accept some assumptions as in [22, 23],
that is, a one-dimensional non-local kernel function was used instead of a two-dimensional
kernel function for the anti-plane dynamic problem. Obviously, the assumption should be
further investigated to satisfy the realistic condition. Fourier transform is applied and a mixed
boundary value problem is reduced to two pairs of dual integral equations. To solve the dual
integral equations, the crack surface displacement and electric potential are expanded in a
series of Jacobi polynomials by means of the Schmidt method [24]. This process is quite
different from that adopted in previous works as mentioned above [1–15]. As expected, the
solution in this paper does not contain the stress and electric displacement singularities near
the crack tip, thus clearly indicating the physical nature of the problem.

2. Basic Equations of the Non-local Piezoelectric Materials

For the anti-plane shear problem, the basic equations of linear, homogeneous, isotropic, non-
local piezoelectric materials, with vanishing body force are [15, 16, 19, 25]

∂τxz

∂x
+ ∂τyz

∂y
= ρ

∂2w

∂t2
, (1)

∂Dx

∂x
+ ∂Dy

∂y
= 0, (2)
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τkz(X, t) =
∫
V

[c′
44(|X′ −X|)w,k(X

′, t)

+ e′
15(|X′ −X|)φ,k(X′, t)] dV (X′) (k = x, y), (3)

Dk(X, t) =
∫
V

[e′
15(|X′ −X|)w,k(X

′, t)

− ε′
11(|X′ −X|)φ,k(X′, t)] dV (X′) (k = x, y), (4)

where the only difference with classical elastic theory and the piezoelectric theory is in the
stress and the electric displacement constitutive equations (3) and (4) in which the stress
τzk(X, t) and the electric displacement Dk(X, t) at a point X depends on w,k(X, t) and
φ,k(X, t), at all points of the body. w and φ are the mechanical displacement and electric
potential. For homogeneous and isotropic piezoelectric materials there exist only three ma-
terial parameters, c′

44(|X′ − X|), e′
15(|X′ − X|) and ε′

11(|X′ − X|) which are functions of the
distance |X′ − X|. ρ is the density of the piezoelectric materials. The integrals in (3) and (4)
are over the volume V of the body enclosed within a surface ∂V .

As discussed in [26, 27], it can be assumed in the form of c′
44(|X′ − X|), e′

15(|X′ − X|)
and ε′

11(|X′ − X|) for which the dispersion curves of plane elastic waves coincide with those
known in lattice dynamics. Among several possible curves the following has been found to be
very useful

(c′
44, e

′
15, ε

′
11) = (c44, e15, ε11)α(|X′ −X|), (5)

α(|X′ − X|) is known as the influence function, and is the functions of the distance
|X′ −X|. c44, e15 and ε11 are the shear modulus, piezoelectric coefficient and dielectric param-
eter, respectively.

Substitution of equation (5) into equations (3) and (4) yields

τkz(X, t) =
∫
V

α(|X′ −X|)σkz(X
′, t) dV (X′) (k = x, y), (6)

Dk(X, t) =
∫
V

α(|X′ −X|)Dc
k(X

′, t) dV (X′) (k = x, y), (7)

where

σkz = c44w,k + e15φ,k, (8)

Dc
k = e15w,k − ε11φ,k. (9)

The expressions (8) and (9) are the classical piezoelectric material constitutive equations.

3. The Crack Model and the Solution

In the present paper, the problem of an infinite long piezoelectric material strip with width
2h, containing a crack parallel to the edges of the strip is considered. The crack occupies the
region −l� x� l, y = 0, and the geometry of the problem is shown in Figure 1. As discussed
in [25, 28], when the harmonic wave is vertically incident to the crack, the magnitudes of the
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Figure 1. Crack in a piezoelectric material strip.

stress and the electric displacement inside the crack should be constants. Let ω be the circular
frequency of the incident wave. −τ0 is a magnitude of the incident wave. In what follows, the
time dependence term e−iωt of all variables will be suppressed as commonly used technology
as discussed in [25, 28]. The magnitudes of all variables are only considered in what follows.
It is further supposed that the two faces of the crack do not come in contact during vibrations.
The piezoelectric boundary-value problem for anti-plane shear is considerably simplified if
we only consider the out-of-plane displacement and the in-plane electric fields. When the
harmonic anti-plane shear wave is vertically incident to the crack, the boundary conditions on
the crack surfaces at y = 0 are (Here, we just consider the perturbation field.)

τyz(x, 0) = −τ0, Dy(x, 0) = −D0, |x|� l, (10)

τyz(x,±h) = Dy(x,±h) = 0, |x|� ∞, (11)

w(x, 0) = φ(x, 0) = 0, |x| > l, (12)

w(x, y) = φ(x, y) = 0 for (x2 + y2)1/2 → ∞, (13)

where τ0 and D0 are positive. Substituting equations (6) and (7) into equations (1) and (2),
respectively, using Green–Gauss theorem, it can be obtained [15]:∫∫

V

α(|x′ − x|, |y′ − y|)[c44∇2w(x′, y′)+ e15∇2φ(x′, y′)] dx′ dy′

−
∫ l

−l
α(|x′ − x|, 0)[σyz(x

′, 0)] dx′ = −ρω2w(x, y), (14)

∫∫
V

α(|x′ − x|, |y′ − y|)[e15∇2w(x′, y′)− ε11∇2φ(x′, y′)] dx′ dy′

−
∫ l

−l
α(|x′ − x|, 0)[Dc

y(x
′, 0)] dx′ = 0, (15)

where the boldface bracket indicates a jump at the crack line, that is,

[σyz(x
′, 0)] = σyz(x

′, 0+)− σyz(x
′, 0−),

[Dc
y(x

′, 0)] = Dc
y(x

′, 0+)−Dc
y(x

′, 0−).

∇2 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplace operator. Because of the assumed
symmetry in geometry and loading, it is sufficient to consider the problem for 0 � x �∞,
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0 � y� h only. Under the applied anti-plane shear load on the unopened surfaces of the
crack, the displacement field and the electric displacement possess the following symmetry
regulations

w(x,−y) = −w(x, y), φ(x,−y) = −φ(x, y). (16)

Using the equation (16), we find that

[σyz(x, 0)] = 0, (17)

[Dc
y(x, 0)] = 0. (18)

Hence the line integrals in (14) and (15) vanish. By taking the Fourier transform of (14) and
(15) with respect to x′, it can be shown that

∫ ∞

0
ᾱ(|s|, |y′ − y|)

{
c44

[
d2w̄(s, y′)

dy2
− s2w̄(s, y′)

]

+ e15

[
d2φ̄(s, y′)

dy2
− s2φ̄(s, y′)

]}
dy′ = −ρω2w̄, (19)

∫ ∞

0
ᾱ(|s|, |y′ − y|)

{
e15

[
d2w̄(s, y′)

dy2
− s2w̄(s, y′)

]

− ε11

[
d2φ̄(s, y′)

dy2
− s2φ̄(s, y′)

]}
dy′ = 0. (20)

Here a superposed bar indicates the Fourier transform through the present paper. For the even
function, the Fourier transform can be written as follow form, that is,

f̄ (s) =
∫ ∞

0
f (x) cos(sx) dx, f (x) = 2

π

∫ ∞

0
f̄ (s) cos(sx) ds.

For the odd function, the Fourier transform can be written as in the following form, that is,

f̄ (s) =
∫ ∞

0
f (x) sin(sx) dx, f (x) = 2

π

∫ ∞

0
f̄ (s) sin(sx) ds.

What now remains is to solve the integrodifferential equations (19) and (20) for the function
w and φ.

It is impossible to obtain a rigorous solution at the present stage for equations (19) and
(20). It seems obviously that in the solution of such a problem we encounter seriously if not
unsurmountable mathematical difficulties and will have to resort to an approximate procedure.
In the given problem, according to the assumptions as in [22, 23], the non-local interaction in
y direction is ignored. So the non-local influence function ᾱ(s, y) can be separated as follows:

ᾱ(|s|, |y′ − y|) = ᾱ0(s)δ(y
′ − y). (21)

The non-local function α will depend on a characteristic length ratio a/l, where a is an internal
characteristic length (e.g., lattice parameter, granular distance. In this paper, a represents the
lattice parameter) and l is an external characteristic length (e.g., crack length, wave-length.
In this paper, l represents the crack length). By matching the dispersion curves of plane
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waves with those of atomic lattice dynamics (or experiments), we can determine the non-
local modulus function α for given material. As discussed in [13–15, 22, 23, 29], the form of
α0(s) in (21) can be written as follows:

α0 = χ0 exp

(
−

(
β

a

)2

(x′ − x)2

)
, χ0 = β

a
√
π
, (22)

where β is a constant (here β is a constant appropriate to each material) and a is the lattice
parameter. So it can be obtained

ᾱ0(s) = exp

(
− (sa)2

(2β)2

)
, (23)

and ᾱ0(s) = 1 for the limit a → 0, so that Equations (19) and (20) reduces to the well-known
equation of the classical theory.

From equations (19) and (20) and use of the equation (21), we have

ᾱ0(s)

{
c44

[
d2w̄(s, y)

dy2
− s2w̄(s, y)

]
+ e15

[
d2φ̄(s, y)

dy2
− s2φ̄(s, y)

]}
= −ρω2w̄, (24)

e15

[
d2w̄(s, y)

dy2
− s2w̄(s, y)

]
− ε11

[
d2φ̄(s, y)

dy2
− s2φ̄(s, y)

]
= 0. (25)

The solution of equations (24) and (25) does not present difficulties, it can be written as
follows, respectively. (y� 0):

w(x, y) = 2

π

∫ ∞

0
[A1(s) e−γy + A2(s) eγy] cos(xs) ds,

φ(x, y) = e15

ε11
w(x, y) + 2

π

∫ ∞

0
[B1(s) e−sy + B2(s) esy] cos(xs) ds, (26)

where γ 2 = s2 − ω2/c2ᾱ0(s), c2 = µ/ρ, µ = c44 + e2
15
ε11

. A1(s), A2(s), B1(s) and B2(s) are to
be determined from the boundary conditions.

Because of the symmetry, it suffices to consider the problem in the first quadrant only.
According to the boundary conditions (10–12), it can be obtained

2

π

∫ ∞

0
ᾱ0(s)γ

1 − exp(−2γ h)

1 + exp(−2γ h)
A(s) cos(sx) ds = 1

µ

(
τ0 + e15D0

ε11

)
, |x|� l, (27)

2

π

∫ ∞

0
A(s) cos(sx) ds = 0, |x| > l, (28)

and

2

π

∫ ∞

0
ᾱ0(s)s

1 − exp(−2sh)

1 + exp(−2sh)
B(s) cos(sx) ds = −D0

ε11
, |x|� l, (29)

2

π

∫ ∞

0
B(s) cos(sx) ds = 0, |x| > l. (30)
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The relationships between the functions A(s), B(s), A1(s), A2(s), B1(s) and B2(s) are ob-
tained by applying a Fourier sine transform [30] to equation (11):

A(s) = [1 + e−2γ h]A1(s), A2(s) = e−2γ h A1(s),

B(s) = [1 + e−2sh]B1(s), B2(s) = e−2sh B1(s).

To determine the unknown functions A(s) and B(s), the above two pairs of dual-integral equa-
tions (27)–(30) must be solved. It can seen that the integrands of the dual integral equations
both in [15] and in the present paper have the same behavior for s → ∞, that is, they do not
tend to a constant for s → ∞. The dual integral equations (27)–(30) cannot be transformed
into a Fredholm integral equation of the second kind, because the kernel of the Fredholm
integral equation of the second kind in [15] is divergent. It can be rewritten as following:

h(x) +
∫ 1

0
h(u)L(x, u) du = g(x), (31)

where g(x) is known function, h(x) is unknown function.
The kernel of the above Fredholm integral equation of the second kind can be written as

follows:

L(x, u) = (xu)1/2
∫ ∞

0
tk(εt)J0(xt)J0(ut) dt, 0 � x, u� 1, (32)

where Jn(x) is the Bessel function of order n.

k(εt) = −+(εt), lim
t→∞ k(εt) �= 0 for ε = a

2βl
�= 0, (33)

where l is the length of the crack,

J0(x) ≈
√

2

πx
cos

(
x − 1

4
π

)
for x � 0. (34)

The limit of tk(εt)J0(xt)J0(ut) is not equal to zero for t → ∞. So the kernel L(x, u) in [15]
is divergent. Of course, the dual integral equations (27)–(30) can be considered to be a single
integral equation of the first kind with a discontinuous kernel [13]. It is well known in the liter-
ature that integral equations of the first kind are generally ill-posed in the sense of Hadamard,
for example, small perturbations of the data can yield arbitrarily large changes in the solution.
This makes the numerical solution of such equations quite difficult. In this paper, the Schmidt
method [24] was used to overcome the difficulty. Here the Schmidt method can be used to
solve the dual integral equations (27)–(30). The displacement w and the electric potential φ
are represented by the following series:

w(x, 0) =
∞∑
n=1

anP
(1/2,1/2)
2n−2

(
x

l

)(
1 − x2

l2

)1/2

, for − l� x� l, y = 0, (35)

w(x, 0) = 0, for |x| > l, y = 0, (36)

φ(x, 0) =
∞∑
n=1

bnP
(1/2,1/2)
2n−2

(
x

l

)(
1 − x2

l2

)1/2

, for − l� x� l, y = 0, (37)
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φ(x, 0) = 0, for |x| > l, y = 0, (38)

where an and bn are unknown coefficients to be determined and P
(1/2,1/2)
n (x) is a Jacobi

polynomial [30]. The Fourier transform of equations (35)–(38) are [31]

A(s) = w̄(s, 0) =
∞∑
n=1

anGn

1

s
J2n−1(sl), (39)

B(s) = φ̄(s, 0) − e15

ε11
w̄(s, 0) =

∞∑
n=1

(
bn − e15

ε11
an

)
Gn

1

s
J2n−1(sl), (40)

Gn = 2
√
π(−1)n−1/(2n− 1/2)

(2n− 2)! , (41)

where /(x) and Jn(x) are the Gamma and Bessel functions, respectively.
Substituting equations (39) and (40) into equations (27)–(30), respectively, equations (28)

and (30) can be automatically satisfied, respectively. Then equations (27) and (29) reduce to
the form, respectively.

∞∑
n=1

anGn

∫ ∞

0
ᾱ0(s)

γ [1 − e−2γ h]
s[1 + e−2γ h] J2n−1(sl) cos(sx) ds = π

2µ
τ0(1 + λ), (42)

∞∑
n=1

(
bn − e15

ε11
an

)
Gn

∫ ∞

0
ᾱ0(s)

1 − e−2sh

1 + e−2sh
J2n−1(sl) cos(sx) ds = −πD0

2ε11
, (43)

where λ = e15D0/ε11τ0.
The semi-infinite integral in equation (42) can be evaluated numerically by Filon’s

method [32], except for singularities in the integrands of the integrals in equation (42). These
singularities are poles that occur in the complex plane at the zero of the function
1 + exp(−2γ h), such as 2γ h = iπ, 3iπ, 5iπ, . . .. All poles depend on the material, the
incident wave frequency ω and the lattice parameter. It may be noted that the integral of
equation (42) is not convergent at these poles. However, there is no pole for ω/c<π/2h. So
the integral of equation (42) is convergent at these poles for ω/c < π/2h. In this paper, it is
only discussed the case of ω/c < π/2h. From the reference [28], this case is consistent with
the statement that the only shear waves with ω/c < π/2h can be propagated in an elastic
strip of width 2h. This fact is in agreement with the well-known results of frequencies less
than a parameter depending on the width of the strip can propagate. For ω/c > π/2h, it
should be further investigated. For large s, the integrands of equations (42) and (43) almost
decrease exponentially and can be evaluated numerically by Filon’s method [32]. Equations
(42) and (43) can now be solved for the coefficients an and bn by the Schmidt’s method [24]
for ω/c < π/2h. For brevity, the equation (42) can be rewritten as (the equation (43) can be
solved using a similar method as following):

∞∑
n=1

anEn(x) = U(x), −l < x < l, (44)
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where En(x) and U(x) are known functions and the coefficients an are to be determined. A
set of functions Pn(x) which satisfy the orthogonality condition∫ l

−l
Pm(x)Pn(x) dx = Nnδmn, Nn =

∫ l

−l
P 2
n (x) dx (45)

can be constructed from the function, En(x), such that

Pn(x) =
n∑
i=1

Min

Mnn
Ei(x), (46)

where Mij is the cofactor of the element dij of Dn, which is defined as

Dn =




d11, d12, d13, . . . , d1n

d21, d22, d23, . . . , d2n

d31, d32, d33, . . . , d3n

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

dn1, dn2, dn3, . . . , dnn



, dij =

∫ l

−l
Ei(x)Ej (x) dx. (47)

Using equations (44)–(47), we obtain

an =
∞∑
j=n

qj
Mnj

Mjj
with qj = 1

Nj

∫ l

−l
U(x)Pj (x) dx. (48)

4. Numerical Calculations and Discussion

From the works [4, 9, 20, 21, 33, 34], it can be seen that the Schmidt method is performed
satisfactorily if the first 10 terms of the infinite series [44] are retained. The behavior of the
maximum dynamic stress stays steady with the increasing number in terms in [44]. Although
we can determine the entire dynamic the stress field and the electric displacement from the
coefficients an and bn, it is important in fracture mechanics to determine the dynamic stress
τyz and the electric displacement Dy in the vicinity of the crack tip. τyz and Dy along the crack
line can be expressed, respectively, as

τyz(x, 0) = − 2

π

∞∑
n=1

[
µanGn

∫ ∞

0
ᾱ0(s)

γ [1 − e−2γ h]
s[1 + e−2γ h] J2n−1(sl) cos(xs) ds

+ e15

(
bn − e15

ε11
an

)
Gn

∫ ∞

0
ᾱ0(s)

1 − e−2sh

1 + e−2sh
J2n−1(sl) cos(xs) ds

]
, (49)

Dy(x, 0) = − 2

π

∞∑
n=1

(e15an − ε11bn)Gn

∫ ∞

0
ᾱ0(s)

1 − e−2sh

1 + e−2sh
J2n−1(sl) cos(xs) ds. (50)

For a = 0 at x = l, we have the classical stress and the electric displacement singularities.
However, so long as a �= 0, the semi-infinite integration and the series in the equations
(49) and (50) are convergent for any variable x. The equations (49) and (50) give a finite
stress and a finite electric displacement all along y = 0, so there are no stress and electric
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displacement singularities at the crack tip. At −l < x < l, τyz/τ0 is very close to unity, and
for x > l, τyz/τ0 and Dy/D0 possess finite values diminishing from a finite value at x= l

to zero at x=∞. Since a/2βl > 1/100 represents a crack length of less than 100 atomic
distances as stated in [15], and such submicroscopic sizes other serious questions arise re-
garding the interatomic arrangements and force laws, we do not pursue solutions valid at such
small crack sizes. The semi-infinite numerical integrals, which occur, are evaluated easily
by Filon’s method and Simpson methods because the rapid diminution of the integrands.
From the equations (42), (43), (49) and (50), it can be found that the dimensionless stress
is independent of the material parameters. However, the electric field is found to be independ-
ent of the circular frequency of the incident wave and the wave velocity. It depends on the
material constants of the piezoelectric materials. The piezoelectric layer is assumed to be the
commercially available piezoelectric PZT-4 or PZT-5H. The material constants of PZT-4 are
c44 = 2.56 × 1010 N/m2, e15 = 12.7 C/m2, ε11 = 64.6 × 10−10 C/Vm2, ρ = 7500 kg/m3,
respectively. The material constants of PZT-5H are c44 = 2.3 × 1010 N/m2, e15 = 17.0 C/m2,
ε11 = 150.4 × 10−10 C/Vm2, ρ = 7500 kg/m3, respectively.

The results are plotted in Figures 2–9. The following observations are very significant:

(i) the traditional concept of linear elastic fracture mechanics and the non-local theory are
extended to include the piezoelectric effects.

(ii) the maximum stress and the electric displacement do not occur at the crack tip, but slightly
away from it. This phenomenon has been thoroughly substantiated by Eringen [35]. The

Figure 2. The stress along crack line versus x/l for ωl/c = 0.5, a/2β = 0.001, λ = 0.4, h = 0.5, l = 1.0.

Figure 3. The electric displacement along crack line versus x/l for ωl/c = 0.5, a/2β = 0.001, λ = 0.4, h = 0.5,
l = 1.0 (PZT-4).
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Figure 4. The stress at crack tip versus a/2β for ωl/c = 0.3, h = 1.0, λ = 0.4.

Figure 5. The electric displacement at crack tip versus a/2β for h = 1.0, ωl/c = 0.3, λ = 0.4 (PZT-4).

Figure 6. The stress at crack tip versus ω for h = 1.0, a/2β = 0.001, λ = 0.4.

maximum stress and the electric displacement are finite. The distance between the crack
tip and the maximum stress point is very small, and it depends on the crack length and the
lattice parameter. Contrary to the classical piezoelectric theory solution, it is found that
no stress and electric displacement singularities are present at the crack tip, and also the
present results converge to the classical ones when far away from the crack tip as shown
in Figures 2 and 3. This enables us to employ the maximum stress hypothesis to deal with
fracture problems in a natural way.
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Figure 7. The stress at crack tip versus h for ωl/c = 0.1, a/2β = 0.001, λ = 0.4, l = 1.0.

Figure 8. The electric displacement at crack tip versus h for ωl/c = 0.1, a/2β = 0.001, λ = 0.4, l = 1.0 (PZT-4).

Figure 9. The stress at crack tip versus λ for ωl/c = 0.3, a/2β = 0.001, h = 1.0, l = 1.0.

(iii) from equations (49) and (50), it can be obtained that the dynamic stress and the electric
displacement at the crack tip become infinite as the lattice parameter a → 0. This is the
classical continuum limit of square root singularity. For the local theory, it can only obtain
the stress and electric displacement intensity factors for the variation with ωl/c.

(iv) from the results as shown in Figures 4 and 5, it can be found that the value of the stress and
the electric displacement concentrations (at the crack tip) increase with increasing of the
crack length. Noting this fact, experiments indicate that the piezoelectric materials with
smaller cracks are more resistant to fracture than those with larger cracks (see [15]). In
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addition, the value of the stress and the electric displacement concentrations (at the crack
tip) decrease with increasing of the lattice parameter.

(v) from the equations (42), (43), (49) and (50), it can be found that the dimensionless stress
is independent of the material parameters. It just depends on the length of the crack,
the lattice parameter, the thickness of the strip, the circular frequency of the incident
wave, the electric loading and the wave velocity. However, the electric field is found to
be independent of the circular frequency of the incident wave and the wave velocity. It
just depends on the length of the crack, the thickness of the strip, the electric loading, the
material constants of the piezoelectric materials and the lattice parameter.

(vi) the dynamic stress at the crack tip tends to increase with increasing of the frequency for
ω/c < 0.9 as shown in Figure 6 (In this paper, it is only discussed the case of ω/c <
π/2h.).

(vii) from the results as shown in Figures 7 and 8, it can be found that the dynamic stress and
the dynamic electric displacement at the crack tip tend to decrease with increasing of the
thickness of the strip. For h� 2.5, the decreasing tendency becomes slowly, that is, the
influence of the thickness of the piezoelectric strip to the results becomes smaller.

(viii) from the results as shown in Figure 9, it can be obtained that the dynamic stress at the
crack tip tends to increase almost linearly with increasing of the electric loading.
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