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On the dynamic growth of a 180° domain in a ferroelectric material
Biao Wanga) and Zhongmin Xiao
School of Mechanical and Production Engineering, Nanyang Technological University, Singapore 639798,
Singapore

~Received 4 November 1999; accepted for publication 3 May 2000!

This article investigates the dynamic movement process of a 180° domain wall in an external
electric field. By modeling the domain wall movement as a dynamic process, the induced electric
and magnetic fields due to a growing general ellipsoidal 180° domain under the action of a given
electric field was derived explicitly. A general form of the energy release rate was derived through
a surface integral, which can serve as the driving force for the movement of the surface. Based on
the solution, the released electromagnetic energy during the dynamic process was evaluated. This
electromagnetic energy is used to compensate the surface energy increase and the energy dissipation
due to the finite velocity of the domain wall movement. Following the result, an equation is
established to determine the growth speed of the 180° domain. Finally, the cases where the domain
shape is cylindrical and spherical, and the domain wall propagates along the radial direction and the
applied electric field direction, respectively, were considered in detail as illustrative examples. It is
found that the resistance caused by the depolarization field for the wall to grow along the direction
of the applied electric field is only one fifth of the value for the wall to grow along the radial
direction. © 2000 American Institute of Physics.@S0021-8979~00!07615-5#

I. INTRODUCTION

Ferroelectric crystals have been increasingly used in ac-
tuator designs for various engineering applications. The
commonly used ferroelectric materials in actuator applica-
tions are polycrystalline oxide ceramics of barium titanate
(BaTiO3) and (Pb@Zr,Ti#O3) ~PZT!. Barium titanate and
PZT both have the perovskite cubic structure in the paraelec-
tric phase. At room temperature, barium titanate has a tetrag-
onal structure, while PZT has a tetragonal structure on the
Ti-rich side and has a rhombohedral structure on the Zr-rich
side, except that on the extreme Zr-rich side the solid solu-
tion exhibits no observable ferroelectric effect. The com-
monly used PZT is on the Ti-rich side near its morphotropic
phase boundary because of the strong electromechanical cou-
pling effect. The tetragonal structure is in a polar state in the
sense that the centers of positive and negative charges for
each lattice unit are spatially separated, forming a dipole of
electric charges. Consequently, these crystals exhibit sponta-
neous polarization. In the stable configuration, each crystal-
lite is divided into a number of macroscopic regions in which
the polar directions differ from each other. These regions are
called the ferroelectric domain. The commercial barium ti-
tanate and PZT ceramics are produced from polycrystalline
solid solutions through the conventional steps of sintering
fine powders of oxide metals into solutions. The resulting
solid solutions do not exhibit the observable electromechani-
cal coupling effect because the ferroelectric domains are
formed in random directions so that the average polarization
of each grain is approximately zero. The ceramics exhibit the
electromechanical coupling effect only after the domains are

reoriented by application of a strong dc field. This reorienta-
tion process is the so-called poling process. Ferroelectric do-
mains are initially formed when the ceramics are cooled
from high processing temperatures and they are altered dur-
ing the subsequent poling process, leading to a macroscopic
polarization. A load can switch the polar direction from one
to another. An electric field may switch the polar direction
by either 180° or 90°, but a stress loading may only switch it
by 90°. Also it is a well-known fact that the crystal changes
its state progressively by domain wall movement under the
action of external field, and the domain wall movements un-
derlie all phenomena of polarization and deformation. Since
they have profound effects on the functions of devices made
of ferroelectrics, a lot of research has been done to under-
stand the phenomena related to the domain switch. In an
early study, Landauer1 considered the possible formation of
thermally induced, spike-shaped domains of reversed polar-
ization in BaTiO3 . Rickmanet al.2 presented a treatment of
twin domain formation energetics in ferroelectric materials.
Specket al.3 described domain formation in epitaxial sys-
tems in terms of a defect theory. The kinetics of domain wall
evolution were considered by Loge and Suo.4 Gopalan and
Mitchell5 carried out a systematic study of the switching
time, domain wall velocities, and stabilization mechanisms
of 180° domains inZ-cut LiTaO3 crystals. Huo and Jiang6,7

and Rosakis and Jiang8 proposed a continuum model for do-
main switching in polycrystalline ferroelectric ceramics, and
studied the morphology of ferroelectric domains. Lynch and
McMeeking22 and Hwanget al.9 examined the nonlinear be-
havior of PLZT based on a domain switching mechanism. Lu
et al.10 also investigated the nonlinear electromechanical be-
havior related to ferroelectric and ferroelastic domain switch-
ing. Yang and Suo11 studied the cracking phenomenon in
ceramic actuators related to the domain switching process. Li
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and Weng12 developed a micromechanical theory for the
nonlinear behavior of ferroelectrics. Yanget al.23 made a
direct optical observation of pinning and bowing of a single
180° ferroelectric domain wall under a uniform applied elec-
tric field using a collection mode near-field scanning optical
microscope. Chaiet al.24 proposed a domain model for ferro-
electric films. However, all the aforementioned analyses as-
sumed that the domain switching process was quasistatic. As
a result, the energy related to the domain switching was ob-
tained by modeling the procedure as an electrostatic prob-
lem. In fact, the domain wall is observed to move at a wide
range of velocity (1029– 1021 m/s), and the higher the ap-
plied electric field and temperature, the faster the wall
moves. Therefore, as referred by Loge and Suo,4 domain
evolution is a nonequilibrium dynamic process. As the do-
main grows in a certain speed, it cannot only create a depo-
larization electric field, but also create a magnetic field
around the domain. Thus part of the released energy in the
process of domain wall movement is used to create the mag-
netic field in addition to complementing the surface energy
increase.

In this article, a 180° domain is considered to be initiated
inside a parent ferroelectric domain, and the 180° domain
wall grows in some unknown speed under the action of the
electric field opposite to the polar direction of the ferroelec-
tric material. Due to the growth of the 180° domain wall, a
magnetic field is induced surrounding the domain. The inter-
nal and external electric and magnetic fields for an ellipsoi-
dal domain are derived through solving the dynamic prob-
lem. Through studying the movement of the 180° domain
wall in an electromagnetic field, a general form of the energy
release rate was derived through a surface integral. As the
energy release rate serves as the driving force for the move-
ment of the surface, an equation for determining the growth
speed of the 180° domain wall is derived. As illustrative
examples, a cylindrical and a spherical domain were consid-
ered in detail. For the spherical 180° domain, it is found that
the minimum electric field needed for the wall to propagate
along the direction of the applied field is only one fifth of the
value needed for the wall to propagate along the radial di-
rection.

In order to have a more clear and practical picture of the
various points emphasized in this article, a typical ferroelec-
tric material, barium titanate, is used for detailed numerical
calculation. BaTiO3 undergoes a phase transition at a tem-
perature of about 130 °C. Above 130 °C, the crystal is cubic,
and the ions lie symmetrically in the unit cell. Between 0 and
130 °C, the crystal is tetragonal, and the ions lie asymmetri-
cally in the unit cell. A tetragonal unit cell may have polar
direction of any six variants. A load can rotate the polar axis
from one direction to another. We will use barium titanate to
illustrate the various points in this article.

II. THE PHYSICAL PROBLEM AND FORMULATION

Consider the physical problem where a parent ferroelec-
tric crystal contains a 180° ellipsoidal domain under the ac-
tion of a uniaxial electric fieldEY 0 along thez axis as shown
in Fig. 1~a!. The 180° domain grows in some unknown

speed. Since the spontaneous polarization plays a role as the
external field source, to obtain the induced electric and mag-
netic fields by an ellipsoidal growing 180° domain, we can
decompose the original problem shown in Fig. 1~a! into the
following two subproblems:~1! under the action of the ap-
plied electric field, a ferroelectric crystal with spontaneous
polarizationPY s along the opposite direction of the electric
field @Fig. 1~b!#; ~2! in the dielectric medium there is a grow-
ing 180° domain with polarization 2PY s along the direction of
the applied electric field@Fig. 1~c!#. The superposition of the
two solutions gives the solution of the original problem for a
linear medium.

Consider a ferroelectric crystal below its Curie tempera-
ture. The dependence of the polarization of the crystal on the
applied electric field is sketched in Fig. 2. The crystal exhib-
its permanent polarizationPY s even in the absence of external
electric fields. The parameterPY s is also called the spontane-
ous polarization. The constitutive equation for the ferroelec-
tric crystal can be expressed in the following form:

DY 5 ẽ•EY 1PY s , ~1!

FIG. 1. A 180° domain grows in a parent phase driven by an electric field.

FIG. 2. Schematic of dependenceP(E) on the applied electric fieldE0 for
a ferroelectric crystal, wherePs is the spontaneous polarization andEc is the
coercive field.
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whereẽ is the dielectric permittivity tensor,DY is the electric
induction, andEY is the total electric field. The ferroelectric
crystals can be made to be equivalent to an ordinary dielec-
tric material with a uniform distribution of spontaneous po-
larization. If we apply a high enough electric field opposite
to the spontaneous polarization of the ferroelectric crystal,
the spontaneous polarization in some regions will begin to
reverse its direction. Such regions are called the 180° do-
main. Those 180° domains will grow until all the spontane-
ous dipole moments in the crystal switch off their direction.
In the current investigation, the 180° growing domain is
modeled as an ellipsoid. In this section the electric field and
magnetic field around it is derived. Based on the solution, an
energy criterion for the domain growing will be established.

A. The electric and magnetic field of subproblem 1
†Fig. 1 „b…‡

As we discussed before, the ferroelectric crystal can be
treated as an ordinary dielectric material with spontaneous
polarization PY s . The uniform polarization will generate a
charge distribution on the surface of the crystal, which cre-
ates a macroscopic electric field2PY s /e. If the applied elec-
tric field in the dielectric material without the spontaneous
polarization iseY0 , the total electric and magnetic field in the
crystal is given by

EY 05eY02
PY s

e
, HY 50, ~2!

whereEY 0 is usually treated as the applied electric field in the
ferroelectric crystal when we study the domain reverse prob-
lem.

B. The electric and magnetic field of subproblem 2
†Fig. 1 „c…‡

The subproblem 2 is that, in an ordinary dielectric ma-
terial, there is a growing, 180° domain with the spontaneous
polarization 2PY s . This is an electrodynamic problem. If the
180° domain is assumed to take an ellipsoidal shape with
principle half axesa1 , a2 , a3 , using the full Maxwell’s
equation, one can obtain the Hertz potentialPY as follows:

PY 5
pskY

2pe E E E
V~ t !

dv8
1

urY2rY8u

5
pskY

4pe
@ I ~l!2xnxnI N~l!#, ~3!

wherexnxnI N(l)5x1
2I 1(l)1x2

2I 2(l)1x3
2I 3(l), and the ex-

pressions ofl, I, I 1 , I 2 , I 3 , together with the detailed deri-
vation of Eq.~3! are given in the Appendix.

By using the Hertz potential given in Eq.~3!, the electric
and magnetic field can be derived as follows:

E15
]2P3

]x1]x3
,

E25
]2P3

]x2]x3
, ~4!

E35
]2P3

]x3
2 2

1

c2

]2P3

]t2 '
]2P3

]x3
2 ,

and the magnetic fieldHY is obtained as

HY 5
1

jc F ]

]x2
S ]P3

]t D iY2
]

]x1
S ]P3

]t D jYG , ~5!

where j5Am/e, c51/Aem, e, m are the permittivity and
permeability of the crystal, respectively, andc is the light
speed in the crystal.

C. The electric and magnetic field inside the 180°
domain for the original problem †Fig. 1 „a…‡

For interior points of an ellipsoidV(t), l50, therefore,
I, I i become constants. Substituting Eq.~3! into Eq.~4!, then
taking the sum of Eq.~2! and Eq.~4!, one obtains the electric
field inside the domain as follows:

E1
in50,

E2
in50, ~6!

E3
in5E02

ps

2pe
I 3 .

With the aid of Eq.~5!, we have

HY in5
ps

2p S x1

]I 1

]t
jY2x2

]I 2

]t
iYD . ~7!

It is worth mentioning that for an ellipsoidal domain, the
electric field remains uniform within the domain for uniform
polarization. This conclusion is similar to that obtained by
Eshelby16 for elastic problems. For spherical domain with
radiusa

I 54pa2, I 15I 25I 35 4
3p. ~8!

Substitution of Eq.~8! into Eqs.~6! and ~7! yields

E3
in5E02

2ps

3e
,

~9!

HY in50.

The other components of the electric field within the domain
are zero.

D. The electric and magnetic field outside the 180°
domain for the original problem †Fig. 1 „a…‡

By substituting Eq.~3! into Eq. ~4! and adding Eq.~2!,
we obtain the electric field outside the domain as

E1
out5

]2P3

]x1]x3
5

ps

4pe

]2

]x1]x3
@ I ~l!2xnxnI N~l!#,

E2
out5

]2P3

]x2]x3
5

ps

4pe

]2

]x2]x3
@ I ~l!2xnxnI N~l!#, ~10!
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E3
out5E02S 1

c2

]2P3

]t2 2
]2P3

]x3
2 D

5E02
ps

4pe S 1

c2

]2

]t22
]2

]x3
2D @ I ~l!2xnxnI N~l!#,

where the magnetic field is given by Eq.~5!

HY out5
1

jc F ]

]x2
S ]P3

]t D iY2
]

]x1
S ]P3

]t D jYG
5

ps

4p S ]

]x2
iY2

]

]x1
jY D ]

]t
@ I ~l!2xnxnI N~l!#. ~11!

In deriving Eq. ~11!, we have usedc251/em, and j
5Am/e.

III. ENERGY CONCEPT AND THE DRIVING FORCE
FOR THE 180° DOMAIN EXPANDING

Starting with a general case, we consider a general shape
of the 180° domain wall in an electromagnetic field~Fig. 3!.
The surface can move under the action of the electric and
magnetic field. With the movement of the surface, the elec-
tromagnetic energy will be reduced, and the released energy
serves as the driving force to compensate the energy dissipa-
tion in the moving process of the surface. The energy dissi-
pation is due to the surface energy increase and the finite
velocity of the movement. In this part, a general form of the
energy release rate will be derived. As an application, the
energy release rate will be used to establish an equation to
determine the growth rate of the 180° domain wall. In fact,
the obtained expression to calculate the energy release rate is
suitable for the movement of any surface of discontinuity in
an electromagnetic field. Here a surface of discontinuity
means that some components of the electric and magnetic
field may have certain jump due to physical mechanism
across the surface. The 180° domain wall is only an example
of such surfaces.

As shown in Fig. 3, the body containing a surface of
discontinuity in an electromagnetic field can be divided into
two regions, i.e., inside and outside the surface. The internal
energy of an electromagnetic field is given by

W5
1

2 E E E
v

~EY DY 1HY BY !dv

5E E E
V~ t !

Fdv1E E E
v2V~ t !

Fdv5W11W2 , ~12!

whereV(t), v are the volumes inside the moving surface and
the whole body, respectively.F51/2(EY DY 1HY BY ) is the en-
ergy density. In the following we need to derive the change
rate of the energy. For the first integral in Eq.~12!, the region
of integration and the integrand are the function of timet.
Using Reynolds’ transport theorem,27 its change rate is ob-
tained as:

dW1

dt
5

d

dt E E E
V~ t !

Fdv

5E E E
V~ t !

@Ḟ1div~FuY !#dv

5E E E
V~ t !

Ḟdv1E E
s1

FuY •nY ds, ~13!

whereuY is the velocity of the surface movement andS1 is
the internal side of the surface. Equation~13! asserts that the
changing rate of the integralF overV(t) is equal to the rate
computed as ifV(t) were fixed in its current position plus
the rate at whichF is carried out of this region across its
boundary. The rate of the energy density is given by

Ḟ5
1

2

d

dt
~EY DY 1HY BY !

5EY DẎ 1HY BẎ 5EY •~¹3HY 2JY !1HY •~2¹3EY !

52EY JY2@HY •~¹3EY !2EY •~¹3HY !#

52EY JY2div~EY 3HY !. ~14!

In deriving Eq. ~14!, we have used Maxwell’s equation to
replace the time-derivative factors in the integrand,SY 5EY

3HY , whereSY is called the Poynting vector, which is identi-
fied as the energy flux, or rate of energy flow per unit area.
Substitution of Eq.~14! into Eq. ~13!, and considering the
currentJY50 inside the region, we have

dW1

dt
5E E

S1

@FuY 2SY #•nY ds. ~15!

In a similar way, one can derive the rate of the second
integral in Eq.~12! as follows:

dW2

dt
52E E

G

SY •nY ds1E E
S2

@SY 2FuY #•nY ds, ~16!

FIG. 3. A surface of discontinuity in an electromagnetic field.
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where S2 is the external side of the surface andG is the
outside boundary of the body. The changing rate of the en-
ergy provided by the environment across the outside bound-
ary of the body is given by

U̇52E E
G

SY •nY ds. ~17!

Therefore the energy release rate in the process of surface
movement can be obtained as

Ġ5U̇2Ẇ5E E
S

$@F#ui2@S i #%nids, ~18!

where@F#5F02F I , @S i #5S i
02S i

I are the jumps of corre-
sponding quantities across the surface. Eshelby17 proposed
the well-known energy–momentum tensor as the driving
force for a defect to propagate in materials. In fact, Eq.~18!
represents its counterpart in an electromagnetic field. Simi-
larly, we can define the energy–momentum vector as18–21

Pi5Fui2S i . ~19!

The energy release rateĠ represents the driving force for the
growth of the 180° domain. For a general domain wall move-
ment problem, one can develop an efficient numerical
method to evaluate the surface integral. In what follows, we
use Eq. ~18! to calculate the energy release rate for the
growth of the spherical and cylindrical domains.

IV. A SPHERICAL 180° DOMAIN EXAMPLE AND
DISCUSSION

In this section, we consider the spherical 180° domain as
an example to derive the explicit close-form solution of the
energy release rate. The spherical domain can be used to
model the nuclei of the 180° domain. In this part of the
article, we consider that the spherical nuclei grow up along
the radial direction and along the direction of the applied
field, respectively.

A. The spherical domain grows along the radial
direction

In such a case, the spherical domain will remain its
spherical shape in the propagation process. Therefore the in-
ternal electric field is given by

E1
I 5E2

I 50, E3
I 5E02

2

3
•

ps

e
~20!

and the internal magnetic field remains zero. The electric
field outside the domain is given by Eq.~10! as follows:

E1
05

2ps

e
•S a

r D 3

sinu cosu cosw,

E2
05

2ps

e
•S a

r D 3

sinu cosu sinw, ~21!

E3
05E02

2

3

ps

e
•S a

r D 3

1
2ps

e
•S a

r D 3

cos2 u.

The magnetic field is obtained from Eq.~11!

HY 052psS a

r D 2 da

dt
~sinu cosw jY2sinusinw iY!. ~22!

Substituting the expressions of the electric field and mag-
netic field into Eq.~18!, one can derive the energy release
rate after the integration

Ġ5
8pa2

3
•

da

dt F3psE02
ps

2

e
12mps

2S da

dt D
2G . ~23!

The energy release rate can also be expressed in the form of

Ġ5g•
da

dt
, ~24!

whereg5]G/]a is the energy reduction per unit increase of
the domain radius. If the surface energy density of the 180°
domain wall is denoted asUs , the surface energy will in-
crease 8paUs per unit increase of the domain radius. Do-
main evolution is a nonequilibrium thermodynamics process,
and its evolution velocity can be reasonably assumed to be
proportional to the total free energy reduction4 as follows:

da

dt
5M ~g28paUs!

5M H 8pa2

3
•F3psE02

ps
2

e
12mps

2S da

dt D
2G28paUsJ .

~25!

If the initial velocity is zero, one can obtain the critical elec-
tric field for the domain to grow along the radial direction
through the following equation:

apsE02
aps

2

3e
2Us50. ~26!

As a numerical example, considering the typical ferroelectric
material barium titanete BaTiO3 , the material constants are
as follow:4,25

ps50.26 C/m2, e51.831028 F/m,

Us50.01 J/m2, a51 mm.

By substitutiing these values into Eq.~26!, one obtains the
critical electric field

E0'4.8 MV/m. ~27!

The critical field for the radial movement of the domain wall
is so high that it is almost impossible in practice.

B. The spherical domain grows along the direction of
the applied field

It is a widely accepted phenomenon that the 180° do-
main wall will prefer to move along the direction of the
applied field when a single-domain crystal is placed into an
electric field opposite the polar direction. In this part, we will
derive the energy release rate when a spherical domain starts
to grow along the direction of the applied field. Since the
domain will not keep its spherical shape once it starts to
grow in this case, we should consider a general spheroid
shape of the domain to derive the solution of electric and
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magnetic fields. To obtain the energy release rate from Eq.
~18!, we need to know the electric and magnetic field inside
the domain and just outside the domain. According to Eqs.
~6! and~7!, the electric and magnetic field inside the domain
are given by

E1
I 5E2

I 50, E3
I 5E02

2ps

3e
,

~28!

HY I5
4ps

15a
~x1 jY2x2iY!

da3

dt
,

whereda3 /dt represents the velocity of the semiaxis change
of the domain along thez direction. The field just outside the
domain can be obtained through the continuity condition
across the surface given by

nY 3~EY 02EY I !50, enY •~EY 02EY I !52pskY•nY ,
~29!

nY •~HY 02HY I !50, nY 3~HY 02HY I !52psṘ~ t !@kY2~nY •kY !nY #,

wherenY , RY (t) are the outward normal vector, and the change
rate of the point’s distance from the origin on the wall. The
electric and magnetic field just outside the domain are thus
obtained from Eq.~29! as

EY 05EY I1
2ps

e
~kY•nY !nY ,

~30!

HY 05HY I12psṘ~ t !kY3nY .

Substitution of Eqs.~28! and ~30! into Eq. ~18! gives the
energy release rate

Ġ5
8pa2

3
•

da3

dt FpsE02
ps

2

15e
10.2362mps

2S da3

dt D 2G .
~31!

As in the last part, if the initial velocity is zero, one can
obtain the critical electric field for the domain to grow along
the direction of the applied electric field through the follow-
ing equation:

apsE02
aps

2

15e
2Us50. ~32!

For BaTiO3 , one can calculate the critical electric field as

E050.97 MV/m. ~33!

Comparing with Eq.~27!, we can find that the critical elec-
tric field for such movement is only one fifth of the value for
the radial movement. This may explain why the 180° domain
always grows along the direction of the applied electric field.

V. A CYLINDRICAL 180° DOMAIN EXAMPLE

When a single-domain crystal is placed into an electric
field opposite to the polar direction, numerous 180° domain
spikes emerge.4,26 They grow much faster in the direction of
the applied field than in the normal direction. The forward
velocity was found experimentally to vary with the applied
electric field as26

dL

dt
5M0~E2Ec!, ~34!

whereM0 andEc are the parameters to fit the experimental
data for BaTiO3 , M052.531024 m2/V s, and Ec

50.22 MV/m at room temperature. This experimental result
can be interpreted according to the energy model.

A spike can be modeled as a long cylindrical domain
with the lengthL and radiusa. The electric and magnetic
field inside the domain and just outside the domain can be
obtained by using Eqs.~6!, ~7!, and~30! under the condition
L@a. By substituting them into Eq.~18!, we obtain the en-
ergy release rate as

Ġ52pa2E0psL̇. ~35!

The energy reduction due to the unit increase of the lengthL
is given by

g52pa2E0ps . ~36!

In the same way as deriving Eq.~25!, one can obtain the
velocity equation as

dL

dt
5M ~g22paUs!52pa2MpsS E02

Us

aps
D . ~37!

By comparing the experiment result with Eq.~34!, one can
obtain an estimate of the domain wall energyUs

Us5apsEc . ~38!

Taking the experimental valuesa50.5mm, ps50.26 C/m2,
andEc50.22 MV/m, we find thatUs50.0286 J/m2. This es-
timate is just within the range of experimental data for
BaTiO3 .25
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APPENDIX: DERIVATION OF THE ELECTRIC AND
MAGNETIC FIELD FOR A GROWING, 180° DOMAIN

In any time-invariant reference system of coordinates,
the differential form of Maxwell’s equations reads as
follows:13

¹3EY 52
]BY

]t
, ~A1a!

¹3HY 5JY1
]DY

]t
, ~A1b!

¹•DY 5r, ~A1c!

¹•BY 50, ~A1d!

whereEY is electric field~V/m!; HY is magnetic field~A/m!; DY

is electric induction~C/m2!; BY is magnetic induction~T!; JY is
electric current density~A/m2!; andr is electric charge den-
sity ~C/m2!, and the prescribed source currentJY and charge
densityr are related by the continuity equation
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¹•JY1
]r

]t
50. ~A2!

In the present work, we impose a further simplification by
ignoring the anisotropic effect of the dielectric constant. For
linear isotropic materials, the constitutive relation can be
written as follows:

DY 5eEY ,
~A3!

BY 5mHY ,

wheree, m are the permittivity and permeability of the iso-
tropic medium, respectively.

The electric polarization gives rise to the charge distri-
bution with volume density14

r52¹•~2PY s!. ~A4a!

If the polarization changes with time, similarly, it corre-
sponds to the current density as follows:

JY5
]~2PY s!

]t
. ~A4b!

By taking the curl of Eq.~A1a! and substituting¹3HY from
Eq. ~A1b!, we obtain

¹3¹3EY 52me
]2EY

]t2 2m
]JY

]t
. ~A5!

Combination of Eqs.~A1c! and ~A5! yields

¹2EY 2
1

c2

]2EY

]t2 5m
]JY

]t
1

1

e
¹r,c251/em. ~A6a!

Substitution of Eq.~A4! into Eq. ~A6a! leads to

¹2EY 2
1

c2

]2EY

]t2 5S 1

c2

]2

]t2 I 2¹¹ D • 2PY s

e
, ~A6b!

whereI is the diagonal unit matrix. The above equation re-
lates the unknown electric field with the source field 2PY s /e.
By introducing the Hertz potentialPY as follows:

FE1

E2

E3

G52F 1

c2

]2

]t22
]2

]x2 2
]2

]x]y
2

]2

]x]z

2
]2

]x]y

1

c2

]2

]t22
]2

]y2 2
]2

]y]z

2
]2

]x]z
2

]2

]y]z

1

c2

]2

]t22
]2

]z2

G
3FP1

P2

P3

G , ~A7!

we have

¹2PY 2
1

c2

]2PY

]t2 52
2PY s

e
. ~A8!

Once the Hertz potentialPY is determined, the electric field
can be found through Eq.~A7!, while the magnetic field is
computed from Eq.~A1a!:

jHY 5¹3
1

c

]PY

]t
, j5Am/e. ~A9!

For such a problem, we first need to derive the solution
for the following equation subjected to the initial condition
G(rY,t,0)50 and to the radiation conditions at infinity as
the Green’s function:

¹2G~rY,t !2
1

c2

]2G~rY,t !

]t2 52d~rY !d~ t !. ~A10!

The solution of Eq.~A10! in a spherical system of coordi-
nates is

G~rY,t !5
d~ t2r /c!

4pr
5

d~ t* !

4pr
, ~A11!

wheret* 5t2r /c is the retarded time,rY is the position vec-
tor, andr is its magnitude.

Green’s function represents the response of the system
described by Eq.~A10! to a localized unit source of space–
time densityd(rY)d(t). It can be used to derive the final
expression for the field radiated by an arbitrary source dis-
tribution. For the present case, the applied source is the di-
pole density 2PY (rY,t)/e. The total Hertz potential can be ob-
tained by superposition as shown in Eqs.~A8! and ~A10!:

PY 52E E E dv8E dt8
PY s~rY8,t8!

e
G~rY2rY8,t2t8!

5
1

2pe E E E dv8E dt8PY s~rY8,t8!

3
d~ t2t82urY2rY8u/c!

urY2rY8u

5
1

2pe E E E dv8
PY s~rY8,t* !

urY2rY8u
, ~A12!

wheret* 5t2urY2rY8u/c. For the current problem, the polar-
ization source is restricted to the finite region. Generally
speaking, sincec is the light speed,ct@urY2rYu. Therefore the
polarization can be expressed using the Heaviside function
as follows:

PY s~rY,t* !'PY s~rY,t !5pskYH@V~ t !#, ~A13!

where

H@V~ t !#5H 1 rYPV~ t !

0 others
, ~A14!

in which V(t) is the region of 180° domain. Since the do-
main is expanding, it is a function of time. In what follows,
we assume that the 180° domain takes an ellipsoidal shape,
and derive the electric and magnetic field both inside and
outside the domain.

Substitution of Eq.~A13! into Eq. ~A12! yields

PY 5
pskY

2pe E E E
V~ t !

dv8
1

urY2rY8u
. ~A15!
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If the 180° domain is assumed to take an ellipsoidal shape
with principle half axesa1 , a2 , a3 , the integral in Eq.~A15!
can be expressed in terms of the following simple formula as
shown in Mura:15

PY 5
pskY

2pe E E E
V~ t !

dv8
1

urY2rY8u
5

pskY

4pe
@ I ~l!2xnxnI N~l!#,

~A16!

wherexnxnI N(l)5x1
2I 1(l)1x2

2I 2(l)1x3
2I 3(l), and the ex-

pressions ofl, I, I 1 , I 2 , I 3 are given as follows:

I ~l!52pa1a2a3E
l

` ds

D~s!
,

~A17!

I i~l!52pa1a2a3E
l

` ds

~ai
21s!D~s!

,

whereD(s)5@(a1
21s)(a2

21s)(a3
21s)#1/2, andl is the larg-

est positive root of the equation

x1
2

~a1
21l!

1
x2

2

~a2
21l!

1
x3

2

~a3
21l!

51. ~A18!

Thus

I ~l!54pa1a2a3~a1
22a3

2!21/2F~u,k!,

I 1~l!54pa1a2a3~a1
22a2

2!21~a1
22a3

2!21/2

3@F~u,k!2E~u,k!#,
~A19!

I 2~l!54pa1a2a3@~a1
22a3

2!1/2~a1
22a2

2!21

3~a2
22a3

2!21E~u,k!2~a1
22a2

2!21

3~a1
22a3

2!21/2F~u,k!2~a2
22a3

2!21

3~a3
21l!1/2~a1

21l!21/2~a2
21l!21/2#,

I 3~l!54pa1a2a3~a2
22a3

2!21~a1
22a3

2!21/2

3@~a2
21l!1/2~a1

22a3
2!1/2~a1

21l!21/2

3~a3
21l!21/22E~u,k!#,

where the first and second elliptic integrals are given by

F~u,k!5E
0

u dw

~12k2 sin2w!1/2,

E~u,k!5E
0

u

~12k2 sin2w!1/2dw, ~A20!

u5sin21~12a3
2/a1

2!1/2, k5@~a1
22a2

2!/~a1
22a3

2!#1/2.

For some special shapes of the domain, Eq.~A19! becomes
elementary functions and are shown below.

1. Sphere „a1Äa2Äa3Äa…

I ~l!5
4pa3

~a21l!1/2,

~A21!

I 1~l!5I 2~l!5I 3~l!5
4pa3

3~a21l!3/2.

2. Elliptical cylinder „a3\`…

I ~l!50,

I 1~l!5
4pa1a2

a2
22a1

2 F ~a2
21l!1/2

~a1
21l!1/221G ,

~A22!

I 2~l!5
4pa1a2

a1
22a2

2 F ~a1
21l!1/2

~a2
21l!1/221G ,

I 3~l!50.

3. Oblate spheroid „a1Äa2Ìa3…

I ~l!5
4pa1

2a3

Aa1
22a3

2
arccosb,

I 1~l!5I 2~l!52pa1
2a3~arccosb2bd!/~a1

22a3
2!3/2,

~A23!

I 3~l!54pa1
2a3S d

b
2arccosbD /~a1

22a3
2!3/2,

whereb5A(a3
21l)/(a1

21l) andd5A(a1
22a3

2)/(a1
21l).

4. Prolate spheroid „a1Ìa2Äa3…

I ~l!5
4pa1a3

2

Aa1
22a3

2
arccoshb̄,

I 1~l!54pa1a3
2~arccoshb̄2d̄/b̄!/~a1

22a3
2!3/2, ~A24!

I 2~l!5I 3~l!52pa1a3
2~ b̄d̄2arccoshb̄!/~a1

22a3
2!3/2,

whereb̄5A(a1
21l)/(a3

21l) and d̄5A(a1
22a3

2)/(a3
21l).

If the point is inside the domain,l50.
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