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ABSTRACT: By using Stroh’ complex formalism and Cauchy’s integral method,
the electro-elastic fundamental solutions of an infinite anisotropic piezoelectric solid
containing an elliptic hole or a crack subjected to a line force and a line charge are
presented in closed form. Particular attention is paid to analyzing the characteristics
of the stress and electric displacement intensity factors. When a line force-charge acts
on the crack surface, the real form expression of intensity factors is obtained. It is
shown through a special example that the present work is correct.
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1 INTRODUCTION

Piezoelectric materials exhibit coupling behavior between elastic and electric fields
and are inherently anisotropic. They deform when subjected to an electric field and po-
larize when stressed. The coupling nature of the material has attracted wide applications
in electro-mechanical and electronic devices such as electro-mechanical actuators, sensors
and transducers. In addition, they play an important role in the emerging technologies of
smart materials and structures. When subjected to mechanical and electrical loads, these
piezoelectric materials can fail prematurely due to their brittleness and presence of defects
or flaws such as inclusions, voids and cracks. Therefore, study on the electro-elastic interac-
tion and fracture behaviors of piezoelectric materials has received some attention from the
viewpoint of electro-mechanical coupling. Recently, using Stroh’s formalism established by
Stroh!!! and further elaborated by Ting!?! for two-dimensional anisotropic elasticity, Liang
et al.®l obtained the elastic and electric fields for a 2-D anisotropic piezoelectric medium
containing an elliptic inclusion. Pak(4] gave the analytical solution to a transversely isotropic
piezoelectric medium with a Griffith crack. Suo et al.l’! considered in-body and interface
crack problems of piezoelectric ceramics. They gave the asymptotic solutions of the cou-
pling fields near the crack tip and calculated the intensity factors and energy release rate.
Sosalfl extended Lekhnitskii’s complex potential approach!?to study the plane problem of
piezoelectric media with defects, and then discussed the effect of electric field on the stress
concentrated factor along the hole boundary. Wang(®l investigated the electro-elastic fields

Received 13 February 1996, revised 28 October 1996
* The project supported by the Fund of the State Education Commission of China for Excellent Young

Teachers



Vol.13, No.1 Liu Jinxi et al.: Fundamental Solutions of Piezoelectric Materials 55

for a 3-D piezoelectric solid with a flat elliptical crack by using the Green’s function and
Fourier transformation techniques. He reached a conclusion that the electric displacement
normal to the crack face influences the stress intensity factors. Wang and Zheng!® analyzed
the mechanical-electrical coupling behavior of a penny crack in piezoelectric ceramics under
a lateral shearing force. All the studies mentioned above are restricted to the electro-elastic
fields for an infinite piezoelectrics containing an inclusion or a crack under the far-field
uniform mechanical and electrical loads.

In this paper, the electro-elastic fundamental solutions of an infinite piezoelectric solid
containing an elliptic hole or a crack are derived in closed form by using Stroh’s formalism
and Cauchy’s integral method. Particular emphasis is placed on analyzing the properties of
stress and electric displacement intensity factors (SEIF). When a line force-charge applies
on the crack surface, the real form expression for the SEIF’s is given. It is shown through a
special example that the present work is correct.

2 STROHR’S FORMALISM FOR PIEZOELECTRIC MEDIA

In a fixed rectangular coordinate system x;(i = 1,2, 3), the constitutive relations and
equilibrium equations of linear piezoelectric media are

Ti=EismUm,s (1)

EigmsUpm,ei =0 (2)

where body forces and free charges are neglected, a comma stands for differentiation, and
repeated indices imply summation. Lowercase subscripts range from 1 to 3, while uppercase
subscripts range from 1 to 4. Uy, Z;5 and E;jpys arel!1l

U, M=1,2,3

Um = 3)
P M=4
Tij J= 1,2,3

Y= (4)
D; J=

Cijme J7M=17273

€545 J=1,2,3 M=4

Eims = (5)
€ims J=4 M=1,23
—Eis J,M =4

where Ups and ¢ are the elastic displacement and electric potential, respectively. Cijms, €si;
and ¢;, are the elastic constants, piezoelectric stress constants and dielectric constants,
respectively. These material constants satisfy the symmetric relations

Cijms = Cjims = Cijsm = Cmsij €sij = €sji Eis = €54 (6)
and the positive definite property

Cijmsui,jum,s >0 EiaEiEs >0 (7)
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The electric field E is given by
Ei=—yp,; (8)

For two-dimensional piezoelectric problems dependent only z; and zs, a general solu-
tion to Eq.(2) can be expressed as!®l

U=af(z) z =1z +px2 (9)
where U = {u1,u2,us3,¢}T and a = {a1,az,a3,a4}T. Substituting (9) into (2) yields
[Q+p(R+R") +p*Tla =0 (10)

In the above, the superscript T denotes the transpose and Q, R, T are 4 x 4 matrices whose
components are

Qim = Eimn Ryy=Evgme Tim = Eagme (11)

The matrices  and T are symmetric, and can be shown to be nonsingular.
For non-trivial solution of a, we must have

det[Q + p(R+ RT) + p°T) =0 (12)

This is an eigenvalue problem. As in the anisotropic elasticity formulation, it can be proved
that the eigenvalue p cannot be purely real by virtue of Eq.(7). By letting

Pata = Da Im(pa) >0 a=1,23,4 (13)

where an overbar stands for the complex conjugate and Im denotes the imaginary part, the
associated eigenvectors are
Antq4 = a, (14)

With the above analysis, the general solution can be written as a linear combinations of the

eight eigenvectors

4 4
U= Z{aafa(za)+aafa(za)} ZZRGZaafa(za) Zo = T1 + Pal2 (15)

o=1 a=1

where Re denotes real part.
The stress and electric displacement fields obtained by inserting (15) into (1) can be
expressed in terms of the generalized stress function vector ® as

) = {011,012,013, D1}" = —®,
(16)
2o = {021,022,023, D2}T = &,
where .
= {¢1»¢2a ¢3a ¢4}T = 2Re Z bozf(za) (17)
a=1
1
b=(R" +pT) = —5(@+pR)a (18)
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The two equations in (18) can be converted to a standard eigenvalue problem

Ny =py (19)

N1 Nz a
= = 20
ve[n ] e [d] )
N,=-T'RT N,=T"! N3=RT'RT-Q (21)

The 4 x 4 matrices N3 and N3 are symmetric due to the symmetric property of @ and T'.
The eigenvalues of Eq.(19) can be obtained by solving

det(N — pI) =0 (22)

in which I is the 4 x 4 unit matrix.
Finally, the general solution can be written in matrix notation as

U = 2Re{Af(2)} = Af(2) + Af(z) (23)
& = 2Re{Bf(2)} = Bf(z) + Bf(z) (24)
The 4 x 4 matrices A, B and the function vector f(z) are defined by
A =la),az,a3,a4] B = [by,by,bs, by
f(z) = {fi(21), fa(22), fa(23), fa(24)}"

We note that for the piezoelectric boundary value problem, one has to determine unknown
function vector f(z) according to the boundary conditions.
For further reference, some useful relations are listed nextm)

AT BT B B
[AT BTHA A]_I (25)
and
S =i2ABT —1) H =2A4A" L=-2BB" (26)

where i = /—1. The matrices S, H and L are real. The H and L are symmetric and
nonsingular.

To avoid determining the eigenvalues p and eigenvectors ¥y, the matrices S, H and L
can be computed directly from the material constants F;jars by

1 [7 1 [ 1 ["
5= /0 Ny(0)d0 H=_ /0 Nx®)d L=-1 /0 Ns(8)dd 27)
where
N;=-TY0)R*(#) N,0)=T7'(6) N30 =ROTORT6)-QB) (28)
Qim(0) = Eigmeni(0)ns(8)  Rym(8) = Eigpsni(0)m(6) }

Tym(0) = Eigmsmi(0)m,(0)
n = {cosd,sinf,0}T m = {—sinb, cos §,0}T (30)

(29)
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3 FUNDAMENTAL SOLUTION FOR ELLIPTIC HOLE PROBLEM

Consider an infinite anisotropic piezoelectric solid containing an elliptic hole with major
axis 2a and minor 2b as shown in Fig.1. Assume that the hole is traction-charge free and
a line force-charge P = {Pi, P, P3, P;}T applies at the point 2* = z} + iz3, where P;
represents a line charge. The boundary conditions of this problem are

®(2)=0 zel (31)
$od® = P for any closed curve C enclosing the point z* (32)
Y.y >0 when |[z|—>o00 (33)

z, |

e ) —on

N
[

r }-———a—J

Fig.1 An infinite piezoelectric solid containing an elliptic hole

Assume that the functions f,(z,) to be determined have the following form
falza) = qalog(za — 22) + gal2za) (not sum on ) (34)

where ¢, log(z, — 2%} represent the singular solutions for an infinite medium under P and ¢,
are the complex constant to be determined, while g,(z,) represent the perturbed solutions
due to the presence of a hole and are holomorphic outside the elliptic boundary.

Following Ref.[7], we know that the conformal mapping functions

Zo + /22 —a? — pib?

~1,2,3,4 35
a — ipab a=h (35)

Caz

will map the exterior of I', in the z, plane onto the exterior of a unit circle, o = e?(0 <
B < 2x), in the {, plane and the four points on the contours of I, into a single point on
the contour of o. After transformation, fo{z,) can be written as

fa(za) = 4o log(Ca — C2) + 9a(Ca) (36)
where
_nt/EEER
= a"_ o Zy =z} + Pa (37)

Employing (24), (31) and (36), one obtains

Bik(gx log(o — (&) + gk(0)] + Bik[di log(6 — i) + gk (0)] (38)
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Note that & = o~ on the unit circle, and gi(¢) = Gr(o~?) is the boundary value of gx(¢™!)
which is holomorphic |[{| < 1. To solve (38) for the functions g,((,), we multiply both sides
1

by m and integrate along the unit circle, where { is any point outside the unit
7mi(o —
circle. According to the Cauchy’s formula for the infinite region!'?!| we obtain

Biaga(C) + Birgr log (C_l -()=0 (39)
Solving the Eq.(39) and taking ¢ = (,, we have
ga((a) = _B;J‘lBjqu lOg (C;l - C_l:) (40)

where B;J-lBjk = dak.
From (36) and (40), f(z) can be written in compact form as

4

£(2) = (log(Ca — C2))a — Y (log(¢5" - G;)B ' BI,q (41)
k=1
where
I, = diag[1,0,0,0] I, = diag[0,1,0,0]
I3 = diag[0,0,1,0] I, = diag[0,0,0,1]

(F(Ca)) = diag[F(¢1), F(C2), F(Cs), F(Ca)] q=[g1,92,93,94]"
Using (41), (23) and (24), U and & are

U= 2Re{A(log(Ca ¢ } - ZERe{ (log(¢S! — &2))B~ lBqu}

(42)
® = 2Re{B<1og(g,, _ } - 221%{ (log(C; E,:))B_IBqu}
To determine g, one uses Eq.(32) and the requirement of single-valued displacement, which
lead to
2Re(iAq) =0
(43)
2Re(iBq) = —
Employing relation (25) and solving Eq.(43), we obtain
1
g=—ATP (44)

27

Substituting (44) into (42), the fundamental solutions can then be expressed as

U=%Im{A(log((a ())AT}P+ Zlm{ (log(¢S'C))B ‘IBIkAT}P (45)

Zlm{ (log (¢S (_,’;))B‘IBIkAT}P (46)

k=1

P = %Im{B(log( Ca = CINATIP +

N =
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4 STRESS AND ELECTRIC DISPLACEMENT INTENSITY FACTORS

The fundamental solutions for an infinite piezoelectric medium with a crack of length
2a can be obtained easily by letting b = 0 in (45) and (46). We are interested in the stress
and electric displacement fields near the crack tips. Differentiating the generalized stress
function ® with respect to x; and considering that x5 = 0,27 > a, the stress and electric
displacement 3, ahead of the crack tip along the z; axis are obtained as follows

3, = {021,022,0'23,D2}T =
;IE(H ———%)Im{B<Z%§>AT —1'3<———C —1C2C; yaTlp (47)
where

(= (z1+1/2}—a?)/a G=(2a+V2z2—a?)/a (48)

Equation (47) indicates that the electro-elastic fields are singular at the crack tip. The
amplitudes of the singular fields can be characterized by the stress and electric displacement
intensity factors KT = {Ks,K,,K3,Kp}, where Kp denotes the electric displacement
intensity factor.

Similar to anisotropic elasticity, K is given by

K= {KZ,KI,K:‘],KD}T =

lim /27(z, —a)X, =
Ty —a

1 * _ L B
———Im{B<1— ﬂ>AT_B<1_ _ﬂ>AT}p (49)

2\/ Ta z;z — az 2:;2 — a2

where we have used lim ¢ = 1 and the relation
Ti1—a
1 1( zZ+a

——=c(1- °—) 50
e Gy (50)

When P applies on the upper crack surface z; = ¢, employing the jump property of the

function (232 — a?) 12 and (26);, the real form expression for K can be obtained as follows

1 T 1 a+c

K——WS P+2\/ﬁ a—c

We find that the structure of the coupling intensity factors for piezoelectricity is identical
with one of the stress intensity factors for anisotropy elasticity!!%. It is interesting to note
that the first term on r.h.s. of (51) is only dependent on the material constants, while the
second term is dependent on the location of a force-charge. When a pair of self-equilibrating
forces and a pair of positive-negative charges act on the crack surfaces ;1 = ¢, the stress

P (51)

and electric displacement intensity factors are

1 a+tc

VvTa a—c

Form (52), results given by Suo et al.®l can be obtained by integrating.

K= P (52)
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As a special example, we will consider the coupling intensity factors for transversely
isotropic piezoelectric materials. Assuming that the z1-z2 plane is the isotropic plane and
the z3 axis is parallel to the poling axis, the constitutive equations of these materials are

- P \ - -

(011 ) [ Cii Ci2 Ci3 O 0 0 Y11 0 0 es
o22 Ciz2 Cuu Ciz O 0 0 Yoz 0 0 e3; E,
loss\ _ Cis3 Ciz Ci3 0 0 O Qs L _ | 0 0 ess E
032 0 0 0 Cu 0 0 232 0 e5 O E’“’
o31 0 0 0 0 Cyu O 231 e;s 0 O 3
\ 712 | 0 0 0 0 0 CGG_ \2712J L 0 0 0 ]
(53)
{ A
#4081
.Dl 0 0 0 0 €15 0 V22 €11 0 0 E1
Dy Y=l 0 0 0 es 0 0 ;’33 v+ 0 en O E;
D3 es; ey ez 0 0 O 732 0 0 e33 Es
2931
L 2712 )
(54)
Form (27),, integration yields
S, Cee 0 -1 0 O
S = S5, =——+ S, = 55
[ SZ] ! Clz+2css[1 0] 2 [0 0] (55)
Substituting (55) into (51), we obtain
K. = Cee » P +1 a+cx P, )
1= 2(012 + 2066) v Ta 2 a—cC VTa
Cee P, 1 /ja+c P
Ky=— -
2 2(C12 + 2Ceg) % VTa + 2Va—c % Vra > (56)
Ko = 1 a+c % P3
7 9Va-c Jma
1 ja+c Py
Kp=-
b 2Va—c % vTa )
2v12

Letting Cy2 = Cg6, where v, is the Poisson’s ratio, K; and K, are identical with

1—
the classical ones for a crack in an isotropic material.

5 CONCLUDING REMARKS

Based on the Stroh formalism and the Cauchy integral method , the fundamental so-
lutions of an anisotropic piezoelectric medium containing an elliptic hole and a crack are
obtained in this paper. The novel features of the present work include: (1) the derivation is
valid for general anisotropic piezoelectric materials which need not have any material symme-
try restrictions; (2) the fundamental solutions have satisfied traction-charge free boundary
conditions along an elliptic hole, and are suitable not only for plane problems but also
for anti-plane problems. The results obtained in this paper can be used for analyzing the
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mechanical-electric behavior of piezoelectric materials with complicated configuration and
geometry under arbitrary loads by combining the Boundary Element Method.
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