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In this paper, the dynamic effect was incorporated into the initiation and propagation 
process ?fa transformati~n i~clusi~n. Ba~ed on the time-varying propagation equation of 
a sp~encal transformation mcluswn wzth pure dilatational eigenstrain, the dynamic 
elasttc fields both inside and outside the inclusion were derived explicitly, and it is found 
~hat w~en ~he _tran~formation region expands at a constant speed, the strain field inside the 
t_ncluswn ts ttme-mdependent and uniform for uniform eigenstrain. Following the basic 
tdeas of crac:k propagation problems in dynamic fracture mechanics, the reduction rate of 
~he m~chantcal part of the free energy accompanying the growth of the transformation 
mcluswn ~as derived as the driving force for the move of the interface. Then the equation 
to determme the propagatwn speed was established. It is found that there exists a steady 
SP_eed for the gro_wth of the transformation inclusion when time is approaching infinity. 
Fmally the relatwn between the steady speed and the applied hydrostatic stress was 
derived explicitly. 

Introduction 
Martensitic-type phase transformations can happen in many 

kinds of solid materials. These materials can be certain metals 
such as shape memory alloys and TRIP steels, as well as ceramic~ 
like zirconia. Extensive investigations have been done in the past 
decades to understand and model the mechanical behavior of 
materials during transformation (for example, Sun and Hwang, 
1993a, b; Wang, 1997; Sano et al., 1992; Silling, 1992; Starn, 
1994; etc.). Here we only mention a few papers, more completed 
literature may be found in a recent review paper by Ficher et al. 
( 1996). However, most of these investigations are limited to the 
quasi-static cases . 

In fact, a certain incubation time will be necessary for transfor­
mation to start, i.e., nucleation, but this is only in the order of 
hundreds of nanoseconds. Once the transformation has initiated, it 
will typically proceed throughout the crystal as growth of inclusion 
with very high speed, even over 1000 m/s. For such a high-speed 
propagation process of martensite, it is extremely difficult to 
investigate its nature using an experimental approach. The research 
work on dynamic analysis of transformation are far few compared 
with those on quasi-static analysis. One approach to study the 
propagation behavior of martensitic transformation is to assume 
that the growth of martensite takes place by the propagation of 
waves throughout the materials. By assuming the growth velocity 
according to the velocity of stress waves, one could predict the 
final morphology of martensitic transformation. For example, 
Meyers ( 1980) described the growth of lenticular martensite typ­
ically occurring in the Fe-Ni and Fe-C systems in terms of the 
propagation of transformation waves, and his model could deter­
mine the shape of a growing martensite plate. Whereas it is a 
well-known fact that in reality, only a few martensitic transforma-
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tions can take place in the order of wave speed. Later Yu and 
Clapp ( 1989a) used both the magnetic induction and acoustic 
emission method to measure the velocity of martensitic growth, 
and then they ( 1989b) used molecular dynamics simulations to 
investigate the growth process . Mikata and Nemat-Nasser ( 1988) 
solved the eigenstrain problem wherein the transformation strain is 
spatially uniform in the inclusion and is time-harmonic, but the 
boundary of the inclusion is fixed . The key to the growth dynamics 
of martensitic transformation is the growth velocity of the moving 
interface and how it is affected by various driving forces and 
resisting forces in connection with temperature or external load. To 
the author's knowledge, no widely accepted conclusions exist 
about it at present stage. 

In this paper, the objective is to incorporate the dynamic effect 
into the propagation process of a transformation inclusion. Based 
on the propagation equation of a spherical transformation inclusion 
with pure dilatational eigenstrain, the dynamic elastic fields both 
inside and outside the inclusion were derived explicitly first. Then 
following the basic ideas of crack propagation problems in dy­
namic fracture mechanics (Freund, 1990), the reduction rate of the 
mechanical part of the free energy accompanying the growth of the 
transformation inclusion was derived as the driving force for the 
propagation of the interface. Based on such an energy equation, the 
equation for determining the propagation speed was established. 
Although all the explicit expressions obtained are for self-similar 
growth of a spherical transformation region, some conclusions 
reveal some general characteristics of the growth stage. And the 
idea of this paper can also be extended easily to study the growth 
process of more realistic martensitic morphology. 

2 The Stress Fields in an Elastic Solid With a Growing 
Martensitic Inclusion 

2.1 Basic Equations for Dynamic Eigenstrain Problem. 
Using the convention that repeated suffixes imply summation, the 
equation of motion can be written in the form as 

( l) 
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where u,(x, t) is the total displacement field, pis the density of the 
medium, and iJ is the body-force per unit volume. 

Let us consider a body that tends to undergo a nonelastic small 
deformation eX,(x, t). Suppose that the body occupies a volumeD 
and is bounded by the traction-free surface L, then the stress a1, is 
given as 

ajk = cjklm(elm- e?m) = 'Tjk- cjklme?m (2) 

where e ij = t< u i.j + u }.;) is the total strain, and 'Tjk = cjklme lm is 
the stress that would be produced if the displacement u ,(x, t) were 
completely elastic. Inserting (2) into the equation of motion with 
no body forces, we obtain 

ar1, a 2u1 ae?m 
ax, - p i)i2 = cjklm ax, (3) 

With the boundary COndition that 'TJknk - CJklmn,e?m 0 On L. 
Comparing Eqs. (1) and (3), we see that the nonelastic deformation 
eX,(x, t) produces the same total displacement as that by a body 
force iJ = - C1,1mae ?ml ax, throughout D and surface traction F1 = 
C1"mn,e?rn over L. By introducing the dynamic Green's function 
GiJ(x' - x; t' - t), which means the x;-component of the 
displacement produced at (x'; t') by a concentrated impulsive unit 
force in the x,-direction at (x, t), one obtains (Willis, 1965; Mura, 
1987) for the case without external surface force 

(4) 

If the action of external surface force is considered, Eq. (4) 
becomes 

-I ~ I 0 aG,/x'-x;t'-t) 
- dt cjklme lm(x, t) ax, dv(x) 

-~ D 

+I~ dt I F1(x; t)G,/x'- x; t'- t)ds(x). (5) 
-~ L 

2.2 Solution for Spherical Inclusion. Now we consider a 
transformation inclusion as a region n with boundary r inside 
elastic medium D, which undergoes a spontaneous uniform non­
elastic deformation e?m (Fig. 1). 

Considering the growth of the inclusion, the eignstrain is ex­
pressed as 

e?m = Ei,.(t)H(R(t)- lxl) (6) 

where R(t) is the radius of the inclusion, and H(·) is the Heavi­
side's function. For R(t) = constant, it corresponds to Nemat­
Nasser's work when E;;., is time harmonic. Here for simplicity, the 
current problem involves a time-independent E;;.,, and the self­
similar growth of spherical inclusion was considered. If the bound­
ary L is traction free, the total displacement field is derived by 
inserting Eq. (6) into Eq. (5) and using Gauss's theorem, 

Fig. 1 A growth Inclusion In Infinite medium 
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aG,/x' - x; t' - t) ( ) 
X dv X 

ax, 

=I~ dt I cjklmETmnkGij(x' - x; t' - t)ds(x), (7) 
- ~ r 

where r is the surface of the spherical inclusion and n, is the 
outward normal to the surface. 

In an isotropic medium, the appropriate expression for dynamic 
Green's function G ,1(x; t) has been given by Love (1944) as 
follows: 

1 {S(x-bt) a2x-t 
G,1(X; t) = -4 - b 8 + -- t 

1rp X IJ ax,axj 

+ Xx;X
3
1 [ S(x a- at) _ S(x -b bt)]} 0:::; bt:::; x:::; at 

= 0 otherwise (8) 

where
2 
8(-) is Dirac's delta function, a 2 = (A + 2J.L)Ip, b2 = J.Lip 

and x = x1x1 , and A, J.L are Lame's constants. 
We consider the spherical transformation inclusion undergoing 

a uniform dilatation Er throughout its volume, and having the same 
elastic moduli as the matrix. Hence 

(9) 

Substitution of Eq. (9) into Eq. (7) yields 

u,(x', t') = (3A + 2J.L) I~ dt I ErR~~) GiJ(x'- x; 
-~ S(R) 

t'- t)ds(x) . (10) 

By symmetry, in polar coordinates (r, 9, c/J), the only nonzero 
displacement is u,(r, t'), which coincides with u 3(x'; t') at any 
point x' = (0, 0, r) of the x;-axis. Therefore, 

u,(r, t') = u3 (0, 0, r; t') 

= (3A + 2J.L) I~ dt I ·. R~~) G 31 (x' - x; 
-~ S(R) 

t' - t)ds(x) 

_ 3A + 2J.L I~ J" {cos OS(x- bt) 
- dt b 2p X 

-~ 0 

1 
+ xs [3(r cos 9- R)(r,- R cos 9)- x 2 cos e] 

' 
(r cos 9 - R)(r- R cos 9) [ 8(x - at) 

+ x a 

8(x- bt)]} 
1: - . .. b ,. R

2
(t) sin Ode (11) 

where we have substituted for_GJJ ~m Eq. (8) with x' = (O , O, 
r) and x = ( R sin. e cos. tf>, R SID 9 SID ~· R cos _e), and performed 
the trivial integranon w•th. respect ~o cPJ The 9-mtegration can be 
carried out by transfomung the mdependent variable to x as 
follows: ' · · t• ·" 
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( 12) 

and the integration range for 8 is (0, 7T), which should change to 
Clr - Ri, r + R) for x. By considering the nonzero range of G 3j 
given by Eq. (8), the integration range should be (bt, at) for x. 
Through the integration, one can find that the components with 
speed b canceled each other. One obtains 

3,\ + 2/L ET Jtu 
u,(r, t') = u3 (0, 0, r; t') = 

2
p ·-; ljl(t'; t)dt 

IL 

( 13) 

where (t L• t u) are the lower and upper limits of the integration and 
are determined by lr - R(t)l ~ a(t' - t) ~ r + R(t), and 

{

r 2 + R 2(t)- a 2(t' - t) 2 

2r 2 

ljl(t'; t) = lr- R(t)l ~ a(t'- t) ~ r + R(t) (l 4) 

0; otherwise. 

If we know the propagation equation R(t) of the transformation 
inclusion, we can derive the dynamical displacement field both 
inside and outside the inclusion through Eq. (13). 

2.3 Spherical Inclusion With Constant Propagation Veloc­
ity 

(I) Interior Points. If the point xis inside the inclusion (r -
R(t) < 0 orr < R(t)), equations for determining the upper and 
lower limits of the integration variable t are as follows: 

a(t' - t~)- R(t~) + r ~ 0 ( 15) 

( 16) 

If we further assume that the inclusion expands at constant 
speed v, R(t) vt. Equations (15) and (16) give the integration 
range 

at'- r at' + r 

inclusion is extension, the stresses inside the spherical inclusion 
are always hydrostatic compressive as expected. Further, the com­
pressive stress will increase with the increasing speed of inclusion 
expansion. If the growth speed of the inclusion reaches the speed 
a of irrotational waves, the total extension strain will be reduced 
25 percent as compared with the total strain of the static case (see 
Eq. (19)), and the hydrostatic compressive stress inside inclusion 
increases by 25 percent as given by Eq. (20). 

(2) Exterior Points. In such case, the equation for determin­
ing the upper and lower limits of the integration is given by 

a(t' - tZ) + R(tZ) - r ~ 0 (21) 

(22) 

For uniform expansion inclusion, the integration range is given 
by 

at' - r at' - r 
---:5 t:5 ---. 
a+v a-v 

(23) 

Substitution of Eq. (23) into Eq. (13) gives 

(3,\ + '2/L)E T { 

u~(t) = 4par 1 (a~ _ v 2) 3 2vr
2
(at- r)(a

1
- v

2 j1 

2
3 3' 'I, 3 3 + 3 v (at- r) (3a· + v·) + 3 a·[(r- vt) (a+ v) 

-(r+vt) 3(a-v) 3]} (24) 

au~ tt~ 
a~= (A+ 211-l -a-+ 2A -. 

r r 
(25) 

One can check easily that on the surface of the inclusion (i.e., r = 
vt) 

tt~(t) = u~(t) (26) 

---~t~---. 
a+v a+v ( 17) which satisfies the continuity condition on the surface. 

Carrying out the integration ( 13) on the range (17) gives radial 
displacement inside the inclusion as follows: 

I - 3,\ + 2/L T 
u,(t)-

3 
( ) 2 (a+ 2v)rE 

pa a+ v 
( 18) 

The total strain inside the inclusion is given by 

au, U, 3,\ + 2/L T 
E,=-=E,=-=

3 
( + )'(a+2v)E. (19) 

ar r pa a v -

For isotropic materials, the stress inside the inclusion can be 
obtained as follows: 

- [ ( I + 3A ': 2.)1( I + "(" v: v)) ~ I] 
X (3,\ + 2/L)ErO;j · (20) 

It is interesting to note that inside an expanding inclusion at a 
constant velocity. the elastic field is time-independent and the 
strain and stress are constant for uniform eignstrain as the case of 
a static inclusion problem (Mura, 1987). If the growth speed v 
approaches zero, Eqs. (18) and (19) approaches the result of the 
static inclusion problem by substituting a 2 = (,\ + 2!L)Ip into 
them. It can be found through Eq. (20) that if the eigenstrain of the 
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3 Energy Concepts and the Equation of Martensitic 
Inclusion Growth 

Accompanying the propagation of the transformation inclusion, 
the energy will change. Similar to the dynamic fracture process 
(Freund, 1990), the released energy serves as a generalized driving 
force for the growth of the inclusion. In this section, we will derive 
the expression of the energy release rate, and establish the equation 
to determine the growth rate of the inclusion. 

3.1 The Rate of Mechanical Energy. Consider a finite 
body D containing a transformation inclusion f1. Along the surface 
S of D, the external force is T, = cr,jnj, and the inner and outer 
surfaces of f1 arc denoted as r-, r+ (Fig. 2). 

The mechanical part of the internal energy involves the elastic 
energy plus the kinetic energy. Therefore, the rate of elastic strain 
energy inside D is given by 

Fig. 2 A transformation inclusion In elastic medium 
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where 

Substitution of Eqs. (28), (29) into Eq. (27) yields 

1 I d { (au; r) (auk r)} 
= l dt Cijkl ax}- E;J axl- Ekt dv 

D 

_I (au; .r)(auk r)} - Cijkl ax . - Eij axl- Ekt dv 
D 1 

_I (au; . r) - cru ax . - Eu dv. 
D 1 

(27) 

(28) 

(29) 

(30) 

By substituting Eq. (I) into Eq. (30), the first term of Eq. (30) can 
be written as 

=I a~ (cruu;)dv- I pii,u;dv. (31) 
D 

1 
D 

In an elastic medium with a growing inclusion, we cannot use 
Gauss's theorem directly to the first term in Eq. (31), since across 
the boundary of the inclusion, the integrand is not continuous. So 
we divide the integral into two parts as follows: 

(32) 

where r is the surface of the inclusion, n1 is the exterior unit vector 
normal to r. and 

(33) 

The change rate of the kinetic energy is given by 

Therefore the change rate of the internal energy is given by 
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E=W+k 

The rate of work done by the external force T; is given by 

(36) 

Therefore the energy release rate accompanying the growth of the 
transformation inclusion can be obtained as follows: 

According to Eqs. (6) and (9), one can obtain 

e~ = erouo(R(t)- lxi)R(t). 

(37) 

(38) 

The volume integral in Eq. (37) can be carried out first on lxl. and 
one obtains 

Eshelby proposed the famous energy-momentum tensor as the 
driving force for a defect to propagate in materials (Eshelby, 
1970). In fact, Eq. (39) gives the rate of the driving force for a 
transformation region to expand in the same sense. IT also means 
the reduction rate of the mechanical part of the free energy ac­
companying the growth of the transformation inclusion. For spher­
ical inclusion with pure dilatational eigenstrain as discussed in this 
paper, Eq. (39) becomes 

= S(R){[cr,u,] + CT;;ETR(t)} 

{ [
au

0 

(au' ) J = S(R) (A.+ 2~-t) --a/- u~- ar'- er u~ 

U, 0 U, T ·I 

[ 
0 ( I ) ] +2A 7 u,- 7 -e u, 

+ erR(t')[ cr?1 + (3A. + 2~-t) 

X ( aaur~ + 2 ur~- 3er)]} I r = R(t') (40) 

where S(R) is the surface area of the inclusion. The radial dis­
placements u;, u~ inside and outside the inclusion are given by Eq. 
(13) as follows: 

I
t' 

u; = C 1/J(t'; t)dt 
IL 

(41) 

I
to 

u~ = C 1/J(t'; t)dt 
IL 

(42) 

where C = (3A. + 2~-t)er/2pa, 1/J(t'; t) is given by Eq. (14), and 
tL, t~, t~ can be determined by Eqs. (15), (16), and (21), respec­
tively. It can be found easily that 

Transactions of the ASME 



{ 
cit~ cit~ }I t 1 = t 0 = t'·-=- = 1 r = R(t'). u u ' cit' cit' (43) 

Therefore 

·O .( [J''cii/J(t';t) 1 citL] 
u,=u,=C tL cit' dt+l-1/J(t;tL)iJi' (44) 

ciU~ [It' cii/J(t'; t) cit~ 1 citL] - = c dt + - - 1/J(t . t ) -
cir cir cir ' L cir 

IL 

(45) 

ciu~ _ [ J'' cii/J(t'; t) cit~_ '· citL] 
cir - C cir dt + cir 1/J(t ' tL) cir · 

IL 

(46) 

Substitution of Eqs. (44), (45), and (46) into Eq. (40) yields 

· l [ r 2aC l II= S(R) C (3A + 2J.L)E - a 2 _ R2(t') (A+ 2J.L) 

[I t ' cii/J(t'; t) '• citL] T 1 l O 
X IL cit' dt + 1 - 1/J(t ' tL) iJi' + E R(t ) CT;; 

[f
''cii/J(t';t) cit~ 

- 3(3A + 2J.L)Er + (3A + 2J,L)C 'L cir dt +a;: 

_ .(t. :td ~·: +2 r .,,. ;t)dt/R(t') lll· (47) 

IT can also be expressed in the form as 

rt = gR(t) (48) 

where g = ciii/ciR, is the rate of mechanical energy reduction per 
unit increase of the inclusion radius. 

3.2 The Rate of Chemical and Surface Free Energy. If the 
reduction of surface energy per unit area and the reduction of the 
chemical free energy per unit volume are denoted as AU, AU ch = 
-AS(T0 - n. where AS is the transformational entropy change, 
T is the temperature (Wang, 1997), and the total free energy 
release rate per unit increase of R is given by 

G = g + 47TR 2AUch + 87TRAU, 

rt 
= R- 47TR 2AS(T0 - T) + 87TRAU,. (49) 

Considering that the energy will be dissipated in the process of 
the transformation, one can establish the growth criterion of the 
transformation region as follows: 

(50) 

where G c is the material constant, which represents the dissipated 
part of the energy. Through Eq. (50), one can obtain the radius of 
the transformation inclusion as a function of time under different 
external conditions. 

4 Discussion and Some Concluding Remarks 
If we take the assumption that after time t 0 , the inclusion will 

grow in constant speed V, therefore, from tL tot', it expands also 
in the constant speed, and one obtains 

a - V 2[R(t0 ) - Vt0 ] 
t = -- t' - ----=-=--
L a+V a+V 

(51) 
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R(t) = R(t0 ) + V(t - t 0 ). (52) 

Substitution of Eqs. (51), (52) into Eq. (13), then into Eq. (47) 
yields 

IT= S(R){ c[ (3A + 2J,L)Er- a 2

2
:CV2 (A+ 2J,L)] [ 3R:~~~:) 

8a 2V 2a 2 2 ( R 2(tL) 
+ 3(a + V) 3 - (a+ V) 2 + 3- 2R 2(t') 

-(a ~~) 2 + D :: ~] + erv{ CT?,- 3(3A + 2J.L)Er 

+ (3A + 2J,L)C [ R
2
(tL) _ 2a

2 
+ ~]}} (53) 

a+V 2R 2(t') (a+V) 2 2 . 

Substitution of Eq. (53) into Eq. (49), then into Eq. (50) yields 
an equation for determining the speed V of the inclusion propa­
gation. It can be found that the speed depends on the time t' 
through the terms involving R(tJIR(t'). When the timet' ~ oo, 
one finds 

R(tL) a - V 
lim R( ') = ---:;:-y. 
t '-x t a 

(54) 

Substitution of Eq. (54) into Eq. (53) gives 

. { [ 2aC ] II= S(R) C (3A + 2J.L)Er- a 2 _ V2 (A+ 2J.L) 

[ 
(a- V) 3 8a 2 V 2a 2 2 

X 3(a + V) 3 + 3(a + V) 3 - (a+ V) 2 + 3 

( 
(a - V) 

2 
2a 

2 I) a - V] 
- 2(a + V) 2 - (a + V) 2 + 2 a + V 

{ 
(3A + 2J.L)C 

+eTV CT?;-3(3A+2J,L)Er+ a+V 

[;~a~ V~)
2

2- (a ~~)2 + ~]}- (55) 

Substitution of Eq. (55) into Eq. (49), then into Eq. (50) yields an 
equation for determining the steady speed of the inclusion expan­
sion when t' ~ oo , 

If it is assumed that the boundary of the transformation inclusion 
grows in constant speed V, one can write 

a-V 
tL =a + V t', R(t) = Vt. (56) 

Therefore, from Eq. (47), one can find that reduction rate of the 
mechanical part of the free energy n is also given by Eq. (55) . 
Substitution of Eq. (55) into Eq. (49), then into Eq. (50) yields 

47TVR 2 { c[ (3A + 2J,L)E T- a 22:Cv2 (A + 2J,L)] [ 3(~a ~ v~))) 
8a 2V 2a 2 2 ((a- V) 2 

+ 3(a + V) 3 - (a+ V) 2 + 3- 2(a + V) 2 

2a 
2 

I ) a - V] r { 0 r 
-(a+ V) 2 + 2 a+ V + e V CT;;- 3(3A + 2J.L)E 

+(3A+2J,L)C[(a-V)
2 

_ 2a
2 +~]}} 

a + V 2(a + V) 2 (a + V)1 2 

- 47TR 2AS(T0 - T) + 87TRAU, = Gc. (57) 

Using Eq. (57), one can determine the constant growth speed of the 
transformation inclusion according to the applied environment 
temperature and hydrostatic load for different materials . The dis-

DECEMBER 1999, Vol. 66 I 883 



sipated part of the energy can be assumed to be proportional to the 
volume of the inclusion, therefore G c can be expressed in the form 
as 

(58) 

where t c is the dissipated energy for creating unit volume of 
martensite. Substitution of Eq. (58) into Eq. (57) yields 

~ { c[ (3A + 2J.L)er- a2
2
:cv2 (A+ 2J.L) J [ 3(~a ~ ~)

3

3 
8a 2V 2a 2 2 ( (a- V) 2 

+ 3(a + V) 3 - (a+ V) 2 + 3- 2(a + V) 2 

2a 
2 1) a - V] r { 0 r 

-(a+ V) 2 + 2 a+ V + e V CT;;- 3(3A + 2J.L)€ 

(3A+2J.L)C[(a-V)
2 

_ 2a
2 ~]}} 

+ a + V 2(a + V) 2 (a + V) 2 + 2 

2 
- flS(To- T) + R flU,= t c· (59) 

From Eq. (59), we know, if the surface energy flU, can be 
neglected, under the action of constant hydrostatic tension, or 
constant temperature, the interface of martensitic inclusion can 
grow in constant speed, whereas if the surface energy cannot be 
neglected, to obtain the constant speed for martensite growth, the 
applied external condition must change in proportion to o:1/R. 

If we further assume that the reduction of the chemical free 
energy compensates for the dissipation energy in the transforma­
tion process, i.e., flUch = -flS(T0 - T) = g" one obtains 

~ { c[ (3A + 2J.L)er- a2
2
:cv2 (A+ 2J.L) J [ 3(~a ~ ~)

3

3 
8a 2V 2a 2 2 ( (a- V) 2 

+ 3(a + V) 3 - (a + V) 2 + 3- 2(a + V)l 

-(a ~~)2 + ~) :: ~] + erv{ CT~- 3(3A + 2J.L)€r 

+ (3A + 2J.L)C [(a- V)
2 

_ 2a
2 

+ ~]}} 
a + V 2(a + V) 2 (a + V) 2 2 

2 
+ R flU,= 0. (60) 

160 

140 --V1=2km/s ... 
Cl. -- v2=4km/s 
Q. 120 

-- v3=6km/s 
II) 
II) 

100 ----- v4=8km/s 
~ 
Vi 
. 2 80 N 
II) e 60 
"0 
>-

:X: 
40 

20 

0 0.2 0.4 0.6 0.8 
The radius of the transformation inclusion R(m) 

Fig. 3 The applied hydrostatic stress versus the size of the transforma­
tion Inclusion for growth velocities; v1 = 2 km/s, v2 = 4 km/s, 113 = 6 
km/s, v4 = 8 km/s 
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Fig. 4 The applied hydrostatic stress versus steady speed of the Inclu­
sion expansion 

Using Eq. (60), one can derive CT~ required to keep the interface 
propagating in constant speed as a function of the inclusion size. If 
we take the ceramic material as an example, whose constants are 
A= 130.77 Gpa, J.L = 80.15, p = 2500 kg/m 3

, er = 0.04, flU, = 
-200 Mpa, the applied hydrostatic stress was shown in Fig. 3. 
The results shown here do not correspond to any practical case. 

The applied hydrostatic stress versus the steady speed was 
shown in Fig. 4. It is obvious that the growth speed is always lower 
than the speed a = 10790 rnls of irrotational waves . 
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