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Abstract
In this paper, as is studied are the electro-elustic solutions for a piezoelectric half-
space subjected 10 a line force, a line charge and a line dislocation, i. e., Green's
Junctions on the basis of Stroh formalism and the concept of analviical continuation,
explicit expressions for Green's functions are derived. As a direct application of the
results obtained, an infinite piezoeleciric solid containing a semi-infinite crack is
examined. Attention if focused on the stress and electric displacement fields of a crack

tip. The stress and electric displacement intensity faciors are given explicitly.
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stress intensity factor, electric displacement intensity factor

I. Introduction

It is well-known that one of the most powerful tools in linear field theories is the Green's
function. For elasticity, considerable research can be found in the literature. However, the
Green’s function for piezoelectricity is rather limited due to the anisotropy and
electromechanical coupling effect of piezoelectric materials. Recent developments include: using
the Fourier transformation techniques, Lee and Jiang!! and Meng and Du! derived the Green’s
functions for the reduced 2—D transversely isotropic piezoelectric media and for the 2—D
isotropic piezoelectric media, respectively; The authors™ of the present paper presented the
Green’s functions for general anisotropic piezoelectric materials by empolying the plane wave
decomposition method; Sosa and Castro' extended the state space method for elasticity to
analyze the transversely isotropic piezoelectric half-plane, where a concentrated force and a
point charge are applied at the boundary of the half-plane. Fan, Sze and Yang!® studied the
piezoelectric contact problem using the Stroh formalism. To the best of author’s knowledge,
no solutions for general anisotropic piezoelectric half-space under line forces, line charges and
line dislocations have been reported.

In this paper, the simple explicit expressions of Green's functions for piezoelectric
halfspaces are derived by using the Stroh formalism and the method of analytical continuation.
As a direct application of the solutions obtained, the Green’s functions for a piezoelectric
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medium containing a semi-infinite crack are obtained easily. Attention is focused on the
analysis of electro-elastic fields near the crack tip, and the stress and electric displacement
intensity factors are given explicitly.

II. Basic Equations of Piezoelectricity

In a fixed rectangular coordinate system (xi, x2, xs), the field equations of linear
piezoelectricity can be written as
Constitutive laws:

U¢J=C(Jmu?mu"'enuEn, Di=e(m-'ymu+€tuEn (2- 1)

where repeated indices mean summation. oy, iy, D¢ and E. are stress, strain, electric
displacement (or electric induction) and electric field, respectively. Cy;n. are the elastic
moduli measured at a constant electric field, e, are the piezoelectric constants, &, are the
dielectric constants measured at a constant strain field.

Deformation relations

pig= (s tus), Ei= =g (2.2)

where a comma denotes partial differentiation, u; and ¢ are the elastic displacement and
electric potential, respectively.
Equilibrium equations

Oigy0=0, D;, =0 (2.3)

in which body forces and free charges are neglected.

Due to the similarities between elastic variables and electric variables, it is convenient to
treat them on equal footing in the solution of piezoelectric boundary value problems. So, the
following notation is introduced!®

Um (M=1,2,3)

Uy= 2.4)
Lo (M= (
Ymn (M=1’2’3)
Z...={ (2.5)
—~E, (M=4)
{U(, (J=1,2,3)
= .6
“Up g=s (2.6)
C”m,. (J,M=l,2,3)
] ey (M=4; J=1,2,3)
Euun= einn (J=dy M=1,2,3) (2.7)

——Ein (J,M=4)

where lower-case subscripts take on the range 1, 2 and 3, while upper-case subscripts take on
the range 1, 2, 3 and 4. It should be pointed out that they are not tensors. Thus, one has to be
careful when the coordinate system is changed.

In terms of (2:4) to (2.7), the constitutive laws (2.1) and equilibrium equations (2.3) can be
expressed as:
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2u=Euuslun=E ;32U u,x (2.8)
EqyualU u,m=0 (2.9)

III. Stroh Formalism for Piezoelectricity

For the two-dimensional piezoelectric problems dependent only on x: and x., the general
solutions for the generalized displacement U?=[ui,u:,u4;,] and the generalized stress
function PT=[®,,dP,,P,,P,] can be written as'”

a=l

U=Re Y {0.fo(za) +aa f(2.) }=2Re[A4f(z)) ]
(3.1)

awl

D=Re)  {b.fs(24)+b. f(za) }=2Re[Bf(2)] J

where Re stands for the real part and the overbar denotes the complex coniugate. The
superscript T represents the transpose. f7(z)=[fi(z1), fi(2:)y, fs(23s)s fi(24)] is an
arbitrary function vector of the generalized complex variables z,=2x;4 poX:, the choice of
which depends on the boundary conditions provided by the given problems. The complex
constants p, and the two 4X4 complex matrices 4 and B are functions of the material
constants E¢sua.

The stress and electric displacement fields are related to & by

21=[011,01,0,,,D 1=-——g—g=—¢,z l
(3.2)
2i=[0219012,gz}.Dz]’=—g¢ =¢,l J
X1

The matrices 4 and B satisfy the following orthogonality relations
AT BT B B I o
P i 0.
AT BT A 4 o I

AB™ + AB*=I—BA" + BA" }

and the closure relations

= . (3.4)
AAT + AAT=0=BBT 4+ BB”
where [ is the unit matrix. Equation (3.4) implies
AAT=—~iH /2, BBT=iL/2, ABT=(I—iS)/2 (3.5)

where i=./—1.H, L and S are real. H and L are symmetric positive-definite. They can be
computed directly from the electro-elastic constants Eyu, by

S=nls:N.(0)d0
H=—{"Ny(6)d6 (3.6)

T

1 5
L=—-;SDN3(H)d0
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where
Ny(0)=-T-"(0)R"(8), N.(6)=T""(0) } (3.7)
No(8)=R(6)T ' (8)R7(6) —Q(6) ’
Qiu(0)=Esuninins Rin(0)=E suniéns Tsu(0)=E1suntila (3.8)
nT=[cosf, sinb, 0], £T=[~sinb, cosf, 0] (3.9)
IV. The Green’s Functions for a Piezoelectric Half-Space
z; Consider a  piezoelectric  half-space

x220, —oo<xi1<o0. The surface x:=0 is
traction-induction free. A line force, a line
charge  fT=[(f1,fz,fs»A] and a line
dislocation with the generalized Burgers
vector b7 =[b,,b;,bs,A@] apply at the
point X*=(x},x}), where ; and Agp
represent a line charge and an electric
Fig.1 A piezoelectric half-space subjected potential jump across the slip planel®,

]

L

a line force, a line charge and a respectively. The boundary conditions
line dislocation are
S=Bf(2)+BF(z) (x,=0)
do=} I
¢ .
(For any closed curve C enclosing the point X*) (4,1a~c)

2iu>0 (| X|>o0)

To determine the solutions which satisfy the above conditions, assume that arbitrary
functions fa(z4) in the general solutions (3.1) are

fa(za) =@apln(2,—2%) + gas(2.)
(a=1,2,3,4,) (4.2)

where  z¥=x¥+ pax¥s gaoln(2s—Z%)  represent the singular solutions for an infinite
homogenerous medium under f and b, where g¢a, are the unknown complex constants.
Ja(24) represent the perturbed solutions due to the boundary of a half-plane. Substitution of
(4.2) into (4.1): yields:

Busl[geoln (x1—2%) +ge(x1) 1+ Bux [Qedn (21~ 2F) + 94 (x1) 1 =0 (4.3)

Rearrange the above, one gets
Bugeodn (xi—2}) + Bugs (%1) = — BuqeoIn (21— 2%) —Buge (x1) (4.4)

in which the functions at the left-hand side are holomorphic in the upper half.plane, whereas
those on the right-hand side are holomorphic in the lower half-plane. By the method of
analytic continuation, we may introduce the funtion F(z) which is holomorphic in the entire
plane, i. e.



Green's Functions for a Piezoelectric Half-Space 1041

F(z)= B,,,g,,(z)+§u,q,,oln(z—2‘,,‘) (Z€S+) (4.5)

—Bugi(2) —Buqen(z—2z%)  (2€S7)
By Liouville’s theorem, we hav
Bixge(z) +BugeIn(z—z¢)=0 (4.6)
Solving the above equations and taking 2=z, (=1, 2, 3, 4), one finds
ga(2a)=—B;/BugrIn(z,—z}) (4.7)

and in a compact form
4

9(z)=—73 KIn(za—2})>B~'Bl.q, (4.8)

k=1
where
97(2)=1091(21),9:(22) ,93(23) 9. (2:) ) and qF=1[qi0,Q205Ts05 Qs ]
I,=diag(1,0,0,0], I,=diag[0,1,0,0],
I,=diag(0,0,1,0}, {,=diag[0,0,0,1] (4.9)
{In(zs—z%)>=diag[ln(z,—~z%),In(z.—2%),In(2,—2}),In(2,—2})]  (4.10)

To determine the unknown constant vector ¢o, substituting (4.8) and (4.2) into (3.1) and
using the conditions (4.1b) yields

O L EE 4 Nt
B B — 2 f
By the orthogonality relations (3.3), g, is

qo=(ATf+BTb)/2ni=h/2mi (4.12)

In terms of (3.1), (4.2), (4.8) and (4.12), the Green’s functions for a piezoelectric half-space
can be written explicitly as

k=1

4
U=niIm{A<1n(za —2%)Sh+ 3" Adn(2a—22)>B~'BI 4K } 1

(4.13)
®=—Im{BdIn(z,—2%)%h+ 3 Bln(2,~21)>B'BLik | J
&-1
where Im denotes the imaginary part.
From (3.2), the stress and electric displacement fields are
4
=—1 _Da_ _Ps_< p-1p
2= 4 Im{ B<z,-—z:>h+’§3 <z.—2:>B BI'E}
(4.14)

Si=2Im{ B< LSkt T B <L o>B B}

*
a—243 gl 2q—2,

Equation (4.14) shows that the condition (4.1c) has been satisfied.
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V. An Infinite Piezoelectric Medium Containing a Semi-Infinite Crack

2, An infinite piezoelectric solid with a seim-
infinite crack is shown in Fig. 2. The crack
surface x:=0, 0<xi1<oo is traction-induction

/(5) free. The same f and & as Fig. 1 apply at the

" point X*. The solution of this problem can be

X obtained with the aid of the results in the above
section.

Consider the conformal mapping function
z={? (5.1)

which maps the z plane with a crack into the
upper half-plane in the ¢ plane. So, replacing
2q,2z% and z* by A/Z., /2% and A/Z%, we
obtain

Fig. 2 An infinite piezoelectric solid

with a semi-infinite crack

U=;llm{A<ln(~/5:—~/E)>h+ ZA<1H(A/Z—°_A/2—.},)>B-,BM}

k=1
(5.2)
=2 Im{Bn( vz~ VZEh+ T BN (V7;— o/ F)>B-'BILR }

k=1

By (3, 2), the stress and electric displacement fields in a piezoelectric medium can be expressed
as

4 pa _
Y B < Jr(Je =y > BBLE}

k=l

— _ Pa
Fim g Im{ BB bt

1 1 . i} 1 -1
P I B =y S BB < gty BBl

(5.3)

The above equations show that the electro-elastic fields at a crack tip are singular. The
amplitudes of the singular fields are characterized by the stress and electric displacement
intensity factors K=[Ky,K;,Ky,Kp]® , where K, represents the electric displacement
intensity factor. Similar to elasticity, K are given by

K=(K1,K,Ky,K]"

=lim '\/_ZnX122
x2~0
x1—0

=712=:1{Re{ 2B<A/12—:>A’}f+%2_”Re{ 2B<N/—l;:>3’}5 (5.4)

If b is absent and f ap>!/ on the crack surface z7=x,, the above expression reduces to

1
K==t (5.5)

Xo
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Equation (5.5) indicates that for some special cases the stress and electric displacement
intensity factors are independent of the material properties.

VI. Conclusions

Based on the Stroh formalism and the method of analytical continuation, the simple
explicit formula for the Green’s functions in a piezoelectric half-space and an unbounded piezo-
electric medium containing a semi-infinite crack are obtained. Emphasis is placed on the
analysis of the electroelastic ficlds at the crack tip. The force-charge solutions of the present
paper can be used as the fundamental solutions for the boundary element method to analyze
the complicated electromechanical interaction problems, while dislocation solutions can be
employed to study the interaction between a dislocation and boundaries and further compute
the image forces acting on a dislocation.

The problem considered in this paper is that the surface xo=0 or the crack surfaces is
traction-induction free. For rigid boundary conditions, i. e. UT=[u;, @]=0, letting g(2) be
replaced by

9(z)=—3_ <In(z.—z})>A"'4Lq, (6.1)

k=1
one can obtains easily the Green's functions corresponding the rigid boundary conditions.
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