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1. Introduction 

In several previous papers [1,2,3,4], Eringen had discussed the state of  stress near the tip of a sharp 

line crack in an elastic plate subject to uniform tension, shear and anti-plane shear. The field 

equations employed in the solution of these problems are those of  the theory of non-local elasticity. 

The solutions obtained did not contain any stress singularity, thus resolving a fundamental problem 

that persisted over many years. This enables us to employ the maximum stress hypothesis to deal 

with fracture problems in a natural way, and also the non-local elasticity has a big potential to 

understand the behavior of  composite materials. It is,of interest to note that applications of the 

non-local theory to concrete problems often lead to impressive agreements with the data of 

experiments and observations (e.g. [5,6]). And in papers [7,8], they discussed the propagation of 
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Love wave, the wave propagation in elastic plate by use of non-local theory. However, analytical 

treatment on the dynamic crack problem by use the non-local theory has not been attempted. 

The present paper deals with the dynamic problem of a line crack in an elastic plate where the crack 

surface is subjected to the harmonic elastic wave. The field equations of non-local elasticity theory 

were employed to formulate and solve this problem. In solving the equations, the crack surface 

displacement is expanded in a series using Jacobi's polynomials and Schmidt's method is used. The 

solution, as expected, does not contain the stress singularity near the crack tips. 

2. Basic Equations of Non-local Elasticity 

Basic equations of linear, homogeneous, isotropic, and elastic solids, for a non-local theory of 

elasticity are given by 

r,.k = P//l (1) 

I t t r,. I = ~,[2 (]X-X[)err(X,)J , . ,  +2p'(IX'-Xl)e,,(X',t)]dV' (2) 

1 
ee, = ] (uk,, + u,,k ) (3) 

where the only difference from classical elasticity is in the stress constitutive equation (2) in which 

the stress r,~(X) at a point X depends on the strains ek~(X' ), at all points of the body. For 

homogeneous and isotropic solids there exist only two material constants, ,v(Ix'-x I) and 

s,'(Ix,-xl) which are functions of the distance [X'-X I . The integral in equation (2) is over the 

volume Vofthe body enclosed within a surface o31". 2' and /a' can be written as follows [3,4,9]: 

(Z,~,') -- (2,~,)at(IX'-Xl) (4) 

a([X'-x])  is known as influence function, and is the f~nction of the distance Ix'-xl. ~ and ~ 

the Lame constants of classical elasticity. P is the mass density of the material. 

Substitution of equation (4) into equation (2) yields 

rk, (X, t) = f at(IX'- Xl)crkl (X', t)dV(X') (5) 
I" 

where crj(X',t)=Ae,~(X',t)8,j 2pe,j(X,t)  :2ur,r(X',t)6,j +iz[u,.~(X,t)+uj.i(X,t)] (6) 
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The expression of equation (6) is the classical Hook's law. Substituting equation (6) into equation 

(1) and using Green-Gauss theorem, it can be shown 

~v ' ' t ' ( x ' , t ) ] a v ( x ' )  a( IX ' -X l ) [ ( ,~  + ~)u  k,ki ( X  , ) + ~ ~,~ 

- J "  a()X'- Xl)o'kt (X', t)da~ (X') : p/i t (7) 

Here the surface integral may be dropped if the only surface of the body is at infinity. 

3. The Crack Model 

It is assumed that there is a line crack in an elastic plate as shown in Fig. 1. Let co be the circular 

frequency of the incident wave. In what follows, the time dependence of all field quantities assumed 

to be of the form e .... will be suppressed but understood. It was further supposed that the two 

faces of the crack do not come in contact during vibrations. When the crack is subjected to the 

harmonic elastic waves, as discussed in [10] the boundary conditions on the crack faces aty=0 are 

~.~ (x ,o , t )  = o , v (x ,o , t )  - 0, Ix]>1 (8) 

ry~(X,0,t) = 0 , ryy(x,0,t) = -30 , )x} _< t (9) 

u ( x , y , t )  = v ( x , y , t )  = 0 (x  2 + y2)V_" __4 , (lO) 

IY , x  

Fig. 1. Incidence of a time harmonic wave on the crack of the length 21 

In this paper, the wave is vertically incident and we only consider that r 0 is positive. 

4. The Dual Integral Equations 
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According to the boundary conditions, the equation (7) can be written as follow: 

flu, (I It I ! I ! ! I ca x'-x,y'-  2+/a)u'~.,(x,y,t)+/~u j...(x,y,t)]dxdy 

-2u ,a(Ix'-xl, lyl) [ e,,(x',o,o ]ax'= (11) 

where [ ezj (x',0,t) ] = e2s (x',0 + ,t) - e2s (x',0-, t) is a jump across the crack. 

= ½[u~.~ (x,y,t)  + u,.k (x,y,t)] e~ (x,y, t) 

From the reference [2], it was showen 

[ e2j(x,O,t ) ] =0 for all x (12) 

Define the Fourier transform by the equations 

](s)= I;~f(x)e-'=dx (13) 

1 m - 

f ( x )  : ~x~ 'J ( s )e '=ds  (14) 

For solving the problem, the Fourier transform of equation (11) with respect x can be given as 

follows: 

J7 (Isl a ,ly-y I.tu,>~-( + 2,u)s u - ls(2 +/.t)v ,v. ]dy'= -pco-u (15) 

(Isl ly'-yl)[-Js(,~ + ,u)u',, +(st + 2,u)v' , , , , -s '-~'  ~y': -paJ-,, (16) , , . .  

For the influence function a, it seems obvious that one has to resort to an approximate procedure. 

In the given problem, the appropriate numerical procedure seems to spring quite naturally from the 

hypothesis of the attenuating neighborhood underlying the theory of non-local continua. According 

to this hypothesis, the influence of the particle of the body, on the thermoelectric state at the 

particle under observation, subsides rather rapidly with an increasing distance from particle. In the 

classical theory, the function that characterizes the particle interactions is the Dirac delta function 

since in this theory the actions are assumed to has a zero range. In non-local theories the 

intermolecular forces may be represented by a variety of functions as long as their values decrease 

rapidly with the distance. In the present study, as adequate functions we decide to select the terms, 

5,(y'-y), n=l,2,..., of  the so call d-sequences. A d-sequence, as generally known, is (in the 

present case a one-dimensional) Dirac delta function, d(y'-y). With respect to the terms of the 
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adopted delta sequence we accept the following simplifying assumptions: (see the paper [8]) 

(a) " For a sufficiently large b (as compared with the sphere of interactions of the particles), it is 

permissible to make the replacement 

~b b f (y ')6.(y '-y)dy'~ i-~ f (y')~(y'-y)dy' (17) 

(b): As a consequence of the foregoing, the terms 6.(y'-y) ,n))l  ,acquire the shifting properly 

characteristic of the Dirac function, 

jbbf(y )6.(y -- y)dy -~ f ( y )  (18) 

We now set 

-ff(I~,[Y'-Yl) = -ff o ( s)~. (Y'-Y ) (19) 

From the equations (15) and (16), it can be obtained 

~0 (s)[kaT,.,-(2 + 2/.t)s:ff - is(2 +/~)~,>, ] = -p0)-'~7 (20) 

-5o(s)[-is(2 +/~)~,>, +(2 + 2/~)g,.,,,-s"~] = -p0)'-i7 (21) 

whose solutions do not present difficulties, we have(y _> 0 ) 

u(x,y, t) = - sA~ (s) sm(sx) exp(-y ly)ds - 2 Y_~ A., (s) sin(sx) exp(-y 2y)ds (22) 
)2" 

2 ® 
v(x,y,t) = - ~ y , A , ( s ) c o s ( s x ) e x p ( - y l y ) d s  - 2  ~,isAz(s)cos(sx)exp(-y2y)ds (23) 

0)2 0)2 
where y ~ = s  2 ,y'-2=s 2 

Now, let the function A(s) be defined such that 

1 , 
A 1 (s) = - ~ [s" + y ~ ]ao (s) A(s) 

A: (s) = S-~o(s)A(s ) 

(25) 

(26) 

(24) 

or ,  

f~ -ffo(s)f (s)A(s)cos(sx)ds = xr° O(x < I (28) 
2u ' 

The equations (27) and (28) are the dual integral equations of this problem. In equation (28), f ( s )  

With the aid of equations (5),(6),(22),(23),(25) and (26), the appropriate quantities in equations (8) 

and (9) may be found to yield 

A(s)cos(sx)ds = 0 r)l (27) 
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is given as follows: 

f ( s )  = ~ { 2Yl [s: +y~]-'-4s'-y,y,} (29) 

5. Solution of the Dual Integral Equation 

The dual integral equations (27) and (28) can not be transformed into the second kind Fredholm 

integral equation [3,4]. The kernel of the second kind Fredholm integral equation as in the 

references [3,4] is divergent. Of course, the dual integral equations can be considered to be a single 

integral equation of  the first kind with a discontinuous kernel [2]. It is well-known in the literature 

that integral equations of the first kind are generally ill-posed in sense of Hadamard, i.e. small 

perturbations of the data can yield arbitrarily large changes in the solution. This makes the 

numerical solution of  such equations quite difficult. In this paper, Schmidt's method was used to 

overcome the difficulty. The only difference between the classical and non-local equations is in the 

introduction of the function ~,(s) .  As discussed in [3,4], it can be taken 

/5' , l f l  
a o = Xo exp ( - (~a ) - (x ' - x ) "  ), with 2",:,: ~ 8/~ a 

where 13 is a constant, a is the lattice parameter. 

So it can be obtained: a0 (s) = e x p ( - ~ )  
tzp)- 

(30) 

~t,(s) = 1 for the limit a --~ 0, so that the equation (28) reverts to the well-known equation of the 

classical theory. Here Schmidt method [ 1 l] can be used to solve the dual integral equations (27)  

and (28). The displacement v was represented by the following series: 

v = 2. a,P,.;_~ (7)(1 --~-, )- , for Ixl <_ I,y = 0 (32) 
n =  I 

v = 0 fo r  [xl)l,y = 0 (33)  

1 I 

where a. are unknown coefficients to be determined and C - - tx) is a Jacobi polynomial [ 1 2 ] .  

The Fourier transformation of  equation (32) is [13] 

(31) 
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1 
co 2 ® r ( Z n -  2 ) (34) 

A(s)  = Y(s.O.t) = E a . G .  132._,(Is)  with O. = 2~/~(-1) "-' 
2c~ (Zn 2)[ n=l S 

where F(x) and J,(x) are the Gamma and Bessel functions, respectively. 

Substituting equation (34) into equations (27) and (28), respectively, the equation (27) has been 

automatically satisfied, the equation (28) reduces to the form for Ixl < 1 

z I: °-2 )-b2 a n G  . a o ( s ) f ( s  .-1 (Is) cos(xs)ds - (35) 
~_~ s 4/~ 2 

For a large s, the integrands of the equation (35) almost all decrease exponentially. So the semi- 

infinite integral in equation (35) can be evaluated numerically by Filon's method [14]. Thus 

equation (28) can be solve for coefficients a.  by the Schmidt method [11]. For brevity, the 

equation (35) can be rewritten as 

~_a E.(x) = U(x) 
n=] 

where En(X ) and U(x)are known functions and coefficients a n 

determined. A set of  functions P. (x) which satisfy the orthogonality condition 

l / 2 

can be constructed from the function. E . ( x ) .  such that 

P. (x) = ~ M,. E.  (x) 
i=1 mnn 

where M~ is the cofactor of the element a',y of D. ,  which is defined as 

d u ,d u ,dl3 ..... d,. 
d2, ,d:: ,d23 ..... d2. 

I~E,( )E~( D = d3, ,d3: ,d .  ..... d~. , d,y = x x)dx 

.d , ,  d 2  , d 3  . . . . .  d 

Using equations (36) and (38). it can be obtained 

~o M.j  1 ' 
a = ~-'q, M~ with q = - w v [ ~ U ( x ) P y ( x ) d x  

j=n  % - -  

(36) 

are unknown and to be 

(37) 

(38) 

(39) 

(4o) 
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6. Numerical Calculations And Discussion 

Coefficients a .  are known, so that entire stress field is obtainable. However, in fracturi." mechanics, 

it is of  importance to determine stress r~y along the crack line. rr/  aty=O is given as follows: 

4/.,c~ ~ i-,o_2 1 
r~ - ~ a , G ,  jo aof (s ) -g ,  . . (ls)cos(sx)ds (41) 

] r o j 2  n=l S - -  

For a=0 at x=l we have the classical stress singularity. However, so long as a ¢ 0, (41) given a 

finite stress all along y = 0. At 0 < x < l ,  r ~  / r 0 is very close to unity, and for x > 1, ryy / r 0 

possesses finite values diminishing from a maximum value at x = 1 to zero at x = oo. The 

dynamic stress is computed numerically for the Lame constants 2=98xlOg(N/m2), 

/~ = 77x  109(N/m2), p =  7.7x 103(Kg/m3). The semi-infinite numerical integrals, which 

occur, are evaluated easily by Fiion and Simpson's methods because o f  the rapid diminution of  the 

integrands. From references [15,16], it can be seen that the Schmidt method is performed 

satisfactorily if the first ten terms o f  infinite series to equation (35) are retained. The results are 

plotted in Fig.2-9. 

The following observations are very significant: 

(i) The maximum normal stress occurs at the crack tip, and it is finite. 

(ii) The normal stress at the crack tip becomes infinite as the atomic distance a--~O. This is the 

classical continuum limit of  square root singularity. 

(iii) For the a / f l  =constant, viz., the atomic distance does not change, the values of  the 

dynamic stress concentrations (at the crack tip) becomes higher with the increase of  the crack 

length. Note this fact, experiments indicate that materials with smaller cracks are more resistant to 

fracture than those with larger cracks. 

(iv) The stresses increase with the frequency co becoming larger. 

(v) The significance o f  this result is that the fracture criteria are unified at both the macroscopic 

and microscopic scales. 
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