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Abstract. In this paper, the behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to
two half spaces is investigated by a new method for the impermeable crack face conditions. The cracks are parallel
to the interfaces in the mid-plane of the piezoelectric layer. By using the Fourier transform, the problem can be
solved with two pairs of triple integral equations. These equations are solved using the Schmidt method. This
process is quite different from that adopted previously. Numerical examples are provided to show the effect of the
geometry of the interacting cracks and the piezoelectric constants of the material upon the stress intensity factor
of the cracks.

Sommario. In questo lavoro si esamina il comportamento di due fessure di taglio antipiane collineari in uno strato
di materiale piezoelettrico aderente a due semispazi, mediante un nuovo metodo per le condizioni di superficie
impermeabile della fessura. Le fessure sono parallele alle interfacce nel piano medio dello strato piezoelettrico.
Usando la trasformata di Fourier, il problema può essere risolto con due coppie di equazioni integrali triple,
che vengono risolte con il metodo di Schmidt. La procedura è sostanzialmente differente da quella adottata in
precedenza. Vengono presentati numerosi esempi per evidenziare l’ effetto della geometria delle fessure interagenti
e delle costanti piezoelettriche del materiale sul fattore di concentrazione delle tensioni nelle fessure.

Key words: Piezoelectric materials, Triple integral equations, Fourier transform, Collinear cracks, Mechanics of
fracture.

1. Introduction

It is well known that piezoelectric materials produce an electric field when deformed and
undergo deformation when subjected to an electric field. The coupling nature of piezoelectric
materials has attracted wide applications in electric-mechanical and electric devices, such
as electric-mechanical actuators, sensors and structures. When subjected to mechanical and
electrical loads in service, these piezoelectric materials can fail prematurely due to defects,
for example cracks, holes, etc. arising during their manufacturing process. Therefore, it is of
great importance to study the electro–elastic interaction and fracture behavior of piezoelectric
materials. Moreover, it is known that the failure of solids results from the cracks, and in most
cases, the unstable growth of the crack is brought about by the external loads. So, the study of
the fracture mechanics of piezoelectric materials is much more important in recent research.

In the theoretical studies of crack problems, several different electric boundary conditions
at the crack surfaces have been proposed by numerous researchers. For example, for the sake
of analytical simplification, the assumption that the crack surfaces are impermeable to electric
fields was adopted by [1–13, etc.]. In this model, the assumption of the impermeable cracks
refers to the fact that the crack surfaces are free of surface charge and thus the electric displace-
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ment vanishes within the crack. In fact, cracks in piezoelectric materials consist of vacuum,
air or some other gas. This requires that the electric fields can propagate through the crack, so
the electric displacement component perpendicular to the crack surfaces should be continuous
across the crack surfaces. Along this line, [14] analyzed crack problems in piezoelectric ma-
terials. In this case, the electric displacement does not exhibit the singularity behavior at the
crack tip, whereas it has the inverse square root singularity at the crack tip for an impermeable
crack. In addition, usually the conducting cracks which are filled with conducting gas or liquid
are also applied to be a kind of simplified cracks models in piezoelectric materials by many
researchers, such as [15, 16]. Recently, [17–19] avoided the common assumption of electric
impermeability and utilized more accurate electric boundary conditions at the rim of an el-
liptical flaw to deal with anti-plane problems in piezoelectricity. They analyzed the effects of
electric boundary conditions at the crack surfaces on the fracture mechanics of piezoelectric
materials. However, due to much simpler treatment from a mathematical point of view, the
impermeable crack and the conducting crack are still employed extensively in the study of
the crack problems of piezoelectric materials. In particular, control of laminated structures
including piezoelectric devices was the subject of research by [20–23]. Many piezoelectric
devices comprise both piezoelectric and structural layers, and an understanding of the frac-
ture process of piezoelectric structural systems is of great importance in order to ensure the
structural integrity of piezoelectric devices [10, 24, 25]. To our knowledge, the electro-elastic
behavior of laminated piezoelectric composite structures with two impermeable cracks has not
been studied despite the fact that many piezoelectric devices are constructed in a laminated
form. Accordingly, there is a need to investigate the electro–elastic fracture mechanics analysis
of laminated piezoelectric structures.

In the present paper, we consider the anti-plane shear problem for two cracked piezo-
electric layer bonded to two half spaces for the impermeable crack face conditions. The two
half spaces have similar properties and the piezoelectric laminate is subjected to combined
mechanical and electrical loads. The cracks are situated symmetrically and oriented in the
direction parallel to the interfaces of the layer. The interaction between two collinear sym-
metrical cracks subjects to anti-plane shear in piezoelectric layer bonded to two half spaces is
investigated using the Schmidt method [26]. It is a simple and convenient method for solving
this problem. Fourier transform is applied and a mixed boundary value problem is reduced
to two pairs of triple integral equations. In solving the triple integral equations, the crack
surface displacement and electric potential are expanded in a series of Jacobi polynomials.
This process is quite different from that adopted in previous works [1, 3, 6–8, 10, 18, 27–30].
The form of solution is easy to understand. Numerical calculations are carried out for the
stress intensity factors.

2. Formulation of the Problem

Consider a piezoelectric layer that is sandwiched between two elastic half planes with an
elastic stiffness constant cE44. Quantities in the half spaces will subsequently be designated by
superscript E. The piezoelectric material layer of thickness 2h contains two cracks of length
1-b that are situated in the mid-plane and are parallel to the interfaces, as shown in Figure 1.
2b is the distance between the cracks (The solution of the piezoelectric layer of width 2h
containing two collinear Griffith cracks of length a–b can easily be obtained by a simple
change in the numerical values of the present paper a > b > 0). The piezoelectric boundary-
value problem for anti-plane shear [11] is considerably simplified if we consider only the
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Figure 1. Cracks in a piezoelectric layer under anti-plane shear.

out-of-plane displacement and the in-plane electric fields. The plate is subjected to a constant
stress τyz = −τ0, and a constant electric displacement Dy = −D0 along the surface of the
cracks, such that the constitutive equations can be written as

τzk = c44w,k + e15φ,k (k = 1, 2), (1)

Dk = e15w,k − ε11φ,k (k = 1, 2), (2)

τExz = cE44w
E
,x, (3)

τEyz = cE44w
E
,y, (4)

where τzk, Dk(k = x, y) are the anti-plane shear stress and in-plane electric displacement,
respectively; c44, e15, ε11 are the shear modulus, piezoelectric coefficient and dielectric para-
meter, respectively; w and φ are the mechanical displacement and electric potential. τExz, τ

E
yz

and wE are the shear stress, and the displacement in the half elastic spaces, respectively.
The anti-plane governing equations are

c44∇2w + e15∇2φ = 0, (5)

e15∇2w − ε11∇2φ = 0, (6)

∇2wE = 0, (7)

where ∇2 = ∂2/∂x2+∂2/∂y2 is the two-dimensional Laplace operator. Body force, other than
inertia, and the free charge are ignored in the present work. Because of the assumed symmetry
in geometry and loading, it is sufficient to consider the problem for 0 � x < ∞, 0 � y < ∞
only. Substitute (6) into (5) to give ∇2w = 0, provided (c44 + e2

15/ε11) �= 0. The solutions in
Fourier transform are

w(x, y) = 2

π

∞∫
0

[A1(s)e
−sy + A2(s)e

sy] cos(sx) ds, (8)

wE(x, y) = 2

π

∞∫
0

A3(s)e
−sy cos(sx) ds, (9)
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where A1(s), A2(s) and A3(s) are unknown functions, and a superposed bar indicates the
Fourier transform throughout the paper, for example,

f (s) =
∞∫

−∞
f (x)e−isx dx. (10)

Inserting (8) into (6) gives

φ(x, y) − e15

ε11
w(x, y) = 2

π

∞∫
0

[B1(s)e
−sy ds + B2(s)e

sy] cos(sx) ds, (11)

where B1(s) and B2(s) are unknown functions. The boundary conditions of the present prob-
lem are:

τyz(x, 0) = −τ0, b� |x| � 1 (12)

Dy(x, 0) = −D0, b� |x| � 1 (13)

w(x, 0) = φ(x, 0) = 0, |x| < b, |x| > 1, (14)

τyz(x, h) = τEyz(x, h), (15)

w(x,±h) = wE(x,±h), (16)

Dy(x,±h) = 0, (17)

w(x, y) = wE(x, y) = φ(x, y) = 0, for
√
x2 + y2 → ∞. (18)

The boundary conditions can be applied to yield two pairs of triple integral equations:

2

π

∞∫
0

A(s) cos(sx) ds = 0, 0 � x < b, 1 < x, (19)

2

π

∞∫
0

sF1(s)A(s) cos(sx) ds = 1

µ

(
τ0 + e15D0

ε11

)
, b� x � 1 (20)

and

2

π

∞∫
0

B(s) cos(sx) ds = 0, 0 � x < b, 1 < x, (21)

2

π

∞∫
0

sF2(s)B(s) cos(sx) ds = −D0

ε11
, b� x � 1, (22)
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where

F1(s) = 1 − µ3e
−2sh

1 + µ3e−2sh
, F2(s) = 1 − e−2sh

1 + e−2sh
, A(s) = (1 + µ3e

−2sh)A1(s),

A2(s) = µ3e
−2shA1(s), B(s) = (1 + e−2sh)B1(s), B2(s) = e−2shB1(s),

µ = c44 + e2
15

ε11
, µ1 = 1 − cE44

µ
, µ2 = 1 + cE44

µ
, µ3 = µ1

µ2
.

To determine the unknown functions A(s), B(s), the above two pairs of triple integral equa-
tions (19–22) must be solved.

3. Solution of the Triple Integral Equation

The Schmidt method [26] is used to solve the triple integral equations. The displacement w
and the electric potential φ are represented by the following series:

w(x, 0) =
∞∑
n=0

anP
( 1

2 ,
1
2 )

n


x − 1 + b

2
1 − b

2




×


1 −

(
x − 1 + b

2

)2

(
1 − b

2

)2




1
2

, for b� x � 1, y = 0, (23)

w(x, 0) = 0, for x < b, x > 1, y = 0, (24)

φ(x, 0) =
∞∑
n=0

bnP
( 1

2 ,
1
2 )

n


x − 1 + b

2
1 − b

2




×


1 −

(
x − 1 + b

2

)2

(
1 − b

2

)2




1
2

, for b� x � 1, y = 0, (25)

φ(x, 0) = 0, for x < b, x > 1, y = 0, (26)

where an and bn are unknown coefficients to be determined and P
(1/2,1/2)
n (x) is a Jacobi

polynomial [31]. The Fourier transform of (23) and (25) is [32]

A(s) = w̄(s, 0) =
∞∑
n=0

anQnGn(s)
1

s
Jn+1

(
s

1 − b

2

)
, (27)
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B(s) = φ(s, 0) − e15

ε11
w̄(s, 0) =

∞∑
n=0

(bn − e15

ε11
an)QnGn(s)

1

s
Jn+1

(
s

1 − b

2

)
, (28)

Qn = 2
√
π
%
(
n + 1 + 1

2

)
n!

, (29)

Gn(s) =



(−1)

n
2 cos

(
s

1 + b

2

)
, n = 0, 2, 4, 6, . . . ,

(−1)
n−1

2 sin

(
s

1 + b

2

)
, n = 1, 3, 5, 7, . . . ,

(30)

where %(x) and Jn(x) are the Gamma and Bessel functions, respectively.
Substituting (27) and (28) into equations (19–22) satisfies (19) and (21). After integration

with respect to x in [b, x] , (20) and (22) reduce to
∞∑
n=0

anQn

∫ ∞

0
s−1Gn(s) Jn+1

(
s

1 − b

2

)
{1 + [F1(s) − 1]}[sin(sx) − sin(sb)] ds

= π

2µ
τ0(1 + λ)(x − b), (31)

∞∑
n=0

(
bn − e15

ε11
an

)
Qn

∫ ∞

0
s−1Gn(s) Jn+1

(
s

1 − b

2

)

×{1 + [F2(s) − 1]}[sin(sx) − sin(sb)] ds

= −πD0

2ε11
(x − b), (32)

where λ = e15D0

ε11τ0
.

The semi-infinite integral in (31) and (32) can be modified as [31]∫ ∞

0

1

s
Jn+1

(
s

1 − b

2

)
{1 + [F1(s) − 1]} cos

(
s

1 + b

2

)
sin(sx) ds

= 1

2(n + 1)




(
1 − b

2

)n+1

sin

(
(n+ 1)π

2

)

x + 1 + b

2
+
√(

x + 1 + b

2

)2

−
(

1 − b

2

)2



n+1

− sin

[
(n + 1) sin−1

(
1 + b − 2x

1 − b

)]



+
∫ ∞

0

1

s
[F1(s) − 1]Jn+1

(
s

1 − b

2

)
cos

(
s

1 + b

2

)
sin(sx) ds (33)
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0

1

s
Jn+1

(
s

1 − b

2

)
{1 + [F1(s) − 1]} sin

(
s

1 + b

2

)
sin(sx) ds

= 1

2(n + 1)




cos

[
(n + 1) sin−1

(
1 + b − 2x

1 − b

)]

−

(
1 − b

2

)n+1

cos

(
(n + 1)π

2

)

x + 1 + b

2
+
√(

x + 1 + b

2

)2

−
(

1 − b

2

)2



n+1




+
∫ ∞

0

1

s
[F1(s) − 1]Jn+1

(
s

1 − b

2

)
sin

(
s

1 + b

2

)
sin(sx) ds. (34)

For large s, the integrands of the semi-infinite integral in (33) and (34) have exponential
form, so that they can be evaluated numerically by Filon’s method [33]. Thus the semi-infinite
integral in (31) and (32) can be evaluated directly. Equations (31) and (32) can now be solved
for the coefficients an and bn by the Schmidt method [26]. For brevity, (31) can be rewritten
as ((32) can be solved using similar method)

∞∑
n=0

anEn(x) = U(x), b < x < 1, (35)

where En(x) and U(x) are known functions and coefficients an are to be determined. A set of
functions Pn(x) which satisfy the orthogonality condition∫ 1

b

Pm(x)Pn(x) dx = Nnδmn, Nn =
∫ 1

b

P 2
n (x) dx (36)

can be constructed from the function, En(x), such that

Pn(x) =
n∑

i=0

Min

Mnn

Ei(x), (37)

where Min is the cofactor of the element din of Dn , which is defined as

Dn =




d00, d01, d02, ..., d0n

d10, d11, d12, ..., d1n

d20, d21, d22, ..., d2n

..........................

..........................

..........................

dn0, dn1, dn2, ..., dnn



, dij =

∫ 1

b

Ei(x)Ej (x) dx. (38)
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Using (35–38), we obtain

an =
∞∑
j=n

qj
Mnj

Mjj

(39)

with

qj = 1

Nj

∫ 1

b

U(x)Pj (x) dx. (40)

4. Intensity Factors

Although we can determine the entire stress field and the electric displacement from coeffi-
cients an and bn , it is of importance in fracture mechanics to determine the stress τyz and the
electric displacement Dy in the vicinity of the crack tips. τyz and Dy along the crack line can
be expressed as

τyz(x, 0) = −2µ

π

∞∑
n=0

anQn

∫ ∞

0
Gn(s){1 + [F1(s) − 1]}Jn+1

(
s

1 − b

2

)
cos(xs) ds

− 2e15

π

∞∑
n=0

(
bn − e15

ε11
an

)
Qn

∫ ∞

0
Gn(s){1 + [F2(s) − 1]}

×Jn+1

(
s

1 − b

2

)
cos(xs) ds, (41)

Dy(x, 0) = 2

π

∞∑
n=0

(ε11bn − e15an)Qn

∫ ∞

0
Gn(s){1 + [F2(s) − 1]}

× Jn+1

(
s

1 − b

2

)
cos(xs) ds. (42)

An examination of (41) and (42) shows that the singular part of the stress field and electric
displacement can be obtained from [31]

cos

(
s

1 + b

2

)
cos(sx) = 1

2

{
cos

[
s

(
1 + b

2
− x

)]
+ cos

[
s

(
1 + b

2
+ x

)]}
,

sin

(
s

1 + b

2

)
cos(sx) = 1

2

{
sin

[
s

(
1 + b

2
− x

)]
+ sin

[
s

(
1 + b

2
+ x

)]}
,

∫ ∞

0
Jn(sa) cos(bs) ds =




cos[n sin−1(b/a)]√
a2 − b2

, a > b,

− an sin(nπ/2)√
b2 − a2[b + √

b2 − a2]n
, b > a,
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∫ ∞

0
Jn(sa) sin(bs) ds =




sin[n sin−1(b/a)]√
a2 − b2

, a > b,

an cos(nπ/2)√
b2 − a2[b + √

b2 − a2]n
, b > a.

The singular part of the stress field and electric displacement can be expressed as follows

τ = − 1

π

∞∑
n=0

(c44an + e15bn)QnHn(b, x), (43)

D = 1

π

∞∑
n=0

(ε11bn − e15an)QnHn(b, x), (44)

where

Hn(b, x) = −F1(b, x, n), n = 0, 1, 2, 3, 4, 5, . . . , (for 0 < x < b),

Hn(b, x) = (−1)n+1F2(b, x, n), n = 0, 1, 2, 3, 4, 5, . . . , (for 1 < x),

F1(b, x, n)

= 2(1 − b)n+1√
(1 + b − 2x)2 − (1 − b)2[1 + b − 2x +√(1 + b − 2x)2 − (1 − b)2]n+1

,

F2(b, x, n)

= 2(1 − b)n+1√
(2x − 1 − b)2 − (1 − b)2[2x − 1 − b +√(2x − 1 − b)2 − (1 − b)2]n+1

.

At the left tip of the right crack, we obtain the stress intensity factor KL as

KL = lim
x→b−

√
2π(b − x) · τ =

√
2

π(1 − b)

∞∑
n=0

(c44an + e15bn)Qn. (45)

At the right tip of the right crack, we obtain the stress intensity factor KR as

KR = lim
x→1+

√
2π(x − 1) · τ =

√
2

π(1 − b)

∞∑
n=0

(−1)n(c44an + e15bn)Qn. (46)

At the left tip of the right crack, we obtain the electric displacement intensity factor DL as

DL = lim
x→b−

√
2π(b − x) · D =

√
2

π(1 − b)

∞∑
n=0

(e15an − ε11bn)Qn. (47)

At the right tip of the right crack, we obtain the electric displacement intensity factor DR as

DR = lim
x→1+

√
2π(x − 1) ·D =

√
2

π(1 − b)

∞∑
n=0

(−1)n(e15an − ε11bn)Qn. (48)
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5. Numerical Calculations and Discussion

This section presents numerical results of several representative problems. Adopting the first
10 terms in the infinite series (35), we followed the Schmidt procedure. To check accuracy,
the values of

∑9
0 anEn(x) and U(x) are given in Table 1 for b = 0.5, h = 1.0, λ = 0.2. In

Table 2, the values of the coefficients an are given for b = 0.5, h = 1.0, λ = 0.2. From the
above results and literatures [see e.g., 34–36], it can be seen that the Schmidt method performs
satisfactorily if the first ten terms of the infinite series (35) are retained. The solution does not
change with an increase of the number of terms in (35) beyond 10. The precision of present
solution can satisfy the demands of the practical problem. The solution of two collinear cracks
of arbitrary length a–b can easily be obtained by a simple change in the numerical values of
the present paper (a> b> 0), that is, it can use the results of the collinear cracks of length
1–b/a and the strip width h/a in the present paper. The solution of this paper is suitable for the
arbitrary length two collinear cracks in the piezoelectric layer bonded to dissimilar half spaces.
All applications were focused on two cracked piezoelectric layer bonded to half planes. The
piezoelectric layer is assumed to be the commercially available piezoelectric PZT-4 or PZT-
5H, and the half planes are either aluminum or epoxy. The engineering material constants are
listed in Table 3 [25]. The results of the present paper are shown in Figures 2–7, respectively.
From the results, the following observations are very significant:

(1) The stress intensity factors not only depend upon the crack length, the electric loading
and the width of the piezoelectric layer, but also on the properties of the materials.

(2) The interaction of the two collinear cracks decrease when the distance between the two
collinear cracks increases.

(3) The stress intensity factors decrease when the width of the piezoelectric layer increases,
and the results of the inner crack tips are bigger than at the outer crack tips.

(4) The solutions of this paper are approximate to ones of two collinear Griffith cracks in
infinite piezoelectric materials for width h� 3.5, that is the influence of the width of the
piezoelectric layer to the results is small when h� 3.5.

(5) The influence of the electric loading to the results is large for a thin piezoelectric layer,
but not for a thick layer. This is consistent with the conclusion that the stress intensity
factor is independent on the electric loading for infinite piezoelectric materials.

Table 1. Values of
9∑
0
anEn(x)/(πτ0(1 + λ)/2µ) and U(x)/

(πτ0(1 + λ)/2µ) = x − b for b = 0.5, h = 1.0, λ= 0.2

x
9∑
0
anEn(x)/ U(x)/(πτ0(1 + λ)/2µ)

(πτ0(1 + λ)/2µ) = x − b

0.5 0.0000 0.0000

0.6 0.1001 0.1000

0.7 0.1999 0.2000

0.8 0.2999 0.3000

0.9 0.4001 0.4000
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Table 2. Values of an/(πτ0(1 + λ)/2µ) for
b = 0.5, h = 1.0, λ= 0.2

n an/(πτ0(1 + λ)/2µ)

0 0.163686E + 00

1 0.358555E − 03

2 0.192953E − 04

3 0.253487E − 05

4 0.376789E − 06

5 0.257585E − 07

6 0.312511E − 08

7 0.260541E − 09

8 0.354621E − 10

9 0.434612E − 11

Table 3. Material properties used in the examples

Piezoelectric layer Elastic half plane

PZT-4 PZT-5H Aluminum Epoxy

c44 (×1010N/m2) 2.56 2.3 cE44 2.65 0.176

e15 (c/m2) 12.7 17.0 0 0

ε11 (×10−10c/Vm2) 64.6 150.4 – –

(6) The stress intensity factor becomes small with increasing electric loading. In other words,
the electric field will reduce the magnitude of the stress intensity factor. This is due to
the coupling between the electric and the mechanical fields. It can be shown from the
Figures 2, 3, 4.

(7) The stress and electric displacement intensity factors become small with the decreasing
of the crack’s length.

Figure 2. Stress intensity factors versus λ for b = 0.1, h = 0.6 (Aluminum /PZT-5H/ Aluminum).
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Figure 3. Stress intensity factors versus λ for b = 0.1, h = 2.5 (Aluminum /PZT-5H/ Aluminum).

Figure 4. Stress intensity factors versus λ for b = 0.1, h = 5.0 (Aluminum /PZT-5H/ Aluminum).

Figure 5. Stress intensity factors versus b for λ = 0.2, h = 0.5 (Aluminum /PZT-5H/ Aluminum).

Figure 6. Stress intensity factors versus b for λ = 0.2, h = 3.5 (Aluminum /PZT-5H/ Aluminum).
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Figure 7. Electric intensity factors versus b for λ = 0.2, h = 1.0 (Aluminum /PZT-5H/ Aluminum).
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