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Strain in Infinite Elastic Domain

In this paper, the dyvnamic effect was incorporated into the initiation and propagation
process of a transformation inclusion. Based on the time-varving propagation equation of
a spherical transformation inclusion with pure dilatational eigenstrain, the dynamic
elastic fields both inside and outside the inclusion were derived explicitly, and it is found

that when the transformation region expands at a constant speed, the strain field inside the
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inclusion is time-independent and uniform for uniform eigenstrain. Following the basic
ideas of crack propagation problems in dvnamic fracture mechanics, the reduction rate of
the mechanical part of the free energy accompanying the growth of the transformation
inclusion was derived as the driving force for the move of the interface. Then the equation
to determine the propagation speed was established. It is found that there exists a steady

speed for the growth of the transformation inclusion when time is approaching infinity.
Finally the relation between the steady speed and the applied hvdrostatic stress was

derived explicitly.

Introduction

Martensitic-type phase transformations can happen in many
kinds of solid materials. These materials can be certain metals,
such as shape memory alloys and TRIP steels, as well as ceramics
like zirconia. Extensive investigations have been done in the past
decades to understand and model the mechanical behavior of
materials during transformation (for example, Sun and Hwang,
1993a, b; Wang, 1997; Sano et al,, 1992; Silling, 1992; Stam,
1994; etc.). Here we only mention a few papers, more completed
literature may be found in a recent review paper by Ficher et al.
(1996). However, most of these investigations are limited to the
quasi-static cases.

In fact, a certain incubation time will be necessary for transfor-
mation to start, i.e., nucleation, but this is only in the order of
hundreds of nanoseconds. Once the transformation has initiated, it
will typically proceed throughout the crystal as growth of inclusion
with very high speed, even over 1000 m/s. For such a high-speed
propagation process of martensite, it is extremely difficult to
investigate its nature using an experimental approach. The research
work on dynamic analysis of transformation are far few compared
with those on quasi-static analysis. One approach to study the
propagation behavior of martensitic transformation is to assume
that the growth of martensite takes place by the propagation of
waves throughout the materials. By assuming the growth velocity
according to the velocity of stress waves, one could predict the
final morphology of martensitic transformation. For example,
Meyers (1980) described the growth of lenticular martensite typ-
ically occurring in the Fe-Ni and Fe-C systems in terms of the
propagation of transformation waves, and his model could deter-
mine the shape of a growing martensite plate. Whereas it is a
well-known fact that in reality, only a few martensitic transforma-
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tions can take place in the order of wave speed. Later Yu and
Clapp (1989a) used both the magnetic induction and acoustic
emission method to measure the velocity of martensitic growth,
and then they (1989b) used molecular dynamics simulations to
investigate the growth process. Mikata and Nemat-Nasser (1988)
solved the eigenstrain problem wherein the transformation strain is
spatially uniform in the inclusion and is time-harmonic, but the
boundary of the inclusion is fixed. The key to the growth dynamics
of martensitic transformation is the growth velocity of the moving
interface and how it is affected by various driving forces and
resisting forces in connection with temperature or external load. To
the author’s knowledge, no widely accepted conclusions exist
about it at present stage.

In this paper, the objective is to incorporate the dynamic effect
into the propagation process of a transformation inclusion. Based
on the propagation equation of a spherical transformation inclusion
with pure dilatational eigenstrain, the dynamic elastic fields both
inside and outside the inclusion were derived explicitly first. Then
following the basic ideas of crack propagation problems in dy-
namic fracture mechanics (Freund, 1990), the reduction rate of the
mechanical part of the free energy accompanying the growth of the
transformation inclusion was derived as the driving force for the
propagation of the interface. Based on such an energy equation, the
equation for determining the propagation speed was established.
Although all the explicit expressions obtained are for self-similar
growth of a spherical transformation region, some conclusions
reveal some general characteristics of the growth stage. And the
idea of this paper can also be extended easily to study the growth
process of more realistic martensitic morphology.

2 The Stress Fields in an Elastic Solid With a Growing
Martensitic Inclusion

2.1 Basic Equations for Dynamic Eigenstrain Problem.
Using the convention that repeated suffixes imply summation, the
equation of motion can be written in the form as
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Substitution of Egs. (44), (45), and (46) into Eq. (40) yields
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I1 can also be expressed in the form as
Il = gR(s)

where g = 9I1/0R, is the rate of mechanical energy reduction per
unit increase of the inclusion radius.

3.2 The Rate of Chemical and Surface Free Energy. If the
reduction of surface energy per unit area and the reduction of the
chemical free energy per unit volume are denoted as AU,, AU, =
—AS(Ty — T), where AS is the transformational entropy change,
T is the temperature (Wang, 1997), and the total free energy
release rate per unit increase of R is given by

(48)

G =g+ 4mR*AU,, + 8WRAU,

I
=5~ 4TR*AS(T, — T) + 8wRAU,. (49)
Considering that the energy will be dissipated in the process of
the transformation, one can establish the growth criterion of the
transformation region as follows:

G=0G. (50)

where G, is the material constant, which represents the dissipated
part of the energy. Through Eq. (50), one can obtain the radius of
the transformation inclusion as a function of time under different
external conditions.

4 Discussion and Some Concluding Remarks

If we take the assumption that after time ¢,, the inclusion will
grow in constant speed V, therefore, from ¢, to ¢’, it expands also
in the constant speed, and one obtains
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R(1) = R(ty) + V(r — 1o). (52)

Substitution of Egs. (51), (52) into Eq. (13), then into Eq. (47)
yields
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Substitution of Eq. (53) into Eq. (49), then into Eq. (50) yields
an equation for determining the speed V of the inclusion propa-
gation. It can be found that the speed depends on the time ¢
through the terms involving R(¢,)/R(¢'). When the time ' — 0,
one finds
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Substitution of Eq. (54) into Eq. (53) gives
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Substitution of Eq. (55) into Eq. (49), then into Eq. (50) yields an
equation for determining the steady speed of the inclusion expan-
sion when ¢' — e,

If it is assumed that the boundary of the transformation inclusion
grows in constant speed V, one can write

a—V
tL~a+V

t', R(t) = Vi (56)

Therefore, from Eq. (47), one can find that reduction rate of the
mechanical part of the free energy IT is also given by Eq. (55).
Substitution of Eq. (55) into Eq. (49), then into Eq. (50) yields
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Using Eq. (57), one can determine the constant growth speed of the
transformation inclusion according to the applied environment
temperature and hydrostatic load for different materials. The dis-
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