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Abstract:Field equations of the non_local elasticity are solved to determine the

state of stress in a plate with a Griffith crack subject to uniform tension .Then a set

of dual_integral equations is solved using a new method , namely Schmidt ' s method .

This method is more exact and more reasonable than Eringen ' s one for solving this

kind of problem.Contrary to the solution of classical elasticity , it is found that no

stress singularity is present at the crack tip .The significance of this result is that the

fracture criteria are unified at both the macroscopic and the microscopic scales .The

finite hoop stress at the crack tip depends on the crack length .
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Introduction

In several previous papers [ 1 , 2 , 3] , Eringen discussed the state of stress near the tip of a

sharp line crack in an elastic plate subject to uniform tension , shear and anti_plane shear.The
field equations employed in the solution of these problems are those of the theory of non_local
elasticity.The solutions obtained did not contain any stress singularity , thus resolving a funda-
mental problem persisted over many years.In the papers [ 4 ,5] , Zhou had discussed the scatter-
ing of the harmonic waves by two collinear cracks and by a Griffith crack using the non_local the-
ory , respectively.And in papers [ 6 ,7] , they discussed the propagation of Love wave and the

wave propagation in elastic plate by use of non_local theory , respectively.This enables us to em-
ploy the maximum stress hypothesis to deal with fracture problems in a natural way , and also the

non_local elasticity has a big potential to understand the behavior of composite materials.Howev-
er , Eringen' s solution is not exact[ 1 ,2 ,3] .The stress solution of Eringen' s [ 1] has oscillations

near the crack tip for one dimensional problem.For a large lattice parameter , the relative errors of
Eringen' s [ 1] solution will become large.For this reason , the iterative technique used by Erin-
gen[ 1] was not advantageous for solving this kind of problem.The methods used by Eringen[ 2 ,3]

were not also advantageous for solving dual_integral equation , because the kernel of the second

kind Fredholm integral equation in Eringen' s papers [ 2 , 3] is divergent.
In this paper , the same problem which was treated by Eringen[ 1] is resolved using a some-
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what different approach.Fourier transform is applied and a mixed boundary value problem is re-
duced to a set of dual_integral equations.In solving the dual_integral equations , the crack surface

displacement is expanded in a series using Jacobi' s polynomials and Schmidt' s method is used.
This process is quite different from that adopted in Eringen' s papers [ 1 ,2 ,3] .This method can

overcome difficulties that occur in Eringen' s papers [ 1 ,2 ,3] .The solution in this paper is more

accurate and more reasonable than Eringen' s.As expected , it does not contain the stress singu-
larity at the crack tip , thus clearly indicating the physical nature of the problem , namely , in the

vicinity of a geometrical discontinuity in the body , the non_local intermolecular forces are domi-
nant.For such problems , therefore , one must resort to theories incorporatingnon_local effects , at
least in the neighborhood of the discontinuity.The stress along the crack line depends on the

crack length.

1　Basic Equations of Non_Local Elasticity

Basic equations of linear , homogeneous , isotropic , non_local elastic solids , with vanishing

body force are[ 2]

　　　τkl , k =0 , (1)

τk l =∫V[ λ′(|X′-X |)err(X′)δkl +2μ′(|X′-X |)ek l(X′)] dV′, (2)

ekl =
1
2
(uk , l +ul , k). (3)

Where the only difference from classical elasticity is in the stress constitutive equation (2)in

which the stress τk l(X)at a point X depends on the strains ekl(X′), at all points of the body.
For homogeneous and isotropic solids there exist only two material parameters , λ′( X′-X )
and μ′( X′-X )which are functions of the distance X′-X .The integral in equation(2)is

over the volume V of the body enclosed within a surface V.
In this paper we employ Cartesian coordinates xk with the usual convention that a free index

takes the values(1 ,2 , 3), and repeated indices are summed over the range(1 ,2 ,3).Indices fol-
lowing a comma represent the partial differentiation with respect to the coordinate , e.g.

ukl = uk/ xj.

In the papers [ 8 ,9] , the form of λ′( X′-X )and μ′( X′-X )is obtained for which

the dispersion curves of plane elastic waves coincide with those known in lattice dynamics.
Among several possible curves the following has been found to be very useful

(λ′, μ′)=(λ, μ)α(|X′-X |), (4)

α(|X′-X |)=α0exp[ -(β/ a)2(X′-X)(X′-X)] , (5)

where β is a constant , αis the lattice parameter.λand μare the Lame constants of classical

elasticity.α0 is determined by the normalization condition

∫Vα(|X′-X |)dV(X′)=1. (6)

In the present work we employ the non_local elastic moduli given by equations(4)and(5).
Substituting equation(5)into equation (6)we obtain , in two dimensional space ,
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α0 =
1
π
(β/ a)2. (7)

Substituting equations (4)and (5)into equation (2)yields

τkl(X)=∫V
α(|X′-X |)σk l(X′)dV(X′), (8)

where

σij(X′)=λerr(X′)δij +2μeij(X′)=λur , r(X′)δij +μ[ ui , j(X′)+uj , i(X′)] .(9)

The expression(9)is the classical Hook' s law.Substituting equation(9)into equation(1)
and using Green_Gauss theorem , it can be obtained:

∫Vα(|X′-X |)σkl , k(X′)dV(X′)-∫ Vα(|X′-X |)σk l(X′)dak(X′)=0.(10)

Here the surface integral may be dropped since the displacement field vanishes at infinity.

2　The Crack Model

We consider an elastic plate in the(x1 = x , x 2 = y)plane weakened by a line crack of

length 2l along the x_axis.The plate is subjected to uniform stress τyy =τ0 along the surface of

the crack , Fig 1.In the plane strain case , equation(10)takes the form

∫
∞

-∞∫
∞

-∞
α(|x′-x|, |y′-y|)σkj , k(x′, y′)d x′dy′-

2μ∫
l

-l
α(|x′-x|, 0)【e2j(x′,0)】d x′=0 , (11)

where the boldface bracket indicates the jump across the crack line.

Fig.1　Line crack subject

to uniform tension

Using the method of the paper [ 1] , we can obtain

【e 2j(x , 0)】=0 , 　　(j =1 ,2 , for allx).(12)

The Fourier transform of equation (11)with respect to

x′gives

-is σ1j +d σ2j/dy =0 , 　　j =1 ,2 , (13)

where a superposed bar indicates the Fourier transform ,

e.g.,

 f(s)=∫
∞

-∞
f(x)e-i sxd x. (14)

As discussed in the reference [ 1] the boundary conditions at y =0 are

τyx(x , 0)=0 , τyy(x ,0)=τ0 , 　　|x|< l , (15)

τyx(x ,0)=0 , v(x ,0)=0 , 　　|x|≥1. (16)

In addition we must have

u =v =0 , 　　as(x 2 +y 2)1/2 ※∞. (17)

Consequently we must obtain the solution of equation (13)subject to the boundary condi-

1101Investigation of a Griffith Crack Subject



tions (15～ 17).Equation(13)is none other than the Fourier transforms of the Navier' s equa-
tions in two dimension case , namely

μ u , yy -(λ+2μ)s2 u -is(λ+μ) v , y =0 , (18)

-is(λ+μ) u , y +(λ+2μ) v , yy -s2μ v =0. (19)

Because of symmetry , it suffices to consider the problem in the first quadrant only.The
general solution of this set(y ≥0)satisfying(17)are:

u = 2
π∫

∞

0
s-1 sA(s)+ sy -λ+3μ

λ+μ B(s) exp(-sy)sin(xs)d s , (20)

v = 2
π∫
∞

0
[ A(s)+yB(s)] exp(-sy)cos(sx)ds , (21)

where A(s)and B(s)are to be determined from the boundary conditions(15)and(16).Using
equation(9)we obtain(y ≥0)

σyx(x , y)=
4μ
π∫

∞

0
-sA(s)+ λ+2μ

λ+μ
-sy B(s)exp(-sy)sin(sx)ds. (22)

According to equations(15)and(16), this must vanish at y =0 .Hence

B(s)=λ+μλ+2μsA(s). (23)

Noting that A(-s)= A(s), on account of symmetry v(x , y)= v(-x , y), the dis-
placement field may be put into the from

u =
-2(λ+μ)
π(λ+2μ)∫

∞

0
A(s)

μ
λ+μ-sy exp(-sy)sin(sx)d s , (24)

v = 2(λ+μ)
π(λ+2μ)∫

∞

0
A(s)λ+2μ

λ+μ+sy exp(-sy)cos(sx)ds. (25)

For the σk l , through equations (9)and(23)we obtain(y ≥0)

σyy(x , y)=-
4(λ+μ)μ
π(λ+2μ)∫

∞

0
sA(s)(1+sy)exp(-sy)cos(sx)ds. (26)

The stress field , according to equation(8), is then given by

τyy(x , y)=∫
∞

0
dy′∫

∞

-∞
σyy(x′, y′)[ α(|x′-x|, |y′-y|)+

α(|x′-x|, |y′+y|)] d x′·　 (27)

Substituting for αfrom equation(5), according to the reference [ 2] and the boundary con-
ditions , it can be obtained

∫
∞

0
sA(s)k(εs)cos(sx)ds =-

πτ0(λ+2μ)
4μ(λ+μ) , 　　|x|< l , (28)

∫
∞

0
A(s)cos(sx)d s =0 , 　　l ≤|x|, (29)

k(ξ)=[ 1 -Υ(ξ)] [ 1 +2ξ2] - ξ
π
exp(-ξ2), (30)
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where ε= a
2β , Υ(z)=

2

π∫
z

0
exp(- t2)dt. (31)

The only difference between the classical and non_local equations is in the introduction of the
function k(εs).It is logical to utilize the classical solution to convert the system(28)and(29)
to an integral equation of the second kind which is generally better behaved.For α=0 , then
k(εs)=1 , then equations(28)and(29)reduce to a set of dual integral equations for the same

problem in classical elasticity.To determine the unknown function A(s), wemust solve the dual_
integral equations (28)and(29).

3　Solution of the Dual_Integral Equation

Of course , the dual_integral equations (28)and(29)can be considered to be a single inte-
gral equation of the first kind with a discontinuous kernel.It is well_known in the literature that

integral equations of the first kind are generally ill_posed in the sense of Hadamard , i.e.small
perturbations of the data can yield arbitrarily large changes in the solution.The iterative technique
used by Eringen [ 1] was not advantageous for solving this kind of problem , because the relative
errors of Eringen' s [ 1] solution is large for a large lattice parameter.This makes the numerical

solution of such equations quite difficult.For overcoming the difficult , the Schmidt method[ 10] is

used to solve the dual integral equations (28)and (29).The displacement v can be represented

by the following series:

v(x ,0)= ∑
∞

n=1

anP
(1/2 , 1/ 2)
2n-2

x
l

1-x 2

l2

1/ 2

, 　　for 0 ≤|x|≤ l , (32)

v(x ,0)=0 , 　　for l ≤|x|, (33)

where an are unknown coefficients to be determined and Pn
(1/ 2 ,1/2)(x)is a Jacobi polynomial[ 11] .

The Fourier cosine transform for equation(32)is[ 12]

A(s)= v(s ,0)= ∑
∞

n=1

anBn J2n-1(ls)s-1 , (34)

where Bn =2 π(-1)n-1 Γ(2n -1/2)
(2n -2)! , (35)

and Γ(x)and J n(x)are the Gamma and Bessel functions , respectively.
Substituting equation (34)into equations(28)and (29), respectively , equation (29)has

been automatically satisfied by using the Fourier transform.Then the remaining equation can be

reduced to the form for x ≤ l

∑
∞

n=1

anBn∫
∞

0
k(εs)J2n-1(sl)cos(sx)ds =-

πτ0(λ+2μ)
4μ(λ+μ). (36)

For a largeξ=εs , the integrands of the equation(36)almost all decrease exponentially.So
the semi_infinite integral in equation (36)can be evaluated numerically by Filon' s method[ 13] .
Thus equation(28)can be solved for coefficients an by the Schmidt method[ 10] .For brevity , we
have rewritten equation(36)as

∑
∞

n=1

anEn(x)=U(x), 　　0 ≤ x ≤ l , (37)

where En(x)and U(x)are known functions and coefficients an are unknown and will be deter-
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mined.A set of functions Pn(x), which satisfy the orthogonality condition

∫
l

0
Pm(x)Pn(x)d x =Nnδmn , Nn =∫

l

0
P 2

n(x)d x (38)

can be constructed from the function , En(x).such that

Pn(x)= ∑
n

i=1

Min

Mnn
Ei(x), (39)

where Min is the cofactor of the element din of Dn , which is defined as

Dn =

d11 d12 d 13 … d 1n

d21 d22 d 23 … d 2n

d31 d32 d 33 … d 3n

    

dn1 dn2 dn3 … dnn

, dij =∫
l

0
Ei(x)Ej(x)d x. (40)

Using equations(37)～(39), we obtain

an =∑
∞

j=n

qj
Mnj

Mjj
, (41)

with qj =
1
Nj∫

l

0
U(x)Pj(x)dx. (42)

4　Numerical Calculations and Discussion

For a check of accuracy , the values of ∑
10

n=1

anEn(x)and U(x)are given in Table 1 in the

cases of a/2 βl=0.000 5.In Table 2 , the values of the coefficients an are given for a/2 βl=
0.0005.

Table1 Values of ∑
10

n=1
anEn(x)

πτ0(λ+2μ)
4μ(λ+μ)

and U(x)
πτ0(λ+2μ)
4μ(λ+μ)

for a/2βl=0.000 5

x/ l ∑
10

n=1

anEn(x)
πτ0(λ+2μ)
4μ(λ+μ)

U(x)
πτ0(λ+2μ)
4μ(λ+μ)

0.55 -0.100 309 E+01 -1.0

0.60 -0.100 531 E+01 -1.0

0.75 -0.995 341 E+00 -1.0

0.80 -0.100 439 E+01 -1.0

0.90 -0.996 281 E+00 -1.0

0.95 -0.102 530 E+01 -1.0

0.96 -0.102 805 E+01 -1.0

0.97 -0.102 363 E+01 -1.0

0.98 -0.998 501 E+00 -1.0

0.99 -0.869 906 E+00 -1.0
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Table2 Values of an
πτ0(λ+2μ)
4μ(λ+μ)

for a/2βl =0.0005

n an
πτ0(λ+2μ)
4μ(λ+μ)

n an
πτ0(λ+2μ)
4μ(λ+μ)

1 -0.318 698 E+00 6 -0.132 851 E-03

2 -0.127 109 E-01 7 -0.570 583 E-04

3 0.708 155 E-02 8 -0.981 545 E-04

4 0.174 376 E-02 9 -0.106 541 E-04

5 0.127 016 E-02 10 -0.582 841 E-05

From the above results and references [ 14] , [ 15] , it can be seen that the Schmidt method is

performed satisfactorily if the first ten terms of the infinite series of equation (37)are obtained.
The behavior of the stress stays steady with the increasing number of terms in equation (32).
When coefficients an are known , the entire stress field is obtainable.However , in fracture me-
chanics , it is of importance to determine stress τyy along the crack line.τyy at y =0 is given as

follows:

τyy =-
4μ(λ+μ)
π(λ+2μ)∑

∞

n=1

anBn∫
∞

0
k(εs)J 2n-1(sl)cos(sx)ds. (43)

For ε=0 at x = l , it has the classical stress singularity.However , so long as ε≠0 , equa-
tion (43)gives a finite stress all alongy =0.At 0<x<l , τyy/τ0 is very close to unity , and for
x>l , τyy/τ0 possesses finite values diminishing from a finite value at x = l to zero at x =∞.
Since ε/ l>1/100 represents a crack length of less than 10-6cm , and for such submicroscopic

sizes other serious questions arise regarding the interatomic arrangements and force laws , we do

not pursue solutions valid at such small crack sizes.The stress is computed numerically for Pois-
son' s ratio v =0.29.The semi_infinite numerical integrals , which occur , are evaluated easily by
Filon and Simpson' s methods[ 13] because the rapid diminution of the integrands.The results are

plotted in Figs.2～ 7.

Fig.2　Stress along the 　　　　　　　Fig.3　Stress along the
crack direction　　　　　　　 crack direction
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Fig.4　Stress along the 　　　　　　　Fig.5　Stress along the

crack direction crack direction

Fig.6　Stress along the 　　　　　　　Fig.7　Stress along the

crack direction　　　　　 crack direction

The following observations are made:
 The method used in this paper can overcome difficulties that occur in Eringen' s papers

[ 1 ,2 ,3 , ] .The results are more accurate than Eringen' s ones.The method is more reasonable

than Eringen' s ones.
 The maximum stress does not occur at the crack tip , but slightly away from it.This

phenomenon has been thoroughly substantiated by Eringen[ 16] .The maximum stress is finite.The
distance between the crack tip and the maximum stress point is very small.Contrary to the classi-
cal elasticity solution , it is found that no stress singularity is present at the crack tip , and also the

present results converge to the classical ones for positions when far away from the crack tip.
 The stress at the crack tip becomes infinite when the atomic distance a ※0.This is the

classical continuum limit of square root singularity.
 If α/β =constant , viz., the atomic distance does not change , the value of the stress

concentrations(at the crack tip)becomes higher with the increase of the crack length.Note the

fact that experiments indicate that materials with smaller cracks are more resistant to fracture than

those with larger cracks.
 The significance of this result is that the fracture criteria are unified at both the macro-
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scopic and microscopic scales.
 The stress concentration occurs at the crack tip , and this is given by

τyy(l , 0)/τ0 =c2 2βl/ a , (44)

where c2 converges to c2 ≈0.315.
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