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ABSTRACT 

The evolution of the microstructure of polycrystalline metals during plastic deformation is modeled by a 
stochastic process. By investigating the convergence properties of such a process, a method to determine 
the steady-state flow stress is developed. When the external load approaches the steady-state flow stress, 
the overall strain is found to go to infinity by a simple power law with a critical exponent - 3/2. For large 
specimens, the size effect of the specimens on the steady-state flow stress can also be expressed by some 
simple power laws. We believe that the exponents appearing in these expressions should not be sensitive to 
the material microstructure, and reflect some universal behavior when the external load is near its critical 
value, in the same way as their counterparts in second-order phase transition problems. Furthermore, some 
general characteristics of the material microstructure at the steady-state flow state are also predicted. 
Copyright 0 1996 Elsevier Science Ltd 

1. INTRODUCTION 

For pure ductile polycrystalline metals, a typical stress-strain curve is presented in 
Fig. 1. When the external load is higher than the yield stress (TV, overall plastic 
deformation occurs. Then, considerable strain-hardening is observed even if the 
behavior of single crystals can be reasonably modeled by elastic-perfectly plastic 
deformations. The strain-hardening eventually leads to a steady-state flow stress 
us where no additional hardening is observed upon continued straining. At high 
homologous temperature (>0.47’,,,, where T, is the absolute melting temperature), 
the steady-state flow stress is achieved at large strain. At low homologous temperature, 
the steady-state flow stress can also be achieved by compression and torsion testing, 
which avoids the fracture of materials under extensive deformation (Hackett and 
Sherby, 1975). Extensive investigations have been performed in order to predict the 
stress-strain relation of such polycrystalline metals based on single crystal charac- 
teristics; see, for example, Taylor (1938), Bishop and Hill (1951), Lin (1957), Hut- 
chinson (1964a,b; 1970), Budiansky (1965), Berveiller and Zaoui (1979), etc. 

In this paper, we do not intend to predict the whole plastic deformation behavior 
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Fig. 1. Schema of a true stress-true strain curve. 

of materials ; instead, based on a different view of the deformation process, we try to 
predict the steady-state flow stress and some general characteristics of the stress- 
strain relation when the external load is approaching the steady-state flow stress. 

Consider a polycrystalline metal, of randomly oriented crystals, loaded uniformly. 
At the initial stage of loading of the aggregate, only the few most favourably oriented 
crystals slip. When the external load has reached the yield stress, the active crystals 
make up a non-zero portion of the total crystals. Therefore, the overall plastic 
deformation which is the volume average of slip displacements of crystals appears. 
Since each crystal is surrounded by crystals of different orientations, the neighboring 
crystals will block the slip. On the other hand, the force released from the slip will act 
on the other crystals and thus it may induce them to slip. So, when the external load 
is kept at a value that is higher than the yield stress and lower than the steady-state 
flow stress, if a crystal slips, it may induce its neighbors to slip ; then, under the action 
of the load released from the active crystals, more crystals may become active. This 
trend should stop after some steps, and these slips will be restricted within some local 
region. If the external load is approaching the steady-state flow stress, more and more 
crystals will become active. This process in which one crystal after another becomes 
active is just as a “domino” process. In this analysis, we treat such a process as a 
stochastic process, and by establishing the convergence condition of the stochastic 
process, the steady-state flow stress can be obtained. Furthermore, some general 
characteristics of the steady-state relation can also be obtained through such an 
approach. 

2. A STOCHASTIC MODEL FOR THE SLIPS OF CRYSTALS 

Suppose that when the polycrystalline metal is subjected to an external load go, 
there are 2, initial active slip systems. Each active slip system may induce another 
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slip system to become active. The total number of active slip systems induced by the 
initial 2, slip systems is denoted by 2,. Thus, 2, is the number of active slip systems 
in the first generation. These active slip systems, in their turn, induce further Z, slip 
systems to become active, etc., and ZO, Z,, Z,, . . . may be treated as random variables. 
We further assume that active slip systems do not interfere with each other, i.e. for 
example, every active slip system in Z, will induce its neighboring slip systems to 
become active, independently of the other slip systems of Zi, and also independently 
of those slip systems which had become active before. Thus, the sequence Z,, 
(n = 0, 1,2,. .) forms a Markov chain ; to be exact, it forms a branching process 
(Harris, 1963). 

The idea for finding the steady-state flow stress is very simple. Consider that the 
polycrystalline metal is an infinite set of materials. If the external load is quite small, 
we can imagine that the random sequence Z, (n = 0, 1,2, . . .) will be extinguished for 
large n, i.e. the slips are restricted within a finite domain. If the external load has 
reached its critical value, the random sequence Z, (n = 0, 1,2,. . .) will not be extin- 
guished for n -+ 00. Thus, we can determine the critical value, which is also the steady- 
state flow stress, by investigating the convergence properties of the Markov chain Z, 
(n=0,1,2 )... ). 

In fact, the independence assumption introduced above is not very reasonable for 
our problem. But, in order to verify the above idea, as a preliminary study, we still 
follow the assumption. Since we have reduced the slip process to a branching process, 
we can use some results obtained from studies about branching processes. For 
simplicity, we only consider the random sequence Z, (n = 0, 1,2,. .) created by one 
slip system, i.e. Z, = 1. The appropriate adjustments if Z,, # 1 are easily made, because 
we have assumed that the active slip systems develop independently of one another. 

According to Harris (1963), we know that if m denotes the average number of 
active slip systems induced by one slip system in one step, i.e. 

m = (Z,), (1) 

where the symbol ( * ) means the average, the expected value of Z, is mn, i.e. 

(Z,) = mn. (2) 

It can be easily found that if m < 1, lim,,, (Z,) = 0, and if m > 1, 
lim,,, (Z,) = co. Therefore, m = I is the critical condition for the extinction of the 
average value of the random sequence Z,,(n = 0, 1,2,. . .). Generally speaking, m is a 
function of the external load co, so that we can determine the critical load CP by using 
the condition m = 1. 

Now, we consider the sum 

z= z,+z,+zz+..., (3) 

which means the total number of active slip systems in one cluster. The average value 
0fZis 

(Z) = l+m+m2+m3+... 

1 

l-m’ (4) 
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Since m is a function of the external load, when the external load approaches to its 
steady-state value, we can expand m around the critical load value in the form 

m = m(8) + m’(cf)(a - as) + . . 

= l+m’(cP)(o--a’)+ .... 

Substitution of (5) into (4) yields 

(5) 

(2) -(as-a)-‘. (6) 

In deriving (6), we assume that c is near us, and neglect the higher order terms in the 
expansion. 

In practice, there are many initial active slip systems, i.e. Z,, > 1. Therefore, they 
will develop many separate clusters, each of which contains a different number of 
active slip systems. We can determine the distribution of the number of active slip 
systems in the clusters when the external load is approaching its steady-state value. 
In fact, this distribution is the main characteristic of the microstructure at that stage. 
According to the theorem obtained by Otter (1949) for the multiplicative process, we 
can derive that when the external load is equal to its steady-state value, the occurrence 
probability P(Z = S, c = c”) of a large cluster with S active slip can be expressed in 
the form 

P(Z= S,a = OS) N s~3’2, s+ co. (7) 

Equations (6) and (7) are power laws, which suggest treating the steady-state flow 
point in metal plasticity like the second-order critical point as in phase-transition 
physics (Ma, 1976). When the load is near its critical value, the occurrence probability 
that a cluster contains S active slip systems can be expressed by the following scaling 
law 

P(Z = s) = s-7aq(os-a)Sq, (T + 8, s-+ co, (8) 

where @[(os-~)Sy] is called the scaling function, which only depends on the com- 
bination (as-a)SY. The exponents appearing in (8) can be determined by using the 
exponents appearing in (6) apd (7) as follows. 

By letting g = 0’ in (8) and comparing with (7), we know that z = 3/2. The average 
value of Z can be determined by using (8) as follows 

(Z)= CSP(Z=s) 

= 
i 

S-*+‘@[(r+a)S~] dS 

_ (as _#r-m 
(9) 

In deriving (9), we have replaced the sum by an integral, and used x = (a”-a)S’, 
which are common tricks in the scaling theory of percolation clusters. 
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By comparing (6) with (9), one obtains 
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y = 0.5. (10) 

If one is familiar with the percolation theory (Stauffer, 1985), it can be found that 
the critical exponents obtained by our analysis are the same as those for the Bethe 
lattice. In fact, the branching process that is introduced in this paper to model the 
active slip systems should form a Bethe lattice. By using the results for the Bethe 
lattice, one can determine the correlation length 5 of a cluster, which is also equivalent 
to the average size of the region occupied by those slip systems that are created by a 
parent slip, i.e. 

where v = 0.5. 

5 -(aS-O)-“, (11) 

Now, consider the following problem : in the polycrystalline metal, each cluster of 
active slip systems is assumed to develop on a favorite plane, so that we can treat 
each cluster as a big active slip system which has an average radius l. We further 
assume that the slip systems display perfect plasticity, i.e. once it becomes active, the 
resistance shear stress along the slip direction keeps constant ; thus, in the same way 
as deriving the effective constants of a solid with a random distribution of cracks [see, 
for example, Horri and Nemat Nasser (1983)], the overall strain can be derived in the 
form 

_(,s_o)-3/2. 
(12) 

One should bear in mind that we do not even focus our attention on any specific 
polycrystalline metal in deriving the macroscopic stress-strain relation (12). Thus, we 
believe that for any polycrystalline metal composed of elastic-perfectly plastic crystals, 
the exponents appearing in (12) and the other equations should be universal in the 
sense that they do not depend on the details of the material microstructure. 

3. DETERMINATION OF THE STEADY-STATE FLOW STRESS 

In contrast with the universal exponents, the critical load depends on the details of 
the material microstructure. For simplicity, we consider a polycrystalline metal which 
is composed of non-hardening FCC crystals as an example to determine its steady- 
state flow stress. According to the discussion in Section 2, we know that the condition 
for determining the steady-state flow stress is that the average number of active slip 
systems created by a slipping crystal is equal to one. So, we should first determine the 
change in the stress field produced by a slipping crystal. 

For elastic-perfectly plastic crystals, when a crystal becomes active, it can be treated 
as in a homogeneous inclusion with a negligible shear modulus along the slip direction. 
Thus, the slip quantity of the slip system can be determined as a function of the 
external load by inclusion theory (Mura, 1987), and then the stress field around the 
active crystal can be calculated. 
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Consider an infinite matrix containing an active crystal ; the elastic moduli of this 
crystal are different from that of the matrix since one of its shear moduli is zero due 
to the slip. According to the eigenstrain method in inclusion theory (Eshelby, 1957), 
the eigenstrain .s$ caused by the slip in the crystal can be obtained through the 
following equation 

where C&,, C&, are the elastic moduli tensors of, respectively, the matrix and the 
active crystal, Skrmn is the Eshelby’s tensor, and E:, is the external strain field. 

If we further assume that the non-active crystals are isotropic and that the crystals 
are of spherical shape, the eigenstrain EC can be obtained in a crystal local coordinate 
system as 

15(1-Y) i_ 
E;L = 2/Q-7)(023 

-zc)(si2dj3 +6,36j2) ) 043 ( > Tc 
(14) 

0 

where p and y are, respectively, the shear modulus and the Poissson ratio of the 
material and rc is the critical shear stress of the crystals. From (14), one can find that 
sf3L is the only non- z r e o component of the eigenstrain due to the slip in the local 
coordinate system. 

If the active crystal is positioned at the origin, the stress field at 7 produced by the 
slip of the crystal under the external field G: is given by (Mura, 1987) 

orj(r = ot + cP,PI Dklmn(~))E~n~ (15) 

where D+, (F) is given by 

8n(l -y)Djjk,(jf) = ~ + 6,k6iI -6ijbk,) 

a2 
- 

( ) 
1 - 1 
r 

(n&d, +njnJik + nin$jk + n,nkS,, 

fn,n,6j,+ninj8~~]+ (5 -5)ninjnkn,, (16) 

where a is the radius of the crystal, I = ) 7? 1, and ni = ri/r. 
Due to the symmetry of the FCC crystals, it is sufficient to consider one of the 24 

crystallographically identical slip systems whose normal mj and slip direction nj are 
defined with respect to the grain axes by 
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m,=~[l,l,l], n,=&-l,l,O]. 
Js 4 

The resolved shear stress z on this system is (Hutchinson, 1970) 
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(17) 

(18) 

where Z,j are the direction cosines relating the grain axes (i) to the axes (j) of the 
components of the overall applied stress. Thus, the average number of active slip 
systems created by one slipping tryst al is given by 

= 1, (19) 

where N is the average number of crystals by unit volume, Q0 is the region occupied 
by the parent slipping crystal, and 

(20) 

Pr(z 3 zc 17) is the probability that the resolved stress z is larger than the critical 
shear stress at 3. The terms in the bracket in (19) show the increment in the probability 
that the crystal at 5: becomes active due to the slip of the crystal R0 under the condition 
that the crystal at 3 is not active when it is subjected to the external load 0;. 

As an example, consider polycrystalline Cu with grain size a = 0.03 mm subjected 
to a uniaxial stress a’, through numerical calculation of (19), the steady-state flow 
stress can be obtained as 

OS 
- * 21.36. 
zc 

(22) 

4. THE SIZE EFFECT OF THE SPECIMEN ON THE STEADY-STATE 
FLOW STRESS 

From the above analysis, we know that the steady-state flow stress for an infinite 
material corresponds to the formation of an infinitely large cluster of slip systems. 
For a specimen with finite size, the steady-state flow stress, which is a random variable, 
corresponds to the formation of a percolating cluster which connects the bounds of 
the specimen. For a given specimen and an external load, if we denote by R the 
probability of the formation of such a percolating cluster in the specimen, i.e. the 
probability that the load has reached its steady-state flow stress, it should depend on 
the external load and the size L of the specimen. According to the scaling law in 
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percolation theory (Stauffer, 1985) when the size L is large, and the external load is 
near the steady-state flow stress of an infinite specimen, we can express R in the 
following form 

R = Y[(a"-o)L"']. (23) 

The derivative of R gives the probability density function of the steady-state flow 
stress for a finite-size specimen 

dR - = _ L’hp’[(aS _a)L”“] 
da (24) 

The average steady-state flow stress (a), for a finite-size specimen is given by 

(as-a) = cr-(a), 

= (a”--a)gda 
s 

= 
s 

(as -a)L’/“Y’[(a” - a)L”“] da 

= s Z’J-“(z)L- 1/V dZ 

_ L-l!\,, (25) 

where v( =0.5) is determined by (11). 
The mean square deviation of the steady-state flow stress can also be determined 

by the following equation 

A2 = 
s 

(a-(a)J2gda. 

One obtains 

A N L - 1.1’. (27) 

5. CONCLUSIONS 

The evolution of the microstructure of polycrystalline metals during the plastic 
deformation was modeled by a stochastic process. By investigating the convergence 
properties of such a process, we developed a method to determine the steady-state 
flow stress. When the external load approached its steady-state flow stress, the overall 
strain was found to go to infinity by a simple power law with a critical exponent 
-3/2. For large specimens, the size effect of the specimens on the steady-state flow 
stress can be expressed in the form 

(26) 
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(d-a) = as-(a), 

-L-2, L+EE, (28) 

where (T’ is the steady-state flow stress for infinite specimens, and (a), is the average 
steady-state flow stress for the specimens with size L. We believe that the exponents 
predicted by the model should not be sensitive to the material microstructure, and 
reflect some universal behavior when the external load is near its critical value in 
the same way as their counterparts in the second-order phase transition problems. 
Furthermore, some general characteristics of the material microstructure at the steady 
flow state were also predicted. 
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