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1. Introduction

In the theoretical studies of crack problems in piezoelectric materials, several different electric
boundary conditions at the crack surfaces have been proposed by numerous researchers. For
example, for the sake of analytical simplification, the assumption that the crack surfaces are
impermeable to electric fields was adopted by many researchers [1–3]. In this model, the
assumption of the impermeable cracks refers to the fact that the crack surfaces are free of
surface charge and thus the electric displacement vanishes inside the crack. In fact, cracks in
piezoelectric materials consist of vacuum, air or some other gas. This requires that the electric
fields can propagate through the crack, so the electric displacement component perpendicular
to the crack surfaces should be continuous across the crack surfaces [4]. It is interesting to
note that very different results were obtained by changing the boundary conditions [5]. In the
present paper, the interaction between two collinear symmetrical permeable cracks subject
to anti-plane shear in piezoelectric layer bonded to two half spaces is investigated by use of
the Schmidt method [6]. The cracks are situated symmetrically and oriented in the direction
vertically to the interfaces of the layer. This is quite different from that in [3].

2. Formulation of the Problem

Consider a piezoelectric layer that is sandwiched between two elastic half planes with an
elastic stiffness constant cE

44. Quantities in the half spaces will subsequently be designated by
superscript E. The piezoelectric material layer of thickness 2h contains two cracks of length
1 − b that are vertical to the interfaces, as shown in Figure 1. 2b is the distance between the
cracks. (The solution of two collinear Griffith cracks of length a − b can easily be obtained
by a simple change in the numerical values of the present paper. a > b > 0.) As discussed in
[5], permeable condition will be enforced in the present study. So the boundary conditions of
the present problem are

w(1) = w(2), τ (1)yz = τ (2)yz , φ(1) = φ(2), D(1)
y = D(2)

y ,

y = 0, |x|� b, 1 � |x|� h (1)
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Figure 1. Cracks in a piezoelectric layer body under anti-plane shear.

τ (1)yz = τ (2)yz = −τ0, φ(1) = φ(2), D(1)
y = D(2)

y , y = 0, b� |x|� 1 (2)

τ (1,2)xz (±h, y) = τE
xz(±h, y), w(1,2)(±h, y) = wE(±h, y),

D(1,2)
x (±h, y) = 0 (3)

w(1) = w(2) = wE = 0 for (x2 + y2)1/2 → ∞ (4)

where τ (1,2)zk and D(1,2)
k (k = x, y) are the anti-plane shear stress and in-plane electric displace-

ment, respectively. w(1,2) and φ(1,2) are the mechanical displacement and electric potential. τE
xz,

τE
yz and wE are the shear stress, and the displacement in the half elastic spaces, respectively.

Note that all quantities with superscript k (k = 1, 2) refer to the upper plane (y � 0) and the
lower plane (y � 0) as in Figure 1, respectively.

The constitutive equation can be written as

τ
(1,2)
zk = c44w

(1,2)
,k + e15φ

(1,2)
,k , D

(1,2)
k = e15w

(1,2)
,k − ε11φ

(1,2)
,k ,

τE
kz = cE

44w
E
,k (k = x, y) (5)

where c44, e15 and ε11 are the shear modulus, piezoelectric coefficient and dielectric parameter,
respectively. The anti-plane governing equations are

c44∇2w(1,2) + e15∇2φ(1,2) = 0, e15∇2w(1,2) − ε11∇2φ(1,2) = 0,

∇2wE = 0 (6)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplace operator. Because of the as-
sumed symmetry in geometry and loading, it is sufficient to consider the problem for 0 � x <

∞, −∞ < y < ∞ only. The solutions of (6) can be assumed as

w(1)(x, y) = 2

π

∫ ∞

0
A1(s) e−sy cos(sx) ds

+ 2

π

∫ ∞

0
H(s) cosh(sx) sin(sy) ds (y � 0) (7)
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w(2)(x, y) = 2

π

∫ ∞

0
A2(s) esy cos(sx) ds

+ 2

π

∫ ∞

0
H(s) cosh(sx) sin(sy) ds (y � 0) (8)

wE(x, y) = 2

π

∫ ∞

0
C(s) e−sx sin(sy) ds (9)

where A1(s), A2(s), H(s) and C(s) are unknown functions. Inserting (7) and (8) into (6), it
can be assumed

φ(1)(x, y) − e15

ε11
w(1)(x, y) = 2

π

∫ ∞

0
B1(s) e−sy cos(sx) ds

+ 2

π

∫ ∞

0
F(s) cosh(sx) sin(sy) ds (10)

φ(2)(x, y) − e15

ε11
w(2)(x, y) = 2

π

∫ ∞

0
B2(s) esy cos(sx) ds

+ 2

π

∫ ∞

0
F(s) cosh(sx) sin(sy) ds (11)

where B1(s), B2(s) and F(s) are unknown functions.
So from (5), the following can be given:

τ (1)yz (x, y) = − 2

π

∫ ∞

0
s
{[µA1(s) + e15B1(s)] e−sy cos(sx)

− [µH(s) + e15F(s)] cos(sy) cosh(sx)
}

ds

D(1)
y (x, y) = 2

π

∫ ∞

0
ε11s[B1(s) e−sy cos(sx)

− F(s) cos(sy) cosh(sx)] ds (y � 0) (12)

τ (2)yz (x, y) = 2

π

∫ ∞

0
s
{[µA2(s) + e15B2(s)] esy cos(sx)

+ [µH(s) + e15F(s)] cos(sy) cosh(sx)
}

ds

D(2)
y (x, y) = − 2

π

∫ ∞

0
ε11s[B2(s) esy cos(sx)

+ F(s) cos(sy) cosh(sx)] ds (y � 0) (13)

τE
xz(x, y) = − 2

π

∫ ∞

0
cE

44sC(s) e−sx sin(sy) ds, µ = c44 + e2
15

ε11
(14)



470 Zhen-Gong Zhou et al.

To solve the problem, the gap functions of the crack surface displacements and the electric
potentials are defined as follows:

f (x) = w(1)(x, 0+) − w(2)(x, 0−), fφ(x) = φ(1)(x, 0−) − φ(2)(x, 0−) (15)

Substituting (7)–(11) into (15), and applying the Fourier transform and the boundary condi-
tions, the following can be obtained:

f̄ (s) = A1(s) − A2(s), f̄φ(s) = e15

ε11
f̄ (s) + B1(s) − B2(s) = 0 (16)

µ[A1(s) + A2(s)] + e15[B1(s) + B2(s)] = 0, B1(s) + B2(s) = 0 (17)

By solving four equations (16) and (17) with four unknown functions A1(s), A2(s), B1(s),
B2(s) and applying the boundary conditions (2), the following can be obtained:∫ ∞

0
s
{
c44f̄ (s) cos(sx) − [µH(s) + e15F(s)] cosh(sx)

}
ds = πτ0,

b� |x|� 1 (18)∫ ∞

0
f̄ (s) cos(sx) ds = 0, |x| > 1 and |x| < b (19)

The relationships between the functions A1(s), A2(s), B1(s), B2(s), F(s), H(s) and C(s)

are obtained by applying a Fourier sine transform to equation (3):

H(t)[sinh(th) + µ1 cosh(th)] = 2

π

∫ ∞

0

sin(sh)s − tµ1 cos(sh)

s2 + t2
A1(s) ds (20)

C(t) e−th[sinh(th) + µ1 cosh(th)]
= 2

π

∫ ∞

0

cosh(th) sin(sh)s + sinh(th) cos(sh)t

s2 + t2
A1(s) ds (21)

F(t) sinh(th) = 2

π

∫ ∞

0

s

s2 + t2
B1(s) sin(sh) ds, µ1 = cE

44

µ
(22)

3. Solution of the Triple Integral Equation

To solve the problem, the gap functions of the crack surface displacement are represented by
the following series:

f (x) =
∞∑
n=0

anP
(1/2,1/2)
n

(
x − (1 + b)/2

(1 − b)/2

)(
1 − (x − (1 + b)/2)2

((1 − b)/2)2

)1/2

for b� |x|� 1, y = 0 (23)
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where an are the unknown coefficients to be determined and P
(1/2,1/2)
n (x) is a Jacobi polyno-

mial [7]. The Fourier transformation of equation (23) is

f̄ (s) =
∞∑
n=0

anQnGn(s)
1

s
Jn+1

(
s

1 − b

2

)
(24)

Qn = 2
√
π
%(n + 1 + 1/2)

n! ,

Gn(s) =



(−1)n/2 cos

(
s

1 + b

2

)
, n = 0, 2, 4, 6, . . .

(−1)(n+1)/2 sin

(
s

1 + b

2

)
, n = 1, 3, 5, 7, . . .

(25)

where %(x) and Jn(x) are the Gamma and Bessel functions, respectively.
Substituting (24) into (18) and (19), respectively, equations (19) can be automatically sat-

isfied. Then the remaining equation (18) reduces to the form after integration with respect to
x in [b, x].

c44

∞∑
n=0

anQn

∫ ∞

0
s−1Gn(s)Jn+1

(
s

1 − b

2

)
[sin(sx) − sin(sb)] ds = πτ0(x − b)

+µ

π

∞∑
n=0

anQn

∫ ∞

0

sinh(sx) − sinh(sb)

sinh(sh) + µ1 cosh(sh)
ds

∫ ∞

0
Gn(η)Jn+1

(
η

1 − b

2

)
η sin(ηh) − sµ1 cos(ηh)

(η2 + s2)η
dη

− e2
15

πε11

∞∑
n=0

anQn

∫ ∞

0

sinh(sx) − sinh(sb)

sinh(sh)
ds

∫ ∞

0
Gn(η)Jn+1

(
η

1 − b

2

)
sin(ηh)

η2 + s2
dη (26)

For a large s, the integrands of the double semi-infinite integral in equation (26) almost all
have exponential forms, so the double semi-infinite integral can be evaluated numerically.
Equation (26) can now be solved for the coefficients an by the Schmidt method [6]. It can be
seen in [3].

4. Intensity Factors

Although we can determine the entire stress field and the electric displacement from coef-
ficients an, it is of importance in fracture mechanics to determine stress τyz and the electric
displacement Dy in the vicinity of the crack’s tips. τyz and Dy along the crack line can be
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expressed respectively as

τyz(x, 0) = τ (1)yz (x, 0)

= − 1

π

∞∑
n=0

anQn

[ ∫ ∞

0
c44Gn(s)Jn+1

(
s

1 − b

2

)
cos(xs) ds

− µ

π

∫ ∞

0

cosh(sx)s

sinh(sh) + µ1 cosh(sh)
ds

∫ ∞

0
Gn(η)Jn+1

(
η

1 − b

2

)

× η sin(ηh) − sµ1 cos(ηh)

(η2 + s2)η
dη

+ e2
15

πε11

∫ ∞

0

cosh(sx)s

sinh(sh)
ds

∫ ∞

0
Gn(η)Jn+1

(
η

1 − b

2

)
sin(ηh)

(η2 + s2)
dη

]
(27)

Dy(x, 0) = D(1)
y (x, 0)

= −e15

π

∞∑
n=0

anQn

[∫ ∞

0
Gn(s)Jn+1

(
s

1 − b

2

)
cos(xs) ds

− 1

π

∫ ∞

0

cosh(sx)s

sinh(sh)
ds

∫ ∞

0
Gn(η)Jn+1

(
η

1 − b

2

)
sin(ηh)

(η2 + s2)
dη

]
(28)

Observing the expression in (27) and (28), the singular portion of the stress field and the
singular portion of electric displacement can be expressed respectively as following:

τ = −c44

2π

∞∑
n=0

anQnHn(b, x), D = −e15

2π

∞∑
n=0

anQnHn(b, x) (29)

where

Hn(b, x) =
{
(−)n+1F1(b, x, n), n = 0, 1, 2, 3, 4, 5, . . . (0 < x < b)

−F1(b, x, n), n = 0, 1, 2, 3, 4, 5, . . . (1 < x)

F1(b, x, n)

= 2(1 − b)n+1√
(1 + b − 2x)2 − (1 − b)2[|1 + b − 2x| + √

(1 + b − 2x)2 − (1 − b)2]n+1

At the left tip of the right crack, the stress intensity factor KL can be expressed as

KL = lim
x→b−

√
2π(b − x) · τ = c44

√
1

2π(1 − b)

∞∑
n=0

(−1)nanQn (30)

At the right tip of the right crack, the stress intensity factor KR can be expressed as

KR = lim
x→1+

√
2π(x − 1) · τ = c44

√
1

2π(1 − b)

∞∑
n=0

anQn (31)

At the left tip of the right crack, the electric displacement intensity factor KD
L can be expressed

as

KD
L = lim

x→b−

√
2π(b − x) · D = e15

√
1

2π(1 − b)

∞∑
n=0

(−1)nanQn = e15

c44
KL (32)
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At the right tip of the right crack, the electric displacement intensity factor KD
R can be ex-

pressed as

KD
R = lim

x→1+

√
2π(x − 1) · D = e15

√
1

2π(1 − b)

∞∑
n=0

anQn = e15

c44
KR (33)

5. Numerical Calculations and Discussion

From the work [3], it can be seen that the Schmidt method is performed satisfactorily if the
first 10 terms of the infinite series to equation (26) are obtained. The piezoelectric layer is
assumed to be the commercially available piezoelectric PZT-4 or PZT-5H, and the half planes
are either aluminum or epoxy. The material constants of PZT-4, PZT-5H, aluminum and epoxy
can be found in [3]. The results of the present paper are shown in Figures 2–6, respectively.
From the results, the following observations are very significant:

(i) The stress intensity factors and the electric displacement intensity factors not only depend
on the crack length, the width of the piezoelectric layer, but also depend on the properties
of the materials.

(ii) The effects of the two collinear cracks decrease when the distance between the two col-
linear cracks increases, that is, the stress intensity factors and the electric displacement
intensity factors decrease with the length of the crack decrease.

Figure 2. The stress intensity factor versus b for h = 1.5 (aluminum/PZT-5H/aluminum).

Figure 3. The stress intensity factor versus h for b = 0.1 (aluminum/PZT-5H/aluminum).
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Figure 4. The electric displacement intensity factor versus h for b = 0.1 (aluminum/PZT-5H/aluminum).

Figure 5. The electric displacement intensity factor versus b for h = 1.5 (aluminum/PZT-4/aluminum).

Figure 6. The stress intensity factor versus h for b = 0.1 (epoxy/PZT-4/epoxy).

(iii) The stress and the electric displacement intensity factors decrease or increase when the
width of the piezoelectric layer increases for the different combination cases of materials,
as shown in Figures 3 and 4. So the stress field can reach the minimum value by changing
the combination cases of materials.

(iv) The solutions of this paper are approximate to ones of two collinear Griffith cracks in
infinite piezoelectric materials for width h� 4.0, that is, the influence of the width of the
piezoelectric layer to the results is small for the case h� 4.0, as shown in Figures 3, 4
and 6.

(v) From the results in [3] and the present paper, it can be found that the electric displacement
intensity factors for the permeable crack surface conditions are much smaller than the
results for the impermeable crack surface conditions. As shown in Figures 4 and 5, the
electric displacement intensity factors are very small.
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(vi) The stress intensity factors and the electric displacement intensity factors at the inner
crack tips are larger than ones at the outer crack tips. However, the stress and electric
displacement intensity factors at the inner crack tips are almost equal to ones at the outer
crack tips for b > 0.6.
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