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THE SCATTERING OF HARMONIC ELASTIC
ANTI-PLANE SHEAR WAVES BY A FINITE
CRACK IN INFINITELY LONG STRIP
USING THE NON-LOCAL THEORY

Zhou Zhengong Liang Jun Wang Biao
( Center for Composite Materials, Harbin Institute of Technology , Harbin 150001, China)

ABSTRACT In this paper, the scattering of harmonic anti-plane shear waves by a finite crack in infinitely
long strip is studied using the non-local theory. The Fourier transform is applied and a mixed boundary value
problem is formulated. Then a set of dual integral equations is solved using the Schmidt method instead of the
first or the second integral equation method. A one-dimensional non-local kernel is used instead of a two-di-
mensional one for the anti-plane dynamic problem to obtain the stress occurring at the crack tips. Contrary to
the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local
dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture crilerion based
on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack

length, the width of the strip and the latlice parameter.
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[ . INTRODUCTION
The last four decades have witnessed the inauguration of a novel theory of material bodies, named
non-local mechanics. This was made possible mainly because of the efforts of Eringenm , Green and

!, and involved elastic, plastic (Eringenm) and liquid (Eringe-

Riviin'*’, Kroener'” , and Kunin"
n'® ) media.

In several previous papers’’ °’, Eringen discussed the state of stress near the tip of a sharp line
crack in an elastic plate subject to uniform tension, shear and anti-plane shear. The field equations
employed in the solution of these problems are those of the theory of non-local elasticity. These solut-
tons gave finite siresses at the crack tips, thus resolving a fundamental problem that persisted over the
years. This enables us to employ the maximum stress hypothesis to deal with fracture problems in a
natural way, and the non-local elasticity makes it potentially possible to understand the behavior of
composite materials. However, Eringen’s’”"*) solution is not exact. The stress solution of Eringen’s”’
has oscillations near the crack tip for one-dimensional problems. For a large lattice parameter, the rel-
ative errors of Eringen’s'”’ solution will become large . For this reason, the iterative technique used by

] 9]

Eringen'”) was not helpful to solving this kind of problem. The methods used by Eringen[s' were not
g 1Y g p

helpful to solving dual-integral equation, either, because the kemel of the second kind of Fredholm in-
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tegral equation in Eringen’s papers™®’ is divergent. And in papers[m'”] , they discussed the propaga-
tion of Love wave, the dispersion of plane waves and the wave propagation in elastic plate by use of
non-local theory. In fracture mechanics, it is important to study the behavior of dynamic stress in the
vicinity of the crack end, and the dynamic crack problems of the strip are of particular interest. In re-

[12-14

cent papers ', the scattering of harmonic elastic waves by a finite crack or two collinear cracks us-

ing the non-local theory was investigated. To the author’s knowledge, the dynamic crack problemm] in
the strip using the classical elastic theory has been tackled for a long time .However, no analytical
treatment of the dynamic crack problem in the strip by using the non-local theory has ever been at-
tempted .

The present paper deals with the problem of a line crack in an infinitely long strip where the crack
surface is subjected to the harmonic anti-plane shear wave. The field equations of non-local elasticity
theory are employed to formulate and solve this problem. For overcoming the mathematical difficulties,
one-dimensional non-local kernel function is used instead of two-dimensional kernel function for the an-
ti-plane dynamic problem to obtain the stress occurring at the crack tips. For obtaining the theoretical
solution and discussing the probability of using the non-local theory to solve the dynamic fracture strip

problem, one has to accept some assumptions made by Nowinski' """

. Certainly, the assumption
should be further investigated to satisfy the realistic condition. In solving the equations, the crack sur-
face displacement is expanded in a series of Jacabi polynomials and Schmidt method''®’ . This process
is quite different from that adopted in Refs.[7 —9,15]. This method can overcome difficulties that oc-

cur in Eringen’s papers[7'9]

. The solution in this paper is more accurate and reasonable than Eringen’
[7-9]
5

. The solution of the present paper, as expected, does not contain the stress singularity near the
crack tips, thus clearly indicating the physical nature of the problem, namely, in the vicinity of the
geometrical discontinuities in the body, the non-local intermolecular forces are dominant. For such
problems, therefore, one has to resort to theories incorporating non-local effects, at least in the neigh-
bourhood of the discontinuities. The stress along the crack line depends on the crack length, the width
of the strip and the lattice parameter.

Il . BASIC EQUATIONS OF NON-LOCAL ELASTICITY
According to the non-local theory, the stress at a point X in the body depends not only on the
strains at X but also on strains at all other points of the body. This observation is in agreement with the
atomic theory of lattice dynamics and experimental observations on phonon dispersion ( Eringen'"”’) . In
the limit when the effects of strains at points other than X are neglected, one obtains classical (local)
theory of elasticity. For homogeneous and isotropic elastic solids, the linear theory is expressed by the

set of equations with vanishing body force as follows:

Tux = Pl (1
Ty = IV[A'U X - XDe (X ,0)8, +24/(1 X' = X 1)e,(X',0)]dV(X")  (2)

ey = (uyy + u )12 (3)
where the only difference from classical elasticity is in the stress constitutive Eq. (2) in which the
stress 7, (X,¢) at a point X depends on the strains ¢, (X’ ,¢), at all points of the body. For homo-
geneous and isotropic solids there exist only two material constants, A’ (} X’ -~ X1) and /(1 X' - X
I') which are functions of the distance | X’ — X | . The integral in Eq.(2) is over the volume V of the
bedy enclosed within a surface dV. A’ (1 X’ — X|) and ¢/ (1 X’ - X |) can be written as follows
{Eringen et al." %"y,
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(A, ¢") = (A,)a(l X - X 1) (4)
a(1X’ - X1) is known as influence function, and is the function of the distance | X’ — X |. A and
u are the Lamé constants of classical elasticity. p is the mass density of the material .

Substitution of Eq.(4) into Eq.(2) yields

ru(X,t) =j «(1 X' = X Doy (X, )dV(X) (5)
v
where ay-(X',t)=Ae,,(X',t)8,j+2,ue,»J(X',t)
=Au, (X' ,0)8, + plu, (X', 0)+u, (X ,¢)] (6)

The expression of Eq.(6) is the classical Hooke’s law. Substituting Eq.(6) into Eq. (1) and using
Green-Gauss theorem, it can be shown that

J a1 X = X DIA + ) ug ' (X0 8) + 0/ (X, 0)1dV(X’) -

Jwa“X/—X|)0'k1(X”t)dak(X’) = ot (7)

Here the surface integral may be dropped if the only surface of the body is at infinity. da, is the ele-
ment of the surface d V.

Il . THE CRACK MODEL
Consider an infinitely long, homogeneous isotropic

thin elastic strip of width 2 containing a finite crack par-

allel to the edges of the strip. The crack occupies the re- < )
gion | x 1 << !,y =0. The geometry of the problem is id
shown in Fig.1. Let w be the circular frequency of the in- l l = i

cident wave. In what follows, the time dependence of all

field quantities assumed to be of the form e™ ™ will be

suppressed but understood. When the crack is subjected to

. . . . Fig.1 A finite elastic strip containin,
the harmonic elastic anti-plane shear waves, as discussed & P &

tral k.
in Ref.[19], the boundary conditions on the crack faces a central crac

at y =0 are
w(x,0,t) =0, Lx 1> ! (8)
t,.(%,0,t) =~ 74, lxl<g i (9)
t,(x, = h,t) =0, - ® < x < ® (10)
w(x,y,t) =0, for x >+ (11)
6, = #r(??z;;’ 6, = ,ug—;), all other 5, = 0 (12)

In this paper, the wave is vertically incident and it is assumed that 7, is positive.

IV. THE DUAL INTEGRAL EQUATIONS
According to the boundary conditions, Eq.(7) can be written as follows:

.Uj J all & —x V1, 1y —y DV w(a,y ,1)dx'dy -

Jlla(l x - x I,O)(Jy,(x',O,t)’dx' —J
[6.(2", - h,t))da’ = - po’w (13)

all s = x 1, o, (&', B, )] +



Vol.13, No .4 Zhou Zhengong et al. : Scattering of Anti-plane Shear Waves + 331 -

where [an(x',y,t)) =0, (2,5 ,¢t) -0, (& ,y ,1t) (14)
The displacement field possesses the following symmetry regulation:
w(x,y,t) = - w(x, - y,t) (15)
Employing this in Eq.(6), we have
[o'y,(x,y,t)] =0, forall x (16)
Define the Fourier transform by the equations
7(s) =j flx)e = dx (17)
f(x) = El;rj_mf(s)e”’ds (18)

For solving the problem, the Fourier transform of Eq.(13) with respect to x can be given as follows:

2 —
th &(Isl,Iy—yl)[(—sz)w+%—u;]dy+pw2w=0 (19)

_h ¥
What should be done now is to solve the integrodifferential Eq.(19) for the function w . It seems obvi-
ous that a rigorous solution of such a problem has encountered serious if not unsurmountable mathemati-
cal difficulties, and one has to resort to an approximate procedure. In the given problem, according to
the Refs.[10,11], the appropriate numerical procedure seems to follow naturally from the hypothesis
of the attenuating neighbourhood underlying the theory of non-local continua. According to this hypoth-
esis, the influence of the particle of the body on the thermoelectric state at the particle under observa-
tion, subsides rather rapidly with an increasing distance from the particle. In the classical theory, the
function that characterizes the particle interaction is the Dirac delta function since in this theory the ac-
tions are assumed to have a zero range. In non-local theories the intermolecular forces may be repre-
sented by a variety of functions as long as their values decrease rapidly with the distance. In the pr-
esent study, as adequate functions it was decided to select the terms, §,(y - y), n=1,2,, of
the so-called &-sequences. A 8-sequence, as generally known, is (in the present case a one-dimen-
sional ) Dirac delta function, §(y’ — y) . With respect to the terms of the adopted delta sequence, the
following simplifying assumptions were accepted: (see the Refs.[10,11]). Nowinski has solved sever-

al non-local problems by using this kind of assumption. )

(a) For a sufficiently large j (as compared with the sphere of interactions of the particles) , it is

permissible to make the replacement
J @
| 1 0.y - pay < [ s00y - pay (20)
- -

(b) As a consequence, the terms 8,(y — y),n>>1 acquire the shifiing property of the Dirac

function,

| 78,0 =y < 1) (21)

The influence function was sought in the separable form. In this paper, the strip dynamic fracture
problem is investigated. The cracks are parallel to the edges of the strip. The strip occupies the region
-—®w<x<o, |ylsh. So according to the above discussion, the non-local interaction in y direc-
tion can be ignored. In view of our assumptions, we can give

a(lsl, 1y -y1)=an(s)8(y ~y) (22)
From Eq.(19), it can be shown that

- Yw =20 (23)
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where ¥* = s’ — w’/[c’a,(s)], ¢* = ulp.
Because of symmetry, it suffices to consider the problem in the first quadrant only. The solution
of the Eq.(23) does not present difficulties, it can be written as follows (y=0):
w(s,y,t) = A, (s)exp(- 7y) + B,(s)exp(7y) (24)
where A,(s) and B,(s) can be determined from the boundary conditions. The boundary conditions
(8) = (12) can be applied to yield

JEA(s)cos(sx)ds =0 x> 1 (25)

J: &o(s))'[l - exp(— 2')’h)]/[1 + exp( - 2vh)1A(s)cos(sx)ds = nTy/2p s

0<x<l. (26)
where A(s) = [1+exp( ~2Yh)]A,(s), B, (s) =exp( =27h)A,(s).
The Eqs.(25) and (26) are the dual integral equations of this problem.

V . SOLUTION OF THE DUAL INTEGRAL EQUATION

The non-local modulus a will depend on a characteristic length ratio a/l, where a is an internal
characteristic length (e.g., lattice parameter, granular distance. In this paper, a represents lattice
parameter. ) and [ is an external characteristic length (e.g., crack length, wave-length. In this pa-
per, ! represents the crack length.). By matching the dispersion curves of plane waves with those of
atomic lattice dynamics (or experiments), we can determine the non-local modulus function « for a
given material. Here, the only difference between the classical and non-local equations is in the intro-
duction of the function @, (s) and it is logical to utilize the classical solution to convert the system
Eqs.(25) and (26) into an integral equation of the second kind which is generally better behaved . If
ao(s) =1 (the classical elastic case), Egs.(25) and (26) reduce to the dual integral equations for
the same problem in classical elasticity. Of course, the dual integral Eqs.(25) and (26) can be con-
sidered to be a single integral equation of the first kind with a discontinuous kernel (Eringen et
al."” ). It is well-known in the literature that integral equations of the first kind are generally ill-posed
in the sense of Hadamard, e.g.small perturbations of the data can yield arbitrarily large changes in the
solution. This makes the numerical solution of such equations quite difficult. In this paper, the
Schmidt method (Morse, 1958) is used to overcome the difficulty. As discussed by Eringen et al.!” "’

[10,11

and Nowinski'"*"", the following equations are assumed:

ao = yoexpl- (B/a) (&' - x)*] (27)
xo = Bl(avr) (28)
where 3 is a constant (here 8= e, v/ 7/l, e, is a constant appropriate to each material.). a is the
lattice parameter. So it can be found that
a,(s) = expl - (sa)?/(28)*] (29)
and @,(s) =1 for the limit a—0, so that Eqs.(25) and (26) are reduced to the well-known equation
of the classical theory. Here the Schmidt method'” can be used to solve the dual integral Eqgs. (25)
and (26) . The displacement w is presented by the following series:

w = > a,PRHP (w1 - 1), for 1xlgl,y=0 (30)
a=1

w =0, for 1x1>1,y=0 (31)
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where a, are unknown coefficients to be determined and P!> (x) is a Jacobi polynomialfm . The

Fourier transformation of Eq. (30) ist!

A(s) = w(s,0,t) = > a,GJs,(Is)]s (32)
G, =2Vx(-1D"'"T(2n - 1/2)/(2n - 2)! (33)

Note that I'(x) and J,(x) are the Gamma and Bessel functions, respectively .
Substituting Eq. (32) into Egs.(25) and (26), respectively, the Eq.(25) can be automatically
satisfied, the Eq.(26) reduces to the form for | x| <

- = 1 - exp(-27h) . mT,
HZ::‘ a,,G,,J'0 ap(s)y ST+ expl= 27hﬂ]2,,_,(ls)cos(xs)ds = 2 (34)

The semi-infinite integral in Eq.(34) can be evaluated numerically by Filon method”’ , except for

singularities in the integrands of the integrals in Eq.(34). These singularities are poles that occur in
the complex plane at the zero of the function 1 + exp( -27h), such as 2¥h = ir, 3ir,5ir, . All
poles depend on the material, the incident wave frequency @ and the lattice parameter. It can be noted
that the integral of Eq.(34) is not convergent at these poles. However, there is no pole for w/c < x/
(2h) . So the integral of Eq. (34) is convergent at these poles for w/c < x/(2hk) . In this paper, only
the case of w/c < w/(2h) is discussed. From Ref.[19], this case may be consistent with the state-
ment that only shear waves with w/c < m/(2h) can propagate in an elastic strip of width 2k . This is
in agreement with the well-known results that frequencies with which shear waves can propagate are less
than a parameter depending on the width of the strip. As for w/c > x/(2h), it should be further in-
vestigated . Equation (26) can now be solved for the coefficients a, by the Schmidt method" for w/c
< n/(2h). For brevity, Eq.(34) can be rewritten as:

DiaE (%) = Ulx) (35)

where E, (%) and U(x) are known functions and coefficients @, are unknown and will be determined .

A set of functions P,(x) which satisfy the orthogonality condition
: !
j P (x)P.(x)dx = No., N, = f P* (x)dx (36)
0 0

can be constructed from the function, E,(x), such that

P.(x) = > M.E(x)IM,, (37)
where M,, is the cofactor of the element d,, of '15: , which 1s defined as
[dy,dp,dy, . d,]
dysdn,dy,,dy,
dyyrdsy,dy, s ds, '
D, = | oo |, dy = JOE;(x)E,(x)dx (38)

Ld, ,dy,dy,,d, ]

Using Eqgs. (35) - (37), we have

a, = D qM,IM, (39)
i=n
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1
with 0 = H U(x)P,(x)dx (40)
i
VI . NUMERICAL CALCULATIONS AND DISCUSSION
When coefficients a, are known, the entire dynamic stress field is obtained. However, in fracture
mechanics, it is of importance to determine dynamic stress r,, along the crack line. r, at y =0 is giv-

en as follows:

_ g&m * 1 — exp(-27h)
T, == ;,“"G"L @Y T4 expl= 2yh)]12n-|(13)005(5x)d3 (41)

For @ =0 at x = % I, it has the classical stress singularity. However, so long as a 20, (41) gives a
finite stress all along y =0. At — Il <x<,7,/7, is very close to unity, and for x > [, 7./, pos-
sesses finite values diminishing from a maximum value at x = [ to zero at x = o . Since a/(28]) >
17100 represents a crack length of less than 100 atomic distances (Eringenm ), serious questions may
arise regarding the interatomic arrangements and force laws, the solutions are not pursued at such crack
sizes . The dynamic stress is computed numerically for the Lamé constants A =98 GPa, u =77 GPa, p
=7.7x10°(kg/m’) . The semi-infinite numerical integrals are evaluated easily by Filon and Simpson
methods because of the rapid diminution of the integrands. From Refs. (23,241, it can be seen that the
Schmidt method is performed satisfactorily if the first ten terms of infinite series to Eq. (35) are re-
tained. Because the integrands of Eqs.(34) and (41) are complex, in all the figures, the shear stress
along the crack face has a slight variation.In all computations, the limiting condition w/c < 7/(2h) is

kept in view of the values chosen for w/¢ and the strip width & . The results are plotted in Figs.2 - 8.

55
65k =
Z//(lzpzo)'zo 0005  hil=1.0 0F RII=1.0
sst ‘ A3} ar(2p1) =0.001 a/(26L) =0.003
< >
S ~ 35t -
S45E - \h 20k
[
st 25§
25 . . 15 " . 1) \
0.1 0.4 0.7 1.0 0.1 0.4 07 1.0 0.1 0.4 0.7 1.0
wle wle wlc
(a) (b) T
lc=0.4 lc=0.4
A le=0.4 ] e 1 @
PI\ ez - 0.000s 1\ erap =0.001 Bp\ s =0.003
IS =] o
. 30 S 22} 13
[ - N«
26 . s 18 . . 1
0.4 0.9 1.4 0.2 0.7 1.2 0.2
) il kil
(d) (e) ()

Fig.2 The stress at the crack tip.
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Fig.6 The variation of the stress
along the crack line for

al(280) =0.001.

Fig.7 The variation of the stress

along the crack line for

al(281) =0.003.

Fig.8 The variation of the stress

along the crack line for

al/(2p81) =0.003.

The following observations can be made:

(1) The method used in this paper can overcome the mathematical difficulties that occur in
Eringen’s papers.’ >’ . The results are more accurate than Eringen’s and the method is more reasonable
than his as well.

(2) The maximum stress does not occur at the crack tip, but slightly away from it. This phenom-

enon has been thoroughly substantiated by Eringen'®”!

. The maximum stress is finite. The distance be-
tween the crack tip and the maximum stress point is very small. Contrary to the classical elasticity solu-
tion, it is found that no stress singularity is present at the crack tip, and also the present results conve-
rge to the classical ones for positions far away from the crack tip.

(3) The dynamic shear stress at the crack tip becomes infinite as the atomic distance a—0. This
is the classical continuum limit of square root singularity.

(4) For the a/f = constant, viz., the atomic distance does not change, the values of the dynam-
ic stress concentration (at the crack tip) becomes higher with an increase of the crack length. It can be
seen from experiments that materials with small cracks are more resistant to fracture than those with
large ones.

(5) The dynamic shear stresses increase as the frequency w becomes larger.

(6) The dynamic shear stresses decrease as the width of strip becomes larger.

(7) The significance of this result lies in that the fracture criteria are unified at both the macro-
scopic and microscopic scales, viz., it may solve the problem of a crack of any length.

(8) The present results converge to the classical ones when far away from the crack tip. However
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they are different near the crack tip.
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