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On the dynamic growth of a 180° domain in a ferroelectric material
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School of Mechanical and Production Engineering, Nanyang Technological University, Singapore 639798,
Singapore

(Received 4 November 1999; accepted for publication 3 May 000

This article investigates the dynamic movement process of a 180° domain wall in an external
electric field. By modeling the domain wall movement as a dynamic process, the induced electric
and magnetic fields due to a growing general ellipsoidal 180° domain under the action of a given
electric field was derived explicitly. A general form of the energy release rate was derived through

a surface integral, which can serve as the driving force for the movement of the surface. Based on
the solution, the released electromagnetic energy during the dynamic process was evaluated. This
electromagnetic energy is used to compensate the surface energy increase and the energy dissipation
due to the finite velocity of the domain wall movement. Following the result, an equation is
established to determine the growth speed of the 180° domain. Finally, the cases where the domain
shape is cylindrical and spherical, and the domain wall propagates along the radial direction and the
applied electric field direction, respectively, were considered in detail as illustrative examples. It is
found that the resistance caused by the depolarization field for the wall to grow along the direction
of the applied electric field is only one fifth of the value for the wall to grow along the radial
direction. © 2000 American Institute of Physids0021-89780)07615-3

I. INTRODUCTION reoriented by application of a strong dc field. This reorienta-

. . . . tion process is the so-called poling process. Ferroelectric do-
Ferroelectric crystals have been increasingly used in ac-

) . i . S mains are initially formed when the ceramics are cooled
tuator designs for various engineering applications. Th

. A N%rom high processing temperatures and they are altered dur-
commonly used ferroelectric materials in actuator applica- ; . .
: . . ; . . ing the subsequent poling process, leading to a macroscopic
tions are polycrystalline oxide ceramics of barium titanate olarization. A load can switch the polar direction from one
(BaTiO;) and (Pzr,Ti]Og) (PZT). Barium titanate and P ' P

PZT both have the perovskite cubic structure in the paraelecg0 Zﬁﬁ?re{égon;Iggg'i:‘,{e;d;?:gsSlg\/;é:i?] thriapoé?]rl dlsrv?/ﬁgmt
tric phase. At room temperature, barium titanate has a tetra Y N . ' 9 may only
y 90°. Also it is a well-known fact that the crystal changes

onal structure, while PZT has a tetragonal structure on tht ot velv by d ) I t under th
Ti-rich side and has a rhombohedral structure on the Zr-rich™> S'&t€ Progressively by domain wall movement under the

side, except that on the extreme Zr-rich side the solid soly@ction of external field, and the domain wall movements un-

tion exhibits no observable ferroelectric effect. The Com_derlle all phenomena of polarization and deformation. Since

monly used PZT is on the Ti-rich side near its morphotropicthey have profound effects on the functions of devices made

phase boundary because of the strong electromechanical cd?j- ferroelectrics, a lot of research has been done to under-
pling effect. The tetragonal structure is in a polar state in the't@nd the phenomena related to the domain switch. In an
sense that the centers of positive and negative charges f6R"Y study., Landauérpon&dered the possible formation of
each lattice unit are spatially separated, forming a dipole of?€rmally induced, §p|ke-shape('éi domains of reversed polar-
electric charges. Consequently, these crystals exhibit spontiation in BaTiQ,. Rickmanet al” presented a treatment of
neous polarization. In the stable configuration, each crystafWin domaug formation energetics in ferroelectric materials.
lite is divided into a number of macroscopic regions in whichSPecket al” described domain formation in epitaxial sys-
the polar directions differ from each other. These regions aré€Ms in terms of a defect theory. The kinetics of domain wall
called the ferroelectric domain. The commercial barium ti-€volution were considered by Loge and SuGopalan and
tanate and PZT ceramics are produced from polycrystallinditchell® carried out a systematic study of the switching
solid solutions through the conventional steps of Sinterindime, domain wall VeIOCitieS, and stabilization mechanisms
fine powders of oxide metals into solutions. The resultingof 180° domains irz-cut LiTaO; crystals. Huo and Jiafig
solid solutions do not exhibit the observable electromechaniand Rosakis and Jiafgroposed a continuum model for do-
cal coupling effect because the ferroelectric domains ar&ain switching in polycrystalline ferroelectric ceramics, and
formed in random directions so that the average polarizatiostudied the morphology of ferroelectric domains. Lynch and
of each grain is approximately zero. The ceramics exhibit thdlcMeeking? and Hwanget al® examined the nonlinear be-
electromechanical coupling effect only after the domains aréavior of PLZT based on a domain switching mechanism. Lu
et all® also investigated the nonlinear electromechanical be-
@Author to whom correspondence should be addressed; on leave fror!fwlavior related to ferroelec_tric and ferroe_lastic domain SWit.Ch_
Harbin Institute of Technology, Harbin, China; electronic mail: Ng. Yang and Sud studied the cracking phenomenon in
mwangb@ntu.edu.sg ceramic actuators related to the domain switching process. Li
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and Wend? developed a micromechanical theory for the _

nonlinear behavior of ferroelectrics. Yareg al>® made a oy E, oy E,
direct optical observation of pinning and bowing of a single PN M“/\lx\l/
180° ferroelectric domain wall under a uniform applied elec- _

tric field using a collection mode near-field scanning optical P, + h f +
microscope. Chaét al?* proposed a domain model for ferro- . _ D "
electric films. However, all the aforementioned analyses as- * 9*
sumed that the domain switching process was quasistatic. As i

a result, the energy related to the domain switching was ob- ﬁ(a\)l * ﬂb) +
tained by modeling the procedure as an electrostatic prob-

lem. In f;ct, the dogmain \F/)vall is observed to move at a vF\)/ide \[/\I/J/¢ J/¢\LJ/

range of velocity (10°-10"*m/s), and the higher the ap- ;g 1 A 180
plied electric field and temperature, the faster the wall
moves. Therefore, as referred by Loge and $ummmain

evolution is a nonequilibrium dynamic process. As the do-speed. Since the spontaneous polarization plays a role as the
main grows in a certain speed, it cannot only create a depxternal field source, to obtain the induced electric and mag-
larization electric field, but also create a magnetic fieldnetic fields by an ellipsoidal growing 180° domain, we can
around the domain. Thus part of the released energy in thgecompose the original problem shown in Figa)linto the
process of domain wall movement is used to create the magollowing two subproblems(1) under the action of the ap-
netic field in addition to complementing the surface energyplied electric field, a ferroelectric crystal with spontaneous
Increase. polarizationP along the opposite direction of the electric
~Inthis article, a 180° domain is considered to be initiatedfie|d [Fig. 1(b)]; (2) in the dielectric medium there is a grow-
inside a parent ferroelectric domain, and the 180° doma|ri1ng 180° domain with polarization, along the direction of

wall grows in some unknown Spee‘}’ “”‘?'ef the action of th‘?he applied electric fielfFig. 1(c)]. The superposition of the
electric field opposite to the polar direction of the ferroelec-y,,4 solutions gives the solution of the original problem for a
tric material. Due to the growth of the 180° domain wall, @ inear medium.

magnetic field is induced surrounding the domain. The inter-  ~qcider a ferroelectric crystal below its Curie tempera-

nal and external electric and magnetic fields for an ellipsoiy,re The dependence of the polarization of the crystal on the
dal domain are derived through solving the dynamic prob+yjieq electric field is sketched in Fig. 2. The crystal exhib-

"ts permanent polarizatioRs even in the absence of external

domain grows in a parent phase driven by an electric field.

lem. Through studying the movement of the 180° domai

wallin an electromagljetlc field, a general fO”T.‘ of the energyelectric fields. The parameté; is also called the spontane-

release rate was derived through a surface integral. As thé o S, .
. ous polarization. The constitutive equation for the ferroelec-

energy release rate serves as the driving force for the move- . . )

. L ric crystal can be expressed in the following form:

ment of the surface, an equation for determining the growth' ™ ™ o

speed of the 180° domain wall is derived. As illustrative  D="e¢-E+Pg, 1)

examples, a cylindrical and a spherical domain were consid-

ered in detail. For the spherical 180° domain, it is found that

the minimum electric field needed for the wall to propagate

along the direction of the applied field is only one fifth of the P
value needed for the wall to propagate along the radial di- A /
rection.

In order to have a more clear and practical picture of the /
various points emphasized in this article, a typical ferroelec- / P

tric material, barium titanate, is used for detailed numerical
calculation. BaTiQ undergoes a phase transition at a tem-
perature of about 130 °C. Above 130 °C, the crystal is cubic,
and the ions lie symmetrically in the unit cell. Between 0 and
130 °C, the crystal is tetragonal, and the ions lie asymmetri-
cally in the unit cell. A tetragonal unit cell may have polar

direction of any six variants. A load can rotate the polar axis
from one direction to another. We will use barium titanate to
illustrate the various points in this article. /

>

> E,

Il. THE PHYSICAL PROBLEM AND FORMULATION /

Consider the physical problem where a parent ferroelec-

tric crystal contains a 180° ellipsoidal domain under the ac-
y P FIG. 2. Schematic of dependenP¢E) on the applied electric fiel&, for

Fion _Of a uniaxial electric ﬁele_o along th_ez axis as shown 4 ferroelectric crystal, wher is the spontaneous polarization aglis the
in Fig. 4(a@. The 180° domain grows in some unknown coercive field.
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where’ is the dielectric permittivity tensoB is the electric Py 1 63 °llg
induction, andE is the total electric field. The ferroelectric Es= x> T2z X2’
crystals can be made to be equivalent to an ordinary dielec- _
tric material with a uniform distribution of spontaneous po-and the magnetic fielth is obtained as
larization. If we apply a high enough electric field opposite

A , - 1[ 8 (olg\- o (dllg) -~
to the spontaneous polarization of the ferroelectric crystal, H=_|—| —2|i— —| —2]j]|, (5)
the spontaneous polarization in some regions will begin to §cloxy | at 9%\ ot

reverse its direction. Such regions are called the 180° dojpere £= \/m c=1/\/a e, w are the permittivity and

main. Those 180° domains will grow until all the spontane-permeapility of the crystal, respectively, ands the light
ous dipole moments in the crystal switch off their d|rect|0n.speed in the crystal.

In the current investigation, the 180° growing domain is
modeled as an ellipsoid. In this section the electric field and
magnetic field around it is derived. Based on the solution, an

energy criterion for the domain growing will be established.C- The electric and magnetic field inside the 180°
domain for the original problem  [Fig. 1(a)]

A. The electric and magnetic field of subproblem 1 ) ) ) ) )
[Fig. 1(b)] For interior points of an ellipsoid)(t), A=0, therefore,

I, I; become constants. Substituting E8).into Eq.(4), then

As we discussed before, the ferroelectric crystal can b?aking the sum of Eq2) and Eq.(4), one obtains the electric
treated as an ordinary dielectric material with spontaneouge|q inside the domain as follows:

polarization P;. The uniform polarization will generate a o
charge distribution on the surface of the crystal, which cre- E;=0,
ates a macroscopic electric fieldP¢/e. If the applied elec-

in_

tric field in the dielectric material without the spontaneous E2=0, ©)
polarization isey, the total electric and magnetic field in the _ Pe

. . n__ _
crystal is glveAn by Es;=Eg _2775|3'

Eo=6y— E H=0, (2)  With the aid of Eq.(5), we have
€

- . e - Ps Ay~ dlp-

whereE, is usually treated as the applied electric field inthe  H"=—| x;—j —X,—1i |. @)
. ) 2 at at

ferroelectric crystal when we study the domain reverse prob-
lem. It is worth mentioning that for an ellipsoidal domain, the

electric field remains uniform within the domain for uniform

) o polarization. This conclusion is similar to that obtained by

[BF.iThf electric and magnetic field of subproblem 2 Eshelby® for elastic problems. For spherical domain with

9- 1(c)] radiusa

The subproblem 2 is that, in an ordinary dielectric ma-

terial, there is a growing, 180° domain with the spontaneous

polarization 2. This is an electrodynamic problem. If the Substitution of Eq(8) into Egs.(6) and(7) yields
180° domain is assumed to take an ellipsoidal shape with

|=4ma? 1,=l,=l3=3%m7. (8

principle half axesa;, a,, as, using the full Maxwell’s Ei:?: EO_Z_pS
equation, one can obtain the Hertz potentiahs follows: e ©
B K 1 N
_ pS j f fdv, _ - Hm:O.
2me Ir—r’|
Q) The other components of the electric field within the domain
K are zero.
= 2 ) Xl (V)] )
41e nnN '
_ 2 2 2
WherQX“X”IN()‘)_Xll1()‘)+X2l2()‘)+x_3|3(}‘)' and_the €X- " D. The electric and magnetic field outside the 180°
pressions o, I, 14, |2.’ I3,.together with _the detailed deri-  4omain for the original problem  [Fig. 1(a)]
vation of Eq.(3) are given in the Appendix. o ) )
By using the Hertz potential given in EB), the electric By substituting Eq(3) into Eq. (4) and adding Eq(2),
and magnetic field can be derived as follows: we obtain the electric field outside the domain as
(92]._[3 out__ ‘921_[3 _ pS 2
1:&)(18)(3, E1 C OXy0X3 Ame 5X10X3[| (M) =XnXnln(M)],

9T,

9T, ps 9°
27 9xp0x3 '

IXydXg  ATe IXydXg

(4) ESV= [1(ON) =XpXaln(N)], - (20)
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¥ B i w=y [ | [ EB+hga
r jffq)dv'f'JJj(DdU W;+W,, (12)
S Q) v—0(t)

where()(t), v are the volumes inside the moving surface and

the whole body, respectivelyb = 1/2(ED+HB) is the en-

ergy density. In the following we need to derive the change
FIG. 3. A surface of discontinuity in an electromagnetic field. rate of the energy. For the first integral in Efj2), the region

of integration and the integrand are the function of titne

Using Reynolds’ transport theorethijts change rate is ob-

1 2. 20 tained as:
ES'=Ep—| 3 =7~ —7
2 a2
(15 i | oo
= o—m(g prea a—xg)[l(K)—XanlN(K)L Q)
=fff[cp+d|v(cba)]dv
where the magnetic field is given by E&) o
t
foue = | 9 (s} 9 [ol) ffjcbdzﬂrffd)u fds, (13
Eclax, | at Xy \ dt
Q)
Ps [ 9 : - . .
. ﬁ - —l —[|(>\) XpXnIN(N) . (11)  whereu is the velocity of the surface movement a8d is

the internal side of the surface. Equatid?3) asserts that the
changing rate of the integrd} over(}(t) is equal to the rate
computed as if)(t) were fixed in its current position plus
ple. the rate at whichd is carried out of this region across its
boundary. The rate of the energy density is given by

In deriving Eq. (11), we have usedc?=1/eu, and &

I1l. ENERGY CONCEPT AND THE DRIVING FORCE (I) E i(éli-*—ﬁé)
FOR THE 180° DOMAIN EXPANDING 2 dt
Starting with a general case, we consider a general shape — _ EIS 4 ﬁ|§: E. (V i _j) IH. (—Vx é)
of the 180° domain wall in an electromagnetic fi¢kig. 3). o R
The surface can move under the action of the electric and = —EJ—[H.(VXE)—E-(VXH)]
magnetic field. With the movement of the surface, the elec- . ..
tromagnetic energy will be reduced, and the released energy = —EJ—div(EXH). (14

serves as the driving force to compensate the energy dissipa-
tion in the moving process of the surface. The energy dissiln deriving Eq.(14), we have used Maxwell's equation to
pation is due to the surface energy increase and the finiteeplace the time-derivative factors in the integradd; E
velocity of the movement. In this part, a general form of the X H, whereX is called the Poynting vector, which is identi-
energy release rate will be derived. As an application, thdied as the energy flux, or rate of energy flow per unit area.
energy release rate will be used to establish an equation ubstitution of Eq.(14) into Eq. (13), and considering the
determine the growth rate of the 180° domain wall. In fact,currentJ=0 inside the region, we have
the obtained expression to calculate the energy release rate is
suitable for the movement of any surface of discontinuity in ~ dW, . =
an electromagnetic field. Here a surface of discontinuity ff[qju 2]-nds
means that some components of the electric and magnetic
field may have certain jump due to physical mechanism
across the surface. The 180° domain wall is only an example In a similar way, one can derive the rate of the second
of such surfaces. integral in Eq.(12) as follows:

As shown in Fig. 3, the body containing a surface of
discontinuity in an electromagnetic field can be divided into ~ dW, f f E~ﬁds+f f [5- @] fds

(15

two regions, i.e., inside and outside the surface. The internal gt (16)

energy of an electromagnetic field is given by r s~
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where S~ is the external side of the surface ahdis the R a\?da R R
outside boundary of the body. The changing rate of the en- HO:ZPS(F gt (sindcosej—sindsingi). (22
ergy provided by the environment across the outside bound-
ary of the body is given by Substituting the expressions of the electric field and mag-
netic field into Eq.(18), one can derive the energy release
U= _J' J' S.fds. (17) rate after the integration
. 8ma? da 2 da\?
F | =3 4r| 3PsEo~ %+2Mp§(a) . @
Therefore the energy release rate in the process of surface
movement can be obtained as The energy release rate can also be expressed in the form of
G=0-w- [ [ @11z 1nos 1  G=g o 24
S

whereg=0dG/da is the energy reduction per unit increase of
where[®]=®°-®', [X;]=37~ 3| are the jumps of corre- the domain radius. If the surface energy density of the 180°
sponding quantities across the surface. Estélpyoposed  domain wall is denoted aS, the surface energy will in-
the well-known energy—momentum tensor as the drivingcrease 8aUs per unit increase of the domain radius. Do-
force for a defect to propagate in materials. In fact, B®  main evolution is a nonequilibrium thermodynamics process,
represents its counterpart in an electromagnetic field. Simignd its evolution velocity can be reasonably assumed to be
larly, we can define the energy—momentum vectdf & proportional to the total free energy reducfias follows:

Pi:(DUi_Ei. (19) da

. . ——=M(g—8maly)
The energy release ra@ represents the driving force for the dt

growth of the 180° domain. For a general domain wall move- 8ra’ 2 da\2
ment problem, one can develop an efficient numerical — M[ m 3pEo— &+2Mp2(—)
method to evaluate the surface integral. In what follows, we € *l dt
use EQ.(18) to calculate the energy release rate for the (25)

growth of the spherical and cylindrical domains.

—87raUS}.

If the initial velocity is zero, one can obtain the critical elec-
tric field for the domain to grow along the radial direction
through the following equation:

2
In this section, we consider the spherical 180° domainas  apE,— aps

an example to derive the explicit close-form solution of the 3e

energy release rate. The spherical domain can be used i a numerical example, considering the typical ferroelectric

model the nuclei of the 180° domain. In this part of the material barium titanete BaTiQ the material constants are

article, we consider that the spherical nuclei grow up alongs follow#2°

]Eir;?d're;ggetiltric\algt&n and along the direction of the applied 0.=0.26 CInf, €=1.8x10°% F/m,

IV. A SPHERICAL 180° DOMAIN EXAMPLE AND
DISCUSSION

U=0. (26)

A. The spherical domain grows along the radial Us=0.01 J/mk, a=1 um.

direction By substitutiing these values into E(R6), one obtains the
In such a case, the spherical domain will remain itsctitical electric field

spherical shape in the propagation process. Therefore the in- g ~4.8 Mv/m. (27)

ternal electric field is given by » ] ) )
The critical field for the radial movement of the domain wall

E\=Eb=0, E\=E,— = % (20 is so high that it is almost impossible in practice.
and the internal magnetic field remains zero. The electri(‘B_ The spherical domain grows along the direction of
field outside the domain is given by E@.0) as follows: the applied field

0_2Ps

3
a i i ° do-
E? - (F) sin 6 cosé cose, It is a widely accepted phenomenon that the 180° do

main wall will prefer to move along the direction of the
3 applied field when a single-domain crystal is placed into an
po_2Ps (3)7 i lectric field opposite the polar direction. In this part, we wil
o=— | = sin# cosé sing, (21) e E(? rC Tield opposite the polar directon. In .IS part, We wi
derive the energy release rate when a spherical domain starts
3 2p, (a3 to grow along the direction of the applied field. Since the
+—-(—) cog 6. domain will not keep its spherical shape once it starts to
' grow in this case, we should consider a general spheroid
The magnetic field is obtained from Ed.1) shape of the domain to derive the solution of electric and
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magnetic fields. To obtain the energy release rate from Eq. (L

(18), we need to know the electric and magnetic field inside gy =Mo(E~ Eo), (34)
the domain and just outside the domain. According to Egs.

(6) and(7), the electric and magnetic field inside the domainWhereMg andE, are the parameters to fit the experimental

are given by data for BaTiQ, My=25x10*m%Vs, and E,
=0.22 MV/m at room temperature. This experimental result
E'—E'—=0 E.=F.— % can be interpreted according to the energy model.
1o =T R0 e A spike can be modeled as a long cylindrical domain

(280  with the lengthL and radiusa. The electric and magnetic
field inside the domain and just outside the domain can be
obtained by using Eq$6), (7), and(30) under the condition

wheredas /dt represents the velocity of the semiaxis change-> 2. By substituting them into Eq18), we obtain the en-

of the domain along thedirection. The field just outside the €9y release rate as

domain can be obta_lined through the continuity condition G=27Ta2EOpSL. (35)

across the surface given by

- 4p - - dag
1= TFs o T8
H 15a(x1J Xal) dt ’

L L . The energy reduction due to the unit increase of the lehgth
nX(E°~E')=0, en-(E°~E')=2pgk-n, is given by

I T .. (29

n-(H°—H'")=0, n><(H°—H')=2pSR(t)[k—(n-k)n]§ ) g=2ma’Eqps. (36)
wheren, R(t) are the outward normal vector, and the changd" the same way as deriving E@5), one can obtain the
rate of the point’s distance from the origin on the wall. The VelocCity equation as

electric and magnetic field just outside the domain are thus (L Us
obtained from EQq(29) as rTe M(g—2maUg)=2ma’*M ps( Eo— 5 . (37
S
EO—E! + Z_F)S(E,ﬁ)ﬁ By comparing the experiment result with E@4), one can
€ ' obtain an estimate of the domain wall enetdy
(30)
Us=apsE.. (39

HO=H'+2pR(1)kXA. _ _
o . _ Taking the experimental values=0.5um, ps=0.26 C/nf,
Substitution of Egs(28) and (30) into Eqg. (18) gives the  andE, =0.22 MV/m, we find thaty,=0.0286 J/rA. This es-

energy release rate timate is just within the range of experimental data for

: 25
. 8ma® dag p_§ 2 BaTIC;.

E dag
3 dt |Pst0T 15

+O.2362up§(m

(31) ACKNOWLEDGMENT

As in the last part, if the initial velocity is zero, one can This work was partly supported by The National Natural
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the direction of the applied electric field through the follow- Young Investigators.
ing equation:

ap2 APPENDIX: DERIVATION OF THE ELECTRIC AND

apsEg— l—SZ—US:O_ (32 MAGNETIC FIELD FOR A GROWING, 180° DOMAIN

In any time-invariant reference system of coordinates,

For BaTiG;, one can calculate the critical electric field as o gifferential form of Maxwell's equations reads as

E,=0.97 MV/m. (33  follows:*®

Comparing with Eq(27), we can find that the critical elec- - B

tric field for such movement is only one fifth of the value for XE=— BT (Ala)

the radial movement. This may explain why the 180° domain R

irecti i ic fi - - dD

always grows along the direction of the applied electric field. VxH=J+ - (Alb)
V.D=p, (Alc)

V. A CYLINDRICAL 180° DOMAIN EXAMPLE R
V-B=0, (Ald)

When a single-domain crystal is placed into an electric - - -
field opposite to the polar direction, numerous 180° domairvhereE is electric field(V/m); H is magnetic fieldA/m); D
spikes emergé?® They grow much faster in the direction of is electric inductior{(C/n¥); B is magnetic inductiotiT); J is
the applied field than in the normal direction. The forwardelectric current densityA/m?); andp is electric charge den-
velocity was found experimentally to vary with the applied sity (C/m?), and the prescribed source currdnand charge
electric field a&® densityp are related by the continuity equation
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N (')‘p

V. J—I———O. (A2)

In the present work, we impose a further simplification by

B. Wang and Z. Xiao

H= V><1 ol
¢ c at’

g=\ule.

For such a problem, we first need to derive the solution

(A9)

ignoring the anisotropic effect of the dielectric constant. Forfor the following equation subjected to the initial condition
linear isotropic materials, the constitutive relation can beg(1 t<0)=0 and to the radiation conditions at infinity as

written as follows:

D=eE,
- - A3
B LA, (A3)
wheree, u are the permittivity and permeability of the iso-
tropic medium, respectively.

The electric polarization gives rise to the charge distri-
bution with volume density

p=—V-(2Py). (Ada)

If the polarization changes with time, similarly, it corre-
sponds to the current density as follows:

(Adb)

By taking the curl of Eq(Ala) and substitutingv X H from
Eq. (Alb), we obtain

VXVXE= PE_ 23 A5
STHEST T M (A5)
Combination of Eqs(Alc) and(A5) yields
5 L8 &j+1v 2=1/ A6
2 g2 TR Ve T Hen (A6a)
Substitution of Eq(A4) into Eq. (A6a) leads to
VE- — PE_(1 7 |-VV 2P, A6b
2\ 2 ' (AGb)

wherel is the diagonal unit matrix. The above equation re-
lates the unknown electric field with the source fields2e.
By introducing the Hertz potentidll as follows:

- 1 (92 (92 (92 az -
c? at?  ox? axay xoz
El &2 1 9% & &2
E2 - axay 22 ay? Yz
3
92 92 1 6%
i Xz ayoz  c2oat? 92 |
Iy
X Hz s (A7)
RIE
we have
o 1 P 2P "
c? at? €’ (A8)

Once the Hertz potentizf[[ is determined, the electric field
can be found through EqA7), while the magnetic field is
computed from Eq(Ala):

the Green'’s function:

1 9°G(r, t_

o =
VeG(r P

- g =~ a(0)at). (A10)
The solution of Eq.(A10) in a spherical system of coordi-
nates is

S(t*)
4ar

o(t—rlc) B

G(r.n= 4qrr

, (A11)
wheret* =t—r/c is the retarded time, is the position vec-
tor, andr is its magnitude.

Green'’s function represents the response of the system
described by Eq(A10) to a localized unit source of space—
time density 5(r)8(t). It can be used to derive the final
expression for the field radiated by an arbitrary source dis-
tribution. For the present case, the applied source is the di-
pole density P(r,t)/e. The total Hertz potential can be ob-
tained by superposition as shown in E¢8) and (A10):

fffdvfdt’
zwfffjdvfdtPs(r )

S(t—t'—|r—r'|/c)
r=r"|

2776jff

wheret* =t—|r—r’|/c. For the current problem, the polar-
ization source is restricted to the finite region. Generally
speaking, since is the light speedst>|r —r]|. Therefore the
polarization can be expressed using the Heaviside function
as follows:

G(r—r Jt—=1")

P(F" %)

T (A12)

Po(,t*)=~Py(F,t) = pekH[Q(1)], (A13)
where
1 reQ(t)
HIQO]= 0 others '’ (A14)

in which Q(t) is the region of 180° domain. Since the do-
main is expanding, it is a function of time. In what follows,
we assume that the 180° domain takes an ellipsoidal shape,
and derive the electric and magnetic field both inside and
outside the domain.

Substitution of Eq(A13) into Eq. (A12) yields

fi=Ps (A15)
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If the 180° domain is assumed to take an ellipsoidal shap@. Elliptical cylinder (a;— )

with principle half axesa;, a,, a3, the integral in Eq(A15) I(\)=0
can be expressed in terms of the following simple formula as ’
shown in Mura®® N 4masa, | (a3+\)12 }
A PR R E v
_ZWGJ J J v |F_l:‘;| - 47T6[I()\)_XanIN()\)]' I ()\) 47Tala2 (ai‘f‘)\)l/z :| (A22)
Q(t) = — ,
(A16) 2 a?—a2 | (a+\)12
wherex X, n(N) =x311(N) +x31 ,(\) + X531 5(\), and the ex- 15(\)=0.
pressions oh, I, 14, I,, I3 are given as follows:
< ds 3. Oblate spheroid (a,=a,>as)
I(N)=2maja af —,
(M =2maia28s || 17 PR T
= ———arccosb,
SR @ =
i = 7Ta1a2a3 T A
I x (a7 +5)A(S) 1.(\)=1,(\)=2majas(arccoh—bd)/(aj—a3)%?
whereA(s)=[(a?+s)(a2+s)(a2+s)]¥2 and\ is the larg- (A23)
est positive root of the equation d
5 5 5 I3(\) =4malas| ——arccod |/(ai—a3)*?,
X7 X5 X5 b
(aitN)  (az+tN)  (agt+h) whereb= \[(a2+\)/(a?+\) andd=/(a?—a2)/(a+ ).
Thus
I(\)=4ma,aas(a?—a3)  Y2F(6,k), 4. Prolate spheroid (a;>a,=as)
_ 2 2\-1/,2_ a2y—1/2 Ama,a —
I1(N)=4majaag(a;—ajy) ~(aj—a3) )= — 1 32arccoshb,
X[F(6,k)—E(8,K)], Va1~ 8 -
|,(\) = 4maya,aq (a2—al) Yy a2—a2) ! (A19) l1(\)=4ma,a5(arccohb—d/b)/(a—a3)%?  (A24)
X (a2—a2) " 'E(0,k)— (al—a2) L 1,(\)=13(\)=2ma,a3(bd—arccoshb)/(a2—a?)¥?
X (a2—a2) " Y2F (6,k) — (a2—al) whereb=\/(aZ+ \)/(a2+\) andd=(a?—a2)/(a%+\).

If the point is inside the domain=0.
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