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Abstract

Explicit  fomulas for 2-D electroelastic fundamental solutions in general
anisotropic piezoelectric media subjected to a line force and a line charge are obtained
by using the plane wave decomposition method and a subsequent application of the
residue calculus. “ Anisotropic™ means that any material symmerry restrictions are not
assumed. “Two dimensional” includes not only in-plane problems but also anti-plane
problems and problems in which in-plane and anti-plane deformations couple each
other. As a special case, the solutions for transversely isotropic piezoelectric media are

given.
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I. Introduction

Due to their intrinsic coupling effect between mechanical and electrical fields, piezoelectric
materials have been widely used in technology as transducers and sensors and, more recently,
as actuators in smart structures.In order to optimize their microstructures and understand their
fracture behaviours, several researchers have performed the analyses of piezoelectric materials
containing an inclusion or a crack. Wang!"? first analyzed the 3-D coupled electroelastic fields
of a piezoelectric medium with an ellipsoidal inclusion and a flat elliptical crack by using the
Green's function technique and Fourier transform. Using Stroh’s formalism, Du et al.
obtained the electro-mechanical coupling fields of a 2-D anisotropic piezoelectric medium
containing an elliptic inclusion, Pak™ investigated dislocation and Griffith crack problems, and
Suo et al!¥ studied in-body and interfuce crack problems of piezoelectric ceramics. Sosa'®
extended the Lekhnitskii’s approach to investigate the plane problems in piezoelectric media
with defects. Most works mentioned above are to solve the electroelastic fields in an
unbounded piezoelectric medium subjected to uniform mechanical and electrical loading at
infinity. In order to analyze a piezoelectric medium under complicated loading. it is very
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significant to search for the fundamental solutions for the coupled equations. Recently, Lee
and Jiang!" derived the fundamental solutions for the reduced 2-D anisotropic piezoelectric
media using the Fourier transform; Meng and Dul® gave the fundamental solutions for 2-D
isotropic piezoelectric media empolying the same method as [7]. In the last two references, the
complicated Fourier inversion must be performed to obtain the explicit expressions for the
fundamental solutions. Because piezoelectric materials are naturally anisotropic and in-plane
and anti-plane deformations often couple each other, the solutions given in Refs. [7] and [8]
lack generality.

The main objective of this paper is to research the fundamental solutions for general
anisotropic piezoeletric media subjected to a line force and a line charge. First of all, we
obtained the integral representations of the fundamental solutions using the plane wave
decomposition method, and then gave their explicit expressions by virtue of the residue
calculus. The out of plane components of field variables are generally nonzero due to the
anisotropy and electro-mechanical coupling effect of piezoelectric materials.Hence the present
solutions are vaild not only for in plane problems but also for anti-plane problems and for the
problems whose in-plane and anti-plane deformations couple each other. As a special case the
analytical expressions of the fundamental solutions for transversely isotropic piezoelectric

media are given.
II. Basic Equations

In a fixed rectangular coordinate system, x;, the constitutive equations and gradient
equations can be written as:
Constitutive equations

UU=C(J'mn£mn"enuEn, Dl=elmn8mn+alnEn (2-1)
where repeated indices imply summation, Oij, &5, Dy and E, are stress, strain, electric
displacement and electric field respectively. Cismn are the elastic stiffnesses under constant

electric field, ea;; are the piezoelectric stress constants. and @, are the permittivities under
constant strain field. They satisfy the symmetry relations

C(jmn=st‘mn=CUnm=CmuU, Cnig=C€njiy, Ai;=0qyi (2_2)
and positive definite property
C(jmneljemu>0, aUE(Ej>0 (2'3)
Gradient equations
ei;={(the,sFt5,0)/2, Ei=—0, (2.4)

where a comma stands for partial differentiation, v and ¢ are the elastic displacement and
electric field respectively.
In the absence of body forces and free charges, the divergence equations are

Ti551=0, D(H:O (2,5)
Substituting Eqgs. (2.1) and (2.4) into Eq. (2.5) yields
Cijmn“m,n(+en(j¢,nt=0, Emnlmyni — AnPyni=0 (2.6)

For convenience. the notation introduced by Barnett and Lothe!” is employed to treat the
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elastic and electric variables on equal footing. Lower-case subscripts take on the range 1, 2 and
3, while upper-case subscripts take on the range 1, 2, 3 and 4. With this notation, the field
variables can be expressed as

Umy M=1, 2, 3
Usu={ (2.7)
@ M=4
g {e.,,, M=1, 2, 3 (
M= 2.8
—Eu, M=4 )
Otsy J=t, 2, 3
2”= (2-9)
iy J=4
C(;‘m-, J, M=1, 2, 3
Cpisy J=1, 2, 33 M=4
Eiun= Cimn, J=43 M=1, 2, 3 (2.10)

—a;,., J, M=4

It is important to note that they are not tensors. Thus, one has to be careful when the
coordinate system is changed.

According to the notation of Egs. (2.7)~(2.10), the constitutive equations (2.1) and
divergence equations (2.6) are written as

2§J=Elllnzﬂﬂ (2-11)
E{JﬂnUH,ni=0 (2-12)
III. Illustration of the Solution Method

The best way to describe the method of solution is to give a simple example. Thus, Let us
consider the fundamental solution of Laplace’s equation. It should satisfy

VG (%) +6(x)=0 (3.1)

where V? denotes two-deimensional Laplacian operator.
The starting point of solving Eq. (3.1) is based on the use of the plane wave
decomposition

8(x) =z V' Tirlogls-xlds (3.2)
of the two-dimensional delta-function given in Ref. [10]. Where C is any closed curve enclosing
the origin points §=0 in § space and

ds=s.ds:—s:ds; (3.3)
Comparing Eq. (5.1) with Eq. (3.2) yields the integral representation of the function G(x) as

follows

G(x)=— L @ —l—logls-xlds (3.4)

47t T ols|?

In order to apply the residue calculus 10 Eq. (3.4), consider the closed contour shown in
Fig. 1. Itis easy to show that the contributions from C: and Cu are zero as |C,] =[C,] >0
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and the contribution from C; equals the contribution from Ci. Thus, Eq. (3.4) reduces to

S2 1
c G(x)= T on 2SC Isl’logls x|ds
2
-t Scc log (x,+s:x2)ds:
C, on? 00 1+ :
L Re{ —L;1
- s —_————
1 1 ! on? es 1+pz og(xi+ px:)dp
C, (3.5)
where Re denotes the real part. Evaluating Eq.
(3. 5) by the residue calculus yields the residue of
Cs

the pole at p=i. The result is
Fig.1 Integral contour

G(x)=——21n—Re 1°g(xl+fxz)=—2l; IOg% (r=1x]=n x?+x1)
(3.6)

The above formula is the well-known fundamental solution of Laplace’s equation.
IV. Fundamental Solutions for an Anisotropic Piezoelectric Medium

In this section, we will derive the 2-D fundamental solutions for general anisotropic
piezoelectric media using the method in section II1.

Consider an unbounded homogeneous anisotropic piezoelectric medium subjected to a line
force and a line charge uniformly distributed over xs-axis. Thus, the response electroelastic
fields are dependent on x, and x: only. The fundamental solutions for piezoeloctric media are
denoted by G,u(x), Their physical interpretations are: G, and Gm, represtent the elastic
displacements along the xm» direction at x due to a unit line force along the x; direction and a
unit line charge at the O; G,; and G, represent the electric potential due to a unit line force
along the x, direction and a unit line charge at the origin O. The electroelastic fundamental
solutions G;x(x) should satisfy the following system of partial differential equations:

Isu(81, 9:)Gur(x)+38sp0(x)=0 (4.1)
where
Fyu(di, 8:)=FEasup8.0s  (a, B=1, 2) (4.2)
For any differentiable funétion f(s-x), we observe that
8af(s-2)=sof(5-%) (4.3)

where an overdot denotes the differentiation with respect to the argument.
By virtue of Eq. (4.3), it can be proven that

Tou(y, az)gS Iik(s)log(s-x)ds

. _(SJR\"’:ﬁ —=log(s-x)ds (4.4)
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where

Tiu(8)=FEarngsaspy, Isu(8)Tyn(s)=6sp (4.5)

In terms of Eqgs. (2.2) and (2.3), it can be shown that F,m(s) is symmetric and non-singular.
Therefore, the matrix I';}(s) of I';u(s) exists. It follows from Eq. (4.5) that I';x(S)
and I';4(S) have the following properties, respectively

Liu(As)=2T1u(s), I3y (As)=2A"2T";4(s) (4.6)
It follows from Eq. (4.4) and Eq. (3.2) that the solutions Ggx(x) which satisfy Eq. (4.1) are

1
Gun(x)‘—‘—In—z¢crilx(s)l()gls'xlds (4.7)
Using Eq. (4.6) and the same procedure as section III, we reduce Eq. (4.7) to

Gur(x)=——pRe{__ Tib(1, p)log(a+pr)dp

= -2 Ref”_ L) 1og (xi+ pradp (4.8)
where
Tir(p)=adj[lue(1, p)), D(p)=det[Tur(1l, p)] (4.9)

We can see that I'#z(p) and D(p) are polynomial functions of p of order six and eight
respectively. It can be shown that D(p) does not have real roots due to the positive definiteness
of the tensors Cy;m, and ay;. Consequentely, there are four pair complex roots satisfying

D(pn)=0 (m=1, 2, -, 8) (4,10)

They can be arranged as
Prmie=Dm, IM(pn)>0 (m=1, 2, 3, 4) (4.11)

where an overbar denotes the complex conjugate and Im stands for imaginary part. D(p) can
be expressed as:

8 8
D(p)=3 aip'=as I1(p—pu)(p~Pm) (4.12)
i=0 m=1
where a; are the coefficients of the eighth polynomial function. Assuming that the roots of
D(p) are distinct and calculating the integral in (4.8) by means of the residue calculus,
the explicit expression of Gyp(x) is

1 4 F;M(Pm)
) =— — M SRl m 413
Gun(x) =3 Im{ 3 SB 32 log ()} (4.13)
where
Zm =X+ Pmx2 (4.14)

For certain picsoelectric solids. such as transversely isotropic piezoelectric media. D(p) has
possibly multiple roots. For this case. we say the piezoelectric medium is degenerate. For the
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degenerate piezoelectric medium, Eq. (4.13) can be modified as follows

Gug(x)=%Im{f';16§“')[%ﬂ))—log(zm)]} (4.15)

where 1 stands for the multiplicity of each root and r denotes the number of distinct roots.
Dm( P) is

Du(p)=1aD(p)/(p~ bw)’ (4.16)
where
1, t=1,2
Tm=1{ 1/2, t=3 (4.17)
1/6, =4

Eq. (4.15) is the explicit formula of the fundamental solutions for general anisotropic
piezoelectric media. When the piezoelectric stress constants €m¢; vanish, we can obtain the
fundamental solutions for anisotropic elastic solids and dielectrics.

Note that in Egs. (4.13) and (4.15) the following, notation is used.

0,f (Pm)=[8f/0D] p=pn (4.18)

V. A Special Case: Fundamental Solutions for Transversely Isotropic
Piezoelectric Media

Many of piezoelectric materials which have widely been used in industry exhibit
transversely isotropic piezoelectric behavior. such as piezoelectric ceramics. Assuming that xi-

x: plane is the isotropic plane and xs-axis is parallel to the poling direction, the constitutive
equations for these materials are:

[ 011 Cu Cy, Cy,

. 0 0 0 T ren ) (0 0 €57
(oY) Ci Cyy Ci; 0 0 0 €32 0 0 ey E
1
Ty C;,Ciy,Cyy, 0 0 0 <633 0 0 €4 £
e - -2
Ty o 0o 0o C, o 0 2694 0 e 0 B
o1 0o 0 0 o C, 0 215 e 0 0 o
LT12 _J L 0 0 0 0 0 (Cu'—cu)/2_ 283 ) L0 0 0
(5.1)
€13
€22
D, 0 0 0 0 es0 ay 0 0 E,
843
[Dz =‘000e.500ﬁ ) + OauOJ E,
2833
D, l e e, e, 0 0 O 0 0 ay E,
2813
‘2613/

For the two-dimensional problems of transversely isotropic piezoelectric media. it follows
from Eq. (4.5) that I"~'(1, p)is
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rya, p) o
n= )7 ]

r-a, 5.2
0 r;i(i, p) (5.2)
where
sy 1 [-2C11P2+C|1—Cu —(C;;-}-Cu)p ]
e 1, f’)= — (5.3)
e Cii(Cii—Cri)(pr+1)? “—(Cu+Cun)p 2Cu+(C11—Chr,)p?
€15

ay
1

I';'a = [ ] 5.4
I e e N ITE N (5.4)
€15 "

where I'3'(1, p) represents the matnix corresponding to in-plane deformation (uy, u:), while
I';'(1, P) denotes the matrix correspoinding to the coupled anti-plane deformation and
electric field (#., @). After simple derivation. we obtain the nonzero components of the

fundamental solutions as follows:

Gu(x) Gu(x)
l:G“(x) Gzz(x)]

! [(3“41’12)108’(1/’)—1/2#2 xy/r? ] 5.5)
- 5.5
87Ce(1 —v13) xy/r? (3—4vip)log (1/r) +12/r?
Gau(x) Gy(x) 1 il kerg 1
= (1 +E) log— 5.6
[G43(x) Gu(x)] 27(1+k) [kel_sl —ar) :] o8 r ( )

where vz is the Poisson’s ratio. k=ei,/(C,,a11). Eq. (5.5) is identical to the classical results
of the fundamental solutions for isotropic solids.

VI. Conclusions

Based on the plane wave decomposition method and the residue calculus, explicit
formulas for the 2-D electoclastic fundamental solutions in general anisotropic piezoelectric
media are obtained. The present method is able to deal with the “so-called degenerate
materials” easily and avoids the complicated Fourier inversion.The procedure of the solution
method 1s simple and clear. These solutions arc essential to using the Boundary Element

method to solve the coupled electroelastic field of piezoelectric media under general loading.
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