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Abstract:The behavior of two parallel symmetric cracks in piezoelectric materials under

anti_plane shear loading was studied by the Schmidt method for the permeable crack face
conditions .By using the Fourier transform , the problem can be solved with two pairs of

dual integral equations in which the unknown variable is the jump of the diplacement across

the crack surfaces .These equations were solved using the Schmidt method .The results

show that the stress and the electric displacement intensity factors of cracks depend on the

geometry of the crack .Contrary to the impermeable crack surface condition solution , it is

found that the electric displacement intensity factors for the permeable crack surface

conditions are much smaller than the results for the impermeable crack surface conditions .
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Introduction

It is well_known that piezoelectric materials produce an electric field when deformed and

undergo deformation when subjected to an electric field.The coupling nature of piezoelectric

materials has attracted wide applications in electric_mechanical and electric devices , such as

electric_mechanical actuators , sensors and structures.When subjected to mechanical and electrical

loads in service , these piezoelectric materials can fail prematurely due to defects , e.g.cracks ,
holes , etc.arising during their manufacture process.Therefore , it is of great importance to study
the electro_elastic interaction and fracture behavior of piezoelectric materials , especially when

multiple cracks are involved.
In the theoretical studies of crack problems , several different electric boundary conditions at

the crack surfaces have been proposed by numerous researchers.For example , for the sake of
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analytical simplification , the assumption that the crack surfaces are impermeable to electric fields

was adopted by Deeg[ 1] , Pak[ 2 ,3] , Sosa and Pak[ 4] , Sosa[ 5 , 6] , Suo , Kuo , Barnett and

Willis[ 7] , Park and Sun[ 8] ;Zhang and Tong[ 9] ;Gao , Zhang and Tong[ 10] ;Wang[ 11] ;Narita
and Shindo[ 12 , 13] ;Zhou , Wang and Cao[ 14] and Yu and Chen[ 15] .In these models , the

assumption of the impermeable cracks refers to the fact that the crack surfaces are free of surface

charge and thus the electric displacement vanishes inside the crack.In fact , cracks in piezoelectric

materials consist of vacuum , air or some other gas.This requires that the electric fields can

propagate through the crack , so the electirc displacement component perpendicular to the crack

surfaces should be continuous across the crack surfaces.However , due to much simpler treatment

from a mathematical point of view , the impermeable crack and the conducting crack are still

employed extensively in the study of the crack problems of piezoelectric materials.For the

permeable crack model , Zhang and Hack[ 16] analyzed crack problems in piezoelectric materials.
In addition , usually the conducting cracks which are filled with conducting gas or liquid are also

applied to be a kind of simplified cracks models in piezoelectric materials by many researchers ,
such as McMeeking[ 17] and Suo[ 18] .Recently , Dunn[ 19] , Zhang and Tong[ 20] and Sosa and

Khutoryansky[ 21] avoided the common assumption of electric impermeability and utilized more

accurate electric boundary conditions at the rim of an elliptical flaw to deal with anti_plane
problems in piezoelectricity.They analyzed the effects of electric boundary conditions at the crack
surfaces on the fracture mechanics of piezoelectric materials.It is interesting to note that very

different results were obtained by changing the boundary conditions.Most recently , Soh , Fang
and Lee[ 22] have investigated the behavior of a bi_piezoelectric ceramic layer with an interfacial

crack by using the dislocation density function and the singular integral equation method for two

different crack surface boundary conditions , respectively , i.e.permeable and impermeable.To
our knowledge , the electro_elastic behavior of two parallel symmetric permeable cracks under

anti_plane shear loading in piezoelectric materials has not been studied.Accordingly , there is a

need to investigate the electro_elastic fracture problem of multi_ cracks in piezoelectric materials.
In the present paper , the interaction between two parallel symmetrical cracks subjected to

anti_plane shear loading in piezoelectric materials is investigated using the Schmidt method[ 23] .It
is a simple and convenient method for solving this problem.Fourier transform is applied and a

mixed boundary value problem is reduced to two pairs of dual integral equations.In solving the

dual integral equations , the gaps of the crack surface displacement are expanded in a series of

Jacobi polynomials.This process is quite different from that adopted in previous works

(Refs.[ 1-13] , [ 15-22] ).The form of solution is easy to understand.Numerical examples
are provide to show the effect of the geometry of the cracks upon the stress intensity factor of the

cracks.

1　Formulation of the Problem

It is assumed that there are two parallel symmetric cracks of length 2 l in piezoelectric

materials as shown in Fig.1.h is the distance between the two cracks.The piezoelectric

boundary_value problem for anti_plane shear is considerably simplified if we consider only the out_
of_plane displacement and the in_plane electric fields.As discussed in Soh' s[ 22] work , since no

opening displacement exists for the present anti_plane problem , the crack surfaces can be assumed
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to be in perfect contact.Accordingly , permeable condition will be enforced in the present study ,
i.e., both the electric potential and the normal electric displacement are assumed to be continuous

across the crack surfaces.So the boundary conditions of the present problem are(In this paper ,
we just consider the perturbation field)

w(1)=w(2) , τ(1)yz =τ(2)yz ,  (1) = (2) , D(1)y =D(2)y , y =h　　 |x|> l , 　(1)

w(2)=w(3) , τ(2)yz =τ
(3)
yz ,  

(2) = (3) , D(2)y =D(3)y , y =0　　 |x|> l , 　(2)

τ(1)yz =τ(2)yz =-τ0 ,  (1)= (2) , D(1)y =D(2)y , y =h 　　　　　|x|≤ l , 　(3)

τ(2)yz =τ(3)yz =-τ0 ,  (2)= (3) , D(2)y =D(3)y , y =0　　　　　 |x|≤ l , 　(4)

w(1)=w(2)=w(3) =0　　for (x2 +y 2)1 2 ※∞, (5)

where τzk ,Dk(k = x , y)are the anti_plane shear stress and in_plane electric displacement ,

respectively.w and  are the mechanical displacement and the electric potential.Note that all

quantities with superscript k(k =1 , 2 ,3)refer to the upper half plane 1 , the layer 2 and the

lower half plane 3 as in Fig.1 , respectively.In this paper , we only consider that τ0 is positive.

Fig.1　Two parallel symmetric cracks

in a piezoelectric material

　

The constitutive equations can be written as

τzk = c44w , k +e 15 , k , (6)

Dk = e15w , k -ε11 , k , (7)

c 44 , e15 , ε11 are the shear modulus , piezoelectric

coefficient and dielectric parameter , respectively.The

anti_plane governing equations are[ 22]

c44  2w +e15  2 =0 , (8)

e15  2w -ε11  2 =0 , (9)

where  2 = 2  x2 + 2  y 2 is the two_dimensional
Laplace operator.Because of the assumed symmetry in geometry and loading , it is sufficient to
consider the problem for 0 ≤ x < ∞, 0 ≤ y < ∞only.A Fourier transform is applied to

Eqs.(8)and (9).Assume that the solutions are

w(1)(x , y)= 2
π∫
∞

0
A1(s)e-sy cos(sx)d s

 (1)(x , y)=
e15
ε11

w(1)(x , y)+ 2
π∫
∞

0
B 1(s)e-sy cos(sx)ds

　　(y ≥ h), (10)

w(2)(x , y)= 2
π∫

∞

0
[ A2(s)e-sy +B 2(s)e sy] cos(sx)d s

 (2)(x , y)=
e15
ε11

w(2)(x , y)+ 2
π∫
∞

0
[ C2(s)e-sy +D 2(s)esy ] cos(sx)d s

　　　　　　　　　　　　　　　　　　　　　　　　　　(h ≥ y ≥0),

(11)
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w(3)(x , y)= 2
π∫

∞

0
A3(s)e

sy cos(sx)ds

 (3)(x , y)=
e15
ε11

w(3)(x , y)+ 2
π∫
∞

0
B 3(s)esy cos(sx)d s

　　(y ≤0), (12)

where μ= c44 +e215 ε11 , A1(s), B 1(s), A2(s), B 2(s), C2(s), D 2(s), A3(s)and

B 3(s)are unknown functions , and a superposed bar indicates the Fourier transform throughout

the paper , e.g.

 f(s)=∫
∞

-∞
f(x)e-i sx d x. (13)

So from Eqs.(6)and(7), we have

　　

τ(1)yz (x , y)=-
2
π∫

∞

0
s[ μA1(s)e-sy +

　　　　　e 15B1(s)e
-sy ] cos(sx)d s

D(1)y (x , y)=
2
π∫

∞

0
ε11 sB1(s)e-sy cos(sx)ds

　　(y ≥h), (14)

　　

τ(2)yz (x , y)=-
2
π∫

∞

0
μs[ A2(s)e-sy -B2(s)e sy] +

　 　　　　e15 s[ C2(s)e-sy -D2(s)esy] cos(sx)ds

D(2)y (x , y)=
2
π∫

∞

0
ε11 s[ C2(s)e-sy -D 2(s)esy] cos(sx)ds

(h ≥ y ≥0), (15)

　　
τ(3)yz (x , y)=

2
π∫

∞

0
s[ μA3(s)e

sy +e15B3(s)e
sy] cos(sx)ds

D(3)y (x , y)=-
2
π∫

∞

0
ε11 sB 3(s)e sy cos(sx)ds

　　(y ≤0). (16)

For solving the problem , the gap functions of the crack surface displacements and the electric

potentials are defined as follows:

f1(x)=w(1)(x , h+)-w(2)(x , h-), (17)

f 1(x)= 
(1)(x , h+)- (2)(x , h-), (18)

f2(x)=w(2)(x , 0+)-w(3)(x ,0-), (19)

f 2(x)= 
(2)(x ,0+)- (3)(x ,0-). (20)

Substituting Eqs.(10)-(12)into Eqs.(17)-(20), and applying the Fourier transform and the

boundary conditions , it can be obtained

　　 f1(s)=[ A1(s)-A2(s)] e-sh -B 2(s)esh , (21)

　　 f 1(s)=
e15
ε11
 f1(s)+[ B 1(s)-C2(s)] e-sh -D2(s)e sh =0 , (22)

　　 f2(s)=A2(s)+B 2(s)-A3(s), (23)

　　 f 2(s)=
e15
ε11
 f2(s)+C2(s)+D2(s)-B 3(s)=0. (24)
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Substituting Eqs.(14)-(16)into Eqs.(1)-(4), it can be obtained

　　μA1(s)e-sh +e15 B1(s)e-sh =μ[ A2(s)e-sh -B2(s)e sh ] +

e15[ C2(s)e
-sh -D 2(s)e

sh ] , (25)

[ B 1(s)-C2(s)] e-2sh +D 2(s)=0 , (26)

μ[ A2(s)-B 2(s)] +e 15[ C2(s)-D2(s)] =-μA3(s)-e15B 3(s), (27)

C2(s)-D 2(s)+B3(s)=0. (28)

By solving eight Eqs.(21)-(28)with eight unknown functions A1(s), B 1(s), A2(s),

B 2(s), C2(s), D2(s), A3(s), B3(s)and applying the boundary conditions (3)-(4), we

can obtain

∫
∞

0
sc44[ f 1(s)+e-sh f 2(s)] cos(sx)ds = πτ0 , 　　|x|≤ l , (29)

∫
∞

0
sc44[ f 2(s)+e-sh f 1(s)] cos(sx)ds = πτ0 , 　　|x|≤ l , (30)

∫
∞

0
 f 1(s)cos(sx)ds =0 , 　　|x|> l , (31)

∫
∞

0
 f 2(s)cos(sx)ds =0 , 　　|x|> l. (32)

From Eqs.(29)-(32), it can be obtained

 f1(s)= f 2(s) f1(x)= f2(x),

τ(1)yz (x , h)=τ
(2)
yz (x , h)=τ

(2)
yz (x ,0)=τ

(3)
yz (x ,0).

(33)

So from Eqs.(14)-(16), it can be obtained D(1)y (x , h)=D(2)y (x , h)=D(2)y (x ,0)=

D(3)y (x ,0).To determine the unknown functions f 1(s)and  f 2(s), the dual_integral equations

(29)-(32)must be solved.

2　Solution of the Dual Integral Equation

The Schmidt method[ 23] is used to solve the dual integral equations (29)-(32).The gap

functions of the crack surface displacement are represented by the following series:

f1(x)= f2(x)=∑
∞

n=1

anP
(1 2 , 1 2)
2n-2

x
l

1-x2

l2

1
2
　　for -l ≤ x ≤ l , y =0 , (34)

where an is unknown coefficients to be determined and P(1 2 ,1 2)n (x)is a Jacobi polynomial[ 24] .

The Fourier transform of Eq.(34)are[ 25]

 f 1(s)=∑
∞

n=1

anGn
1
s
J2n-1(sl), Gn =2 π(-1)n-1 Γ(2n -1 2)

(2n -2)!
, (35)

whereΓ(x)and Jn(x)are the Gamma and Bessel functions , respectively.

Substituting Eq.(35)into Eqs.(29)-(32), Eqs.(31)-(32)has been automatically

satisfied , respectively.Then the Eq.(29)reduces to the form after integration with respect to x

for -l < x < l ,
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∑
∞

n=1

anGn∫
∞

0

c44
s
[ 1 +e-sh] J2n-1(sl)sin(sx)d s =πτ0 x. (36)

From the relationship[ 25]

∫
∞

0

1
s
Jn(sa)sin(bs)ds =

sin[ narcsin(b a)]
n

, 　　a >b ,

an sin(nπ 2)

n[ b + b2 -a2 ] n
, 　　b >a .

(37)

The semi_infinite integral in Eq.(36)can be modified as

∫
∞

0

1
s
[ 1+e-sh ] J2n-1(sl)sin(sx)ds =

　　　　 1
2n -1

sin (2n -1)arcsin x

l
+∫

∞

0

1
s
e-sh J2n-1(sl)sin(sx)ds. (38)

For a large s , the integrands of the semi_infinite integral in Eq.(38)are almost all e-sh .Thus
they can be evaluated directly by Filon' s method[ 26] .Eq.(36)can now be solved for the

coefficients an by the Schmidt method[ 23] .For brevity , the Eq.(36)can be rewritten as

∑
∞

n=1

anEn(x)=U(x), 　　-l <x < l , (39)

where En(x)and U(x)are known functions and the coefficients an are to be determined.A set

of functions Pn(x)which satisfy the orthogonality condition

∫
l

-l
Pm(x)Pn(x)d x =Nnδmn , 　Nn =∫

l

-l
P 2

n(x)d x , (40)

can be constructed from the function , En(x), such that

Pn(x)=∑
n

i=1

Min

Mnn
Ei(x), (41)

where Mij is the cofactor of the element dij of Dn , which is defined as

Dn =

d11 d12 d13 … d 1n

d21 d22 d23 … d 2n

d31 d32 d33 … d 3n

    

dn1 dn2 dn3 … dnn

, 　 dij =∫
l

-l
Ei(x)Ej(x)d x. (42)

Using Eqs.(39)-(42), we obtain

an =∑
∞

j=n

qj
Mnj

Mjj
with qj =

1
Nj∫

l

-l
U(x)Pj(x)d x. (43)

3　Intensity Factors

The coefficients an are known , so that the entire perturbation stress field and the perturbation
electric displacement can be obtained.However , in fracture mechanics , it is of importance to

determine the perturbation stress τyz and the perturbation electric displacementDy in the vicinity of

the crack' s tips.τ(1)yz , τ(2)yz , τ(3)yz , D(1)y , D(2)y and D(3)y along the crack line can be expressed

respectively as
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τ(1)yz (x , h)=τ
(2)
yz (x , h)=τ

(2)
yz (x , 0)=τ

(3)
yz (x ,0)=

-
c44
π∑

∞

n=1

anGn∫
∞

0
[ 1+e-sh ] J2n-1(sl)cos(xs)d s , (44)

D(1)y (x , h)=D(2)y (x , h)=D(2)y (x ,0)=D(3)y (x ,0)=

　　　　　　　　-
e15
π∑

∞

n=1

anGn∫
∞

0
[ 1+e-sh ] J2n-1(sl)cos(xs)ds. (45)

An examination of Eqs.(44)and (45), the singular part of the stress field and the singular part

of the electric displacement can be obtained respectively from the relationship[ 25]

∫
∞

0
Jn(sa)cos(bs)ds =

cos[ narcsin(b a)]

a 2 -b2
, 　　　　　　 a >b ,

- an sin(nπ 2)

b2 -a2 [ b + b2 -a2 ] n
, 　　b >a .

(46)

The singular part of the stress field and the singular part of the electric displacement can be

expressed respectively as follows(l < x):

τ=
c44
π ∑

∞

n=1

anGnHn(x), (47)

D =
e15
π∑

∞

n=1

anGnHn(x), (48)

where Hn(x)=
(-1)n-1 l2n-1

x2 - l2[ x + x2 -l2] 2n-1
.

We obtain the stress intensity factor K as

K = lim
x→l

+
2π(x -l)·τ=

2c44

l ∑
∞

n=0

an
Γ(2n -1 2)
(2n -2)! . (49)

We obtain the electric displacement intensity factor DL as

DL = lim
x→l

+
2π(x- l)·D =

2e 15

l ∑
∞

n=0

an
Γ(2n -1 2)
(2n -2)!

=
e15
c44

K . (50)

4　Numerical Calculations and Discussion

From the works[ 27-34] , it can be seen that the Schmidt method is performed satisfactorily if

the first ten terms of the infinite series (39)are obtained.The stress intensity factor K and the

electric displacement intensity factorDL are calculated numerically.The results of the present paper

are shown in Figs.2 to 7.From the results , the following observations are very significant:
(ⅰ)The stress and the electric displacement intensity factors depend on the crack length

and the distance between two parallel cracks.
(ⅱ) The stress and the electric displacement intensity factors of the two parallel cracks

decrease when the distance between cracks decreases.However , the stress and the electric

displacement intensity factors of the two parallel cracks decrease when the length of cracks

increases.This phenomenon is called crack shielding effect.
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(ⅲ)The electric displacement intensity factors for the permeable crack surface conditions

are much smaller than the results for the impermeable crack surface conditions as shown in Fig.3 ,
Fig.5 , Fig.7 and in Eq.(50).

(ⅳ)The stress intensity factor does not depend on the material constants.However , the
electric displacement intensity factor depends on the shear modulus and the dielectric parameter.

　Fig.2　The stress intensity factor　　　Fig.3　The electric displacement intensity

versus h for l =1.0 　　　 factor versus h for l =1.0
　

　Fig.4　The stress intensity factor　　　Fig.5　The electric displacement intensity

versus l for h =0.1 　　　 factor versus l for h =0.1
　

　Fig.6　The stress intensity factor　　　Fig.7　The electric displacement intensity

versus l for h =1.0 　　　 factor versus l for h =1.0
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