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INVESTIGATION OF ANTI-PLANE SHEAR
BEHAVIOR OF TWO COLLINEAR CRACKS
IN PIEZOELECTRIC MATERIALS BY
A NEW METHOD

Zhou Zhengong Qu Guimin Wang Biao
( Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China)

ABSTRACT In this paper, the interaction between two collinear cracks in piezoelectric materials under
anti-plane shear loading was investigated for the impermeable crack face conditions. By using the Fourier
transform, the problem can be solved with two pairs of triple integral equations. These equations are solved
using Schmidt’s method. This process is quite different from that adopted previously. This study makes it

possible to understand the two collinear cracks interaction in piezoelectric materials.
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I . INTRODUCTION

It is well known that piezoelectric materials produce an electric field when deformed, and undergo
deformation when subjected to an electric field. The coupling nature of piezoelectric materials has
found wide application in electro-mechanical and electrical devices, such as electro-mechanical actua-
tors, sensors and structures. When subjected to mechanical and electrical loads in service, these pi-
ezoelectric materials can fail prematurely due to their brittleness and presence of defects or flaws pro-
duced during their manufacturing process. Therefore, it is important to study the electro-elastic inter-
action and fracture behaviors of piezoelectric materials.

Many studies have been made on the electro-elastic fracture mechanics based on the modeling and
analysis of one crack in the piezoelectric materials. (see, for examples, Deeg, 1980; Pak, 1990,
1992 Sosa, 1992; Suo et al., 1992; Suo, 1993; Park and Sun, 1995a, b; Zhang and Tong, 1996;
Zhang et al., 1998; Gao et al., 1997; Wang, 1992). Most recently, Chen and Karihaloo (1999)
considered an infinite piezoelecric ceramic with impermeable crack-face boundary condition under arbi-
trary electro-mechanical impact. Chen and Yu (1999) studied the transient response of a piezoelectric
ceramic with coplanar cracks under electromechanical impact for impermeable boundary conditions by
using the Fourier integral transform and the singular integral equation method. Some significant results
have been obtained in Chen and Yu’s (1999) paper. Sosa and Hhutoryansky (1999) investigated the
response of piezoelectric bodies disturbed by internal electric sources. The impermeable boundary con-
dition on the crack surface was widely used in the investigations (Pak, 1990, 1992; Suo et al.,
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1992; Suo, 1993; Park and Sun, 1995a, 1995b; Chen and Karihaloo, 1999, Chen and Yu, 1999).
The problem of the interacting fields among multiple cracks in a piezoelectric material was studied by
Han (Han et al., 1999). In Han’s paper, the crack is ireated as continuous distributed dislocations
with the density function to be determined according to the conditions of external loads and the crack
surface. However, the problem of the collinear cracks in piezoelectric materials was not studied in
Han’s paper. He just gave some special cases as examples.

In the present paper, the interaction between two collinear symmetrical impermeable cracks sub-
jected to anti-plane shear in piezoelectric materials was investigated using a somewhat different ap-
proach, namely, Schmidt’s method (Morse et al., 1958). It is a simple and convenient method for
solving this problem. Fourier transform is applied and a mixed boundary value problem is reduced to
two pairs of triple integral equations. In solving the triple integral equations, the crack surface dis-
placement and electric potential are expanded in a series using Jacobi’s polynomials. This process is
quite different from that adopted in references ( Han et al., 1999 Deeg, 1980; Pak, 1990, 1992;
Sosa, 1992; Suo et al., 1992; Park and Sun, 1995a,b; Zhang and Tong, 1996; Zhang et al.,
1998; Gao et al., 1997; Wang, 1992; Chen and Karihaloo, 1999; Sosa and Hhutoryansky, 1999;
Chen and Yu, 1999) . The form of solution is easy to understand. Numerical calculations are carried

out for the stress intensity factors and the electric displacement intensity factors.

Il . FORMULATION OF THE PROBLEM
Consider an infinite piezoelectric body containing
two collinear symmetric impermeable cracks of length (|
- b) along the x-axis. 2b is the distance between the

two cracks. The piezoeleciric boundary-value problem

for anti-plane shear is considerably simplified if we con-

b 1 &
sider only the out-of-plane displacement and the in- I I—_.—‘l '
1

. . . 1
plane electric fields. The plate is subjected to a constant f |

stress T, = — 7y, and a constant electric displacement
Fig.1 Cracks in a piezoelectric materials

D, = - D, along the surface of the cracks, see Fig.1, i
body under anti-plane shear.
such that the constitutive equations can be written as
T = CuW o + ‘315¢,kv D, = esw, "€1|¢,k (1,2)
where 7, , D, (k= x,y) are the anti-plane shear stress and in-plane electric displacement, respec-
tively. ¢4, e,5,€,, are the shear modulus, piezoelectric coefficient and dielectric parameter, respec-
tively. w and $ are the mechanical displacement and electric potential .
The anti-plane governing equations for piezoelectric materials are (Shindo, Narita and Tanaka,
1996)
cuViw+ esV'¢ =0 3)
‘3|5v2"1—511v2¢ =0 (4)
where V? =3°/9x + 3°/9y” is the two-dimensional Laplace operator. Body force, other than inertia,
and the free charge are ignored in the present work. Because of the assumed symmetry in geometry and
loading, it is sufficient to consider the problem for 0 x < % ,0< y < % only.
A Fourier transform is applied to Eqs.(3) and (4) . Assume that the solution is
w(s,y) = A(s)e ¥ (5)

where A(s) is an unknown function and the superposed bar indicates the Fourier transform throughout
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the paper, e.g.,
F(s) = J:f(x)e""’dx (6)
Inserting Eq. (5) into Eq.(4), it can be assumed that
$(s,y) - z—:jms.y) = B(s)e’” (7)

where B(s) is an unknown function .
As discussed in Narita’s ( Narita and Shindo, 1998), Shindo’s (Shindo, 1996) and Yu’s ( Yu

and Chen 1998) references, the impermeable boundary conditions of the present problem are:

t,.(x,0) = - 1, bglalgl (8)
D,(x,0) = - D,, b<laxlgl (9)
w(x,0) = $(x,0) =0, lxl<b, lxi>1 (10)
w(x,y) = $(x,y) =0, for(x* + y*)'"* > (11)

The problem therefore reduces to the determination of the two unknown function A(s) and B(s). Be-

cause of symmetry, the boundary conditions can be applied to yield two pairs of triple integral
equations :

%J A(s)cos(sx)ds = 0 O< x < band x > 1 (12)
® D

EJ sA(s)cos(sx)ds = L(ro + M) bl (13)

TJo M €1

and

%J B(s)cos(sx)ds = 0 O<x <bandx > 1 (14)
0
® D

gj sB(s)cos(sx)ds = - — bgaxgl (15)

T Jo €n

2

€is

where p = Cop+ -
"

To determine the unknown functions A (s), B (s), the above two pairs of triple integral
equations (12, 13, 14, 15) should be solved.

I . SOLUTION OF THE TRIPLE INTEGRAL EQUATION
To solve the above two pairs of triple integral equations (12 - 15), the Schmidt’s method (Morse

et al., 1958) can be used. The displacement w and the electric potential $ can be represented by the
following series:

i L Ltb (x_1+b)22
w(x,0) = Z)anp(n”“’” 1_§ L j | dorb<zx<l,y=0 (16)
= ")
w(x,0) =0, forx >1, x < b, y =0 (17)
) L L+ (x_1+b)22
$(x,0) = "Z_;)an;‘“-”” 1_1% 1 - (1 - i)z Jforb<cx<l,y =0 (18)
2 2

$(x,0) = 0, forx >1,x < b, y =0(19)
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where a, and b, are unknown coefficients to be determined and P(,,m'lm (x) is a Jacobi polynomial

(Gradshteyn and Ryzhik, 1980). The Fourier transformation of Eqs. (16) and (18) is (Erdelyi,
1954)

A(s) = w( ZaBG(s) M,( 1;”) (20)
B(s) = $(5.0) - 220500 = 3 (b, - Za)me.(0) L (s 158) @
1
P G -
60 - (- 1)"/2cos(s 1 ; b) , n=0,2,4,6," )
(—l)("“)/zsin(sl—;é), n=1,3,5,7,

where I'(x) and J,(x) are the Gamma and Bessel functions, respectively.

By using Eqs.(20) and (21), Eqgs.(12) and (14) can be automatically satisfied, and the rema-
ining Eqs.(13) and (15) reduce to the forms after integration with respect to x in [ b, x ], respective-
ly.

i}a"B"J: s'lG,,(s)],H,(s 1 ; b)[sin(sx) — sin(sb) ]ds = i%(l +A)(x -b) (24)
Z(b,, - :ia")B,,J:s" G,,(s)],”,(s 1 ; b)[sin(sx) - sin(sb)]ds = - ;fo(x - b) (25)
where}\:e”—Do.

€nTlo

From Eqgs.(24) and (25), it can be shown that the unknown coefficients a, and b, have the fol-

lowing relationship:

_ | &5 Do#) ' _
b, = (s“ ok T, = z,(1 + 2) (26)

So it suffices to solve Eq.(24) for the present problem. The semi-infinite integral in equation (24)
can be modified as (Gradshteyn and Ryzhik, 1980)

J7 (15 ool 152 sintrra -

( )4'l [(n+1)n']
1
S TN Ty
J: %J..H(s ! ; b)sin(s 1 ; b)sin(sx)ds -

2(n+1) cos[(n + l)sin"(1 +1b_-—be)]_

1+b-2x)]

-7 - sin[(n + l)sin_'( T-b

27)

154 o] 52

(oot 8- (5T

(28)
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Thus the semi-infinite integral in Eq.(24) can be evaluated directly. Equation (24) can now be
solved for the coefficients a, by the Schmidt’s method (Morse et al., 1958) . For brevity, Eq.(24) is
rewritten as

> a.E(x) = U(x), b<x <l (29)

where E, (%) and U(x) are known functions and coefficients @, are unknown and will be determined .

A set of functions P,(x) which satisfy the orthogonality condition
I 1
[ PP )dx = Moo, N, = [ PLods (30)
b b

can be constructed from the function, E,{(x), such that

P(x) = ) B (x) (31)
where M, is the cofactor of the element d,, of D,, which is defined as
(oo > doy» ez s 5 do, |
dlo’dnvdlzv""dln
dysdy,dy, 5 dy, \
D, = | oo |, d, = LE‘(")EJ(")“ (32)

Ldy,dysdy, s d,, ]
Using Egs.(29) - (32), we obtain

@ M]
o = g M (33)
29 W,
with
1 1
q; = FJbU(x)Pj(x)dx (34)

J

IV. STRESS INTENSITY FACTORS AND ELECTRIC DISPLACEMENT
When the coefficients a, and b, are known, the entire stress field and the electric displacement
can be obtained. However, in fracture mechanics, it is of importance to determine stress 7., and the
electric displacement D, in the vicinity of the crack tip. r, and D, along the crack line can be ex-

pressed respectively as

eu(3:0) = = 23 Ceway + b )R G() L[ s 15 eonCas)as

- ﬁ/:T)Z)aBJ: 6.() (s 152) cosaxs)ds (35)
D,(x,0) = - %g(%a" _ e, b")B,,J[: 6. () Juur( s 152) cosas)ds

- sz"EaBj 6.() i s 52) cos(xs)ds (36)

Observing the expression in Egs.(35) and (36), the singular portion of the stress field and that of the

electric displacement can be obtained respectively from the relationships ( Gradshteyn and Ryzhik,
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1980)

cos(s L ; b)cos(sx) = %{cos[s(l ; b _ x)] + cos[s(1 ; b + x)]}

sin(s 1 ; b)cos(sx) = %{sin[s(l ; b _ x)] + sin[s(l ; b + x)]}
cos[nsin—l(b/a)]’ e > b

Jm J.(sa)cos(bs)ds = ¢ ,II)

0 ~ a"sin( nx/2) b > a

«/bz—az[b+«/b2—a2]",

sin[nsinfl(b/a)], e > b

Jm J.(sa)sin(bs)ds = azn_bz

0 a"cos(nw/2) b > a
/bz—az[b+ /bz_az]n’

The singular portion of the stress field and that of the electric displacement can be expressed respec-

tively as follows

ey
n(1+A)§aanH,,(b,x) (37)
D=_D°#iaBH(b %) (38)
Tl'TO <~ n*n*%n ?
where
H(b,x) =- F(b,x,n) n=0,1,2,3,4,5,- (for0 < x < b)
H((b,x) = (-1 F,(b,x,n), n=0,1,2,3,4,5,-+, (for1 < %)
n+l
F,(b,x,n) = = 2(1_b) 2 3 |
A+ b -22) ~(1-b)[1+b-2x+v(1+b-2x)"-(1-b)7]"
n+l
Fz(b,x,n) = 2(1_b)

Vx-1-87 - (-0 2x-1-b+vV(Q2x-1-8)"-(1-571"
At the left end of the right crack, we obtain the stress intensity factor K, as

KL_11m«/27r(b—x)-1'_1+A4/n(1_b)2a3 (39)

b

At the right end of the right crack, we obtain the stress intensity factor K as

KR_hm«/ZTr(x-l 'T=1+/\'/n’(1 b)z(—l)aB (40)

21"

At the left end of the right crack, we obtain the electric displacement intensity factor D, as

. (1+A)D D
D, = limv2r(b-x)-D = °",/n(1_b)}ja - g L:f—:KL

b T,
(41)
At the right end of the right crack, we obtain the electric displacement intensity factor Dy as
(1 + A) D, D
 lim VIR T - D - o/t _ )
Dy = lim /2x(x - 1) - D = 2=,/ b)z< 1)a 7, K= K
(42)

V . NUMERICAL CALCULATIONS AND DISCUSSION
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The dimensionless stress intensity factors K, and K, are calculated numerically. So the intensity
factors D, and Dy can be obtained from the relationships (41) and (42) by giving the electric loads

and the stress loads. Adopting the first ten terms of the infinite series to equation (29), we performed
9

the Schmidt procedure. For a check of the accuracy, the values of z a,E,(x) and U(x) are given
n=0

in Table 1 for 5 =0.5. In Table 2, the values of the coefficients a, are given for 5 =0.5. From the
above results and references (see e.g.ltou, 1978, 1979; Zhou, 1999a, 1999b), it can be seen that
the Schmidt’s method is performed satisfactorily if the first ten terms of the infinite series to equation
(29) are obtained. The behavior of the solution stays steady with an increase of the number of terms in
Eq.(29) . Hence, it is clear that the Schmidt’s method is carried out satisfactorily. The precision of

the present paper’s solution can satisfy the demands of the practical problem. In no computation are the

9
Table 1 Values of Z)(a,,En(x))/[ &(2‘;_“] and Table 2 Values Ofﬁ
7
U(x)/[%;’”]”—bforb:o.s for b=0.5 g
9 a,

$ a,E, (x) Ulx) __ n wro(1+A)

* Py EO(I—*'A) M T
2n 2u 0 0.161498E + 00
05 0 0000 0 0000 1 0.267988E. - 03
2 0.277891F - 04
0.6 0.1001 0.1000 3 0.276478E - 05
4 0.268628F. - 06
0.7 0.1998 0.2000 s 0. 265218E - 07
0.8 0.2999 0.3000 6 0.432511E - 08
7 0.250341F - 09
0.9 0.4001 0.4000 8 0.348761E - 10
9 0.321782F - 11

Table 3 Variation with b of the stress intensity factors K, and K, , and of the electric
displacement intensity factors D, and D, for D,/z,=0.5

b K./t Kel 7, D, D,
0.01 2.81459 1.40362 1.40729 0.70181
0.02 2.31594 1.40617 1.15797 0.70309
0.03 2.06550 1.39318 1.03275 0.69659
0.06 1.70631 1.34613 0.85316 0.67307
0.10 1.49154 1.29063 0.74577 0.64532
0.15 1.34416 1.23151 0.67208 0.61576
0.20 1.24704 1.17887 0.62352 0.58944
0.30 1.11018 1.08274 0.55509 0.54137
0.40 1.00209 0.990704 0.50105 0.495352
0.50 0.901839 0.897294 0.450919 0.448647
0.60 0.799957 0.798319 0.399978 0.399159
0.70 0.689442 0.688957 0.34471 0.344478
0.80 0.561420 0.561323 0.280710 0.280661
0.90 0.396474 0.396467 0.198237 0.198233
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material constants considered because the intensity factors do not depend on the material constants.
The solution of two collinear cracks of arbitrary length @ — b can easily be obtained by a simple change
in the numerical values of the present paper (@ > b >0), i.e., it can use the results of the collinear
cracks of length 1 — &/a in the present paper. The solution of this paper is applicable for two collinear
cracks of arbitrary length. However, the method in this paper is not valid for the two collinear cracks
of different lengths. This should be further investigated. The results of the present paper are shown in
Table 3. It can be seen that the stress intensity factors at the inner crack tips are bigger than those at
the outer crack tips. The effects of the two collinear cracks decrease when the distance between the two

collinear cracks increases.

VI . CONCLUSIONS

The anti-plane electro-elastic problem of a piezoelectric material with two collinear impermeable
cracks has been analyzed theoretically. The traditional concept of linear elastic fracture mechanics is
extended to include the piezaelectric effects and the results are expressed in terms of the stress intensity
factors. The stress intensity factors increase when the distance between the two collinear cracks de-
creases. The stress intensity factors are found to be independent of the electrical loads and the material
constants while dependent on the length of the crack. However, the intensity factors of the electric dis-
placement are found to depend on the stress loads, the electrical loads and the stress intensity factors.

They are also found to be independent of the material constants.
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