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Abstract--In this investigation, a statistical mechanics model was developed to predict the relation 
between the volume fraction of zirconia particles, temperature and external load. By establishing the 
corresponding relation between our model and the generalized lsing model in statistical physics, the critical 
condition of transformation has been obtained, and when the system is near its critical state, some 
universal relations between the volume fraction, temperature and load have been derived. 

1. I N T R O D U C T I O N  

THE DISCOVERY and utilization of  the transformation-toughening effects of  zirconia particles in 
brittle matrix have resulted in improved mechanical properties of  ceramics. Transformation 
toughening occurs as the result of  a dilation and shear strain which occurs in zirconia particles 
during tetragonal-to-monoclinic phase transformation. To understand this important phenom- 
enon, many experimental and theoretical researches have been carried out [1-5]. At the present 
stage, it is well-known that both the toughening effect and the constitutive relation of 
zirconia-containing ceramics are related directly to the volume fraction of  transformed tetragonal 
particles, and the volume fraction of  transformed zirconia depends on the external load and 
temperature. Except having developed some macroscopic conditions for the transformation, very 
little work seems to have been done to predict the relation between the volume fraction of  
transformed particles, temperature and external load through microstructural analysis. This 
research attempts to derive such a relation. 

I f  we could observe a tetragonal particle in a matrix which is subjected to an external load 
and temperature, it would be obvious that whether it has transformed from tetragonal to 
monoclinic phase or not is a random event. This means that even at the same external condition, 
different specimens will give different results. Since we are only interested in obtaining the relation 
between some average or overall properties of  material such as the volume fraction of transformed 
particles and its external conditions, this simplifies our problem a great deal. In this paper, 
we develop a statistical mechanics model to predict a relation between the volume fraction, 
temperature and external load. By establishing the corresponding relation between our model and 
the generalized Ising model in statistical physics, we have derived some specific characteristics of  
the volume fraction of  transformed particles as a function of  temperature and external load. For  
example, we have obtained the critical condition of  transformation which corresponds to the yield 
condition in constitutive relation. When the system approaches its critical temperature, we have 
found some universal relation between the volume fraction, temperature and external load, etc. 

2. THE STATISTICAL M O D E L  BASED ON THE GENERAL M A X I M U M - E N T R O P Y  
F O R M A L I S M  

Guided by various experimental observations, we at tempt to build a statistical mechanics 
model to predict the characteristics of  the phase transformation of  ZrO2 particles in ceramics which 
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are subjected to an external load and temperature. Without loss of generalization, we consider the 
PSZ multiphase material (Fig. 1), where the particles of the second phase (tetragonal) make up 
the transformable materials. If the ceramics is in the environment temperature T and subjected to 
an external stress field a °, some tetragonal particles may transform to monoclinic ZrOv During 
the tetragonal-to-monoclinic phase transformation, a stress-free strain should occur in the particles. 
Under the action of external field (~r°,T), it is a random event whether a particle transforms from 
tetragonal to monoclinic phase or not. Therefore, even at the same external condition, we will find 
different configurations of transformed particles for the same material. So we introduce the 
following statistical mechanics model. 

First, we assume that the particles of  the second phase (here we refer to tetragonal ZrO2) form 
some fixed lattice, and under the action of external field (cr°,T), some particles in the lattice may 
transform to monoclinic phase. If we denote ~o(ri) as 

~o(rj={10 i f t hepa r t i c l e a t  r ~ t r a n s f o r m e d f r o m T t o M  

no transformation. (1) 

For  a given configuration of transformed particles ¢ -- {~o(rt), ~o(r2) . . . . .  ~o(ri),... }, the total 
energy of  the whole system can be written as 

H = 11o - h ( a ° , T ) ~  ~p(rJ - ~ J(r, - rj)cp(r~)~o(rj) - . . .  , (2) 
i ( i , i )  

where H0 is the total energy of the system without any transformed particles under a given 
temperature, and it is a sum of the strain energy and potential energy of the external force, h(tro, T )  
is the change of  the total energy of  a particle when it transforms from tetragonal to monoclinic 
phase. It is the sum of the elastic interaction energy E ~ of the stress-free strain accompanying the 
T-to-M transformation, the chemical energy E ~ and the surface energy which is neglected in this 
paper. Thus, 

h(ao, T )  = - (E  ~ + E ) ,  (3) 

J(ri - rj) is the elastic interaction energy of two transformed particles at ri and rj, respectively. To 
simplify the calculation, in what follows, we only consider the interaction between the nearest 
neighbors, so ri and rj can be considered as the neighboring sites in the lattice. In the following 
part, we will give the explicit expressions of  h(ao, T )  and J(r, - rj) for the tetragonal-to-monoclinic 
transformation of  ZrO2 particles. 

According to the maximum-entropy formalism in statistical mechanics [6], the occurrence 
probability of  the configuration ¢ = {q~0r,), ~0 (r2) . . . . .  ~o(r~) . . . .  } of transformed particles is related 
to the system energy of  this configuration as follows 

1 -H/st P(4)) = ~ e , (4) 
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Fig. 1. Schematic of PSZ material. 
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Fig.  2. Schema t i c  o f  a cell in a cub ic  latt ice.  

where B is a material constant rather than Boltzmann's constant, T is absolute temperature 
and 

z = Z e - ""~  (5) 

is called the partition function, E ~  means a sum over all possible configurations of the transformed 
particles. 

Since we assume that the parent ZrO2 particles form a fixed lattice, for example, a cubic lattice, 
each site of which has six nearest neighbors which are along x, y, z directions (Fig. 2). For this 
case, eq. (2) becomes 

r y 

H = H o  - -  h ( c r ° , T ) ~ ,  ~p(r,) - J ~  ~p(r,)~p(rj) - J,.~ ¢p(r,)q~(r,) - J.-~ ~o(r~)~p(r,), (6) 
i ( i ,  j) ( i , /)  ( i , /)  

where Jy, J,, ~ are the interaction energies of two transformed neighboring particles along the x, 
y, z direction, respectively. They depend on the distance of two particles in the lattice, i.e. they 
depend on the volume fraction of the parent tetragonal ZrO2 particles. 

( i , j )  (i, j )  (i, j )  

means the sums over all the neighboring particles along the x, y, z directions, respectively. 
Therefore, for a general lattice of untransformed particles, eq. (2) becomes 

xm 

H = H o  - h ( a ° , T ) ~  ~p(ri) - ~. Jm~ q~(ri)~o(r~), (7) 
i m ( i , j )  

where J,~ is the interaction energy of two transformed neighboring particles along the m-direction. 

xm 

(i,j) 

means the sum over all the neighboring particles along the m-direction. 
Replacing each tp(r,) in eq. (7) by s(re), where 

( 

s(r3 = 2~0(r,) - 1, (8) 

one obtains 

N x m 

i m (i, j) 
(9) 
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where 

1 N ~ .  J., - 1 Nh(ao, T )  (10) ko=Ho- ~ 
m 

1 1 y  a,, ' (l l)  /~(o'o,T) = ~h(o 'o ,T)+ 
nl 

1 
J,, = ~ J,,, (12) 

where N is the total number of ZrO2 particles. Thus, s(ri) = - 1 if the particle at ri does not 
transform from tetragonal to monoclinic phase, s(rD = 1 if it has transformed. The system described 
by eq. (9) is the generalized Ising system, which has been studied in statistical physics extensively. 
Thus we can borrow some successful methods from statistical physics to deal with our problem. 

Substitution of  eq. (9) into eq. (5) yields 

,r , , ,  ..... 1 ,  Z = Z exp -i~/0 + fi(~°,73 y s(r,) + Z YmZ s(r,)s(rD IBT. (13) 
Is] LL i m (i, ]) ~J ) 

Since many interesting thermodynamic properties of the system can be derived from the 
partition function as we show below, the basic problem of  equilibrium statistical mechanics is 
therefore to calculate the sum-over-states in eq. (13). 

The Gibb's free energy of  the system can be defined as 

G = H -  S T ,  (14) 

where S is the entropy of  the system. According to statistical mechanics [7], we can derive 

G = - B T l o g Z .  (15) 

Under the action of  external stress field and temperature, the average volume fraction of  the 
transformed particles can be derived as follows 

1 N 

, ) = gCpr(l + luirn~ S, ) ,  

where C~ is the volume fraction of the parent phase of ZrO2 particles, and 

(16) 

lim Si = BTlim 

& G 
= - ----~lim 7, . (17) 

&hN~ SV 

In deriving eq. (17), we have used eq. (15). 
The purpose for us to develop the microstructural statistical model is to predict the volume 

fraction of  the transformed particles at a temperature and external stress field. More interestingly, 
we hope that we should be able to predict that the concentration of  the transformed particles 
will suddenly and dramatically change as many people have observed in experiments at 
some temperature and pressure. In experiments, this dramatic change in volume fraction of the 
transformed particles manifests itself as occurrence of dramatic plastic strain in stress-strain 
curves [4]. The relation between the volume fraction of  the transformed particles, external stress 
and temperature is called the equation of  state in this paper; it can be predicted through the 
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microstructure model, as Van der Waals equation of  continuum fluid can be predicted through 
statistical physics. 

Since we have reduced our system to the generalized Ising model [eq. (13)], we can show some 
specific characteristics of our system according to the results in statistical physics about the Ising 
model [8]. 

Following the remarkable result of Yang and Lee [9], we know, for arbitrary Jm > 0, all the 
thermodynamic and correlation functions determined by eq. (13) are analytic except those cases 
which satisfy/~ =0.  It means that for/~ =0,  the thermodynamic functions are not continuous. 
According to our model, the order parameter is ( c f -  ~ owl c o C~/~ ~, so we can expect that across h =0  
which determines a condition of  the external stress and temperature, the order parameter may take 
two values, for example, it may equal 1 or - 1; the first case corresponds to when all the tetragonal 
particles have transformed to monoclinic phase, whereas the latter corresponds to when no 
tetragonal particles have transformed to monoclinic phase. Thus/~ =0  determines the condition 
of the sudden transformation of the material. 

Another interesting point is that the discontinuity only occurs when T < T~, where T~ is some 
critical temperature. Above it, the thermodynamic function is also analytic. So the point (h = 0, T¢) 
is called the critical point. Physicists have found many specific characteristics, e.g. the scaling law, 
universal class, etc., when a system approaches its critical point, and there are vast research works 
on this subject [7]. For  our problem, at the critical point Cr = ½ C~j ~, which means that half of  the 
total ZrO2 particles has been transformed. Therefore, the configuration of the transformed particles 
should be in symmetry as the configuration of  the non-transformed particles. In what follows, we 
also derive some specific characteristics of our system when it is near the critical point. 

As shown above, the basic problem of our model is to calculate the sum-over-states in eq. (13). 
Unfortunately, for any realistic interesting system of  macroscopic size including the one developed 
above, the exact evaluation of Z is extremely difficult. But we can use some approximation 
methods developed in statistical mechanics to deal with the partition function and we know that 
if the system is near the critical point, we can use the powerful renormalization group theory 
developed by Wilson[10, 11] to derive the scaling law and critical exponents etc. of  the 
thermodynamic functions. 

As an approximation used by Berlin and Kac [12], eq. (13) can be written in the form 

Z~ . . . . . . . .  dsx exp Si + J,,,~" S~Sj / B T  6 N - s 2 , 
_ ~ ( i ,  i )  

(18) 

where we have neglected the constant which will not influence the behavior of  the system. If a 
transformed particle configuration of the whole lattice may be represented by a point in a 
N-dimensional state-space consisting of N rectangular axes, one for each cell variable s(ri), for the 
above approximation, the allowed transformed particle configurations are represented by points 
on a hypersphere of radius N ~/2, so the approximation is also called the spherical model in statistical 
mechanics, while for the original model [eq. (13)], the representative points are the 2 N vertices of  
an inscribed hypercube. 

Following the same procedure as in ref. [13] to carry out the integral in eq. (18), we can 
obtain 

lim logZzv I 1 J*(8) J*(O) /~2 N~ = ~ l o g 2 n -  log + ~s+ 
U 2 ~ ~ 2 B T J , ( O ) ( ¢ s -  1) 

t "  

v, [ log[~ - 2(k)]dk, (19) 
2(2n) 3 3 

where 

J*((J) = 2~  Jm (20) 
m 
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j,(~c) ,~(~) = 

2 ,,~3,,cos(k.m) 
= J ' C O )  

(21) 

and the saddle-point ~ is determined from the equation 

J*(0) /~2 v , , f  dk (22) 
BT - J*(0)(~~-- I)2BT + ~ ~-S-2(k) '  

where v, is the volume of a basic cell in the lattice. 
Substitution of  eq. (19) into eq. (17), then into eq. (16) gives the average volume fraction of 

the transformed particles 

1 0 /~ 
C / -  ~ cr = 2J*(O)(~ - 1) cIQ" (23) 

In deriving eq. (23), we have used eq. (22). From eq. (23) we can obtain 

E 
( ~ -  1) = 2J,(O)(c r -  1/2 Co) c~'i (24 )  

Substitution of eq. (24) into eq. (22) yields 

j . ( 0 ) I  1 (Cr-I/2C~)2 = BTI( hc~ 
(I/2c~) 2 ] 1/2 2J*(OI(ct "T-- C~))' (25) 

where 

I(z) - v, I" dk (26) 
(2rt) 3 .1_ ~ z + 1 - 2(k)" 

Equation (25) is the exact equation of  state, i.e. the relation between the volume fraction of 
transformed particles, the external field which is included in/~ and the temperature. 

It can be shown that the integral in eq. (26) has branch-point singularities at z = 0 or is = 1 
in eqs (19) and (22). For a given real external field and temperature, there will be only one 
solution of ~s determined by eq. (22). If/~(¢r°,T) :~ 0 in eq. (22), ~s which is a function of/ i(a°,T) 
and T will never reach the branch-point ~ = 1 for any temperature. Only when h(a °, T) = 0, from 
eq. (22) we know is decreases monotonically to the branch-point where cs= 1/2 C~ as the 
temperature is lowered. The corresponding critical temperature can be determined through eq. (22) 
a s  

J*(O) _ va [" dk  (27) 
BT~ (2n) 3 ,/1 - ; t ( k )  ' 

For convenience, we rewrite eq. (25) in the following form by using eq. (27) 

I ( 0 ) -  2J*(O)(c~ I/2 C~) = ~ ~ + (I/2c~) 2 " (28) 

For/~(tx °.,T) = 0 and T _< To, from the equation of state (28), we know that the saddle-point 
"sticks" at is -- 1 [12]. Thus from eq. (24) we'know that the left-hand-side of eq. (28) is zero. So 
the volume fraction of transformed particles may take two values 

, 0  Cr-  ~ cl = + Tc - cIQ" (29) 
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That means, at a given temperature T ( <  To), when the external field changes across 
/~(aO, T) = 0, the volume fraction of  transformed particles will change from 

abruptly. From the experimental observation of the stress-strain curve of  ZrO2 containing 
ceramics, we know that at a temperature, when the load reaches a critical value, a plastic-like strain 
will suddenly occur. This seems to be the result of  the discontinuous change in the volume fraction 
of  transformed particles predicted by this model. For  TZP material which has a large value of 
c)', this phenomenon is very striking. Thus in fact, we have determined the size of a nearly 
perfect plastic regime as a function of  temperature T. According to the equilibrium statistical 
mechanics, this phenomena will appear both in the positive direction and in the reverse direction. 
In practice, people often observed that there was a loop of hysteresis in the stress-strain curve when 
the material was subjected to a cyclic load. This is due to during the loading process the material 
cannot always stay in an equilibrium state for the same reason as the loop of hysteresis in 
ferroelectricity. 

For  " 0 h(o-i,, T) = 0 and T > Tc, we have to determine the ~ value from eq. (22), then using eq. (23) 
to determine C~. 

The critical condition for the phase transition in ZrO2 containing ceramics, which corresponds 
to the condition for the yielding in the stress-strain relation is determined by 

/~(a °, T) = 0. (30) 

When/~(a°,T) and (T~ - T) /Tc  are small, we can expand the integral in eq. (28) and obtain 
the critical equation of  state 

C C, - C? Tc + } / "  (31) 

Equation (31) is just the scaling relation between I~(a°,T),  (T~ - T) /T~  and cs - 1/2c?, which 
states that h ( a ° , T )  is a function of  ( T o -  T) /T~  and cl - 1/2C~, which can be expressed in the 
general form of  

/ \ I 0 b I 0 - 

[----Z'-w-] f (  ), where x =  C/ - ~Cr x T - T~ {c~ - ~ cy'~ ~'~ 

From the modern phase transition theory [7] we know that when a system is very near its critical 
point, such a scaling law is generally true for all the thermodynamic functions, and the exponents 
which appear in these relations are believed to be universal in the sense that they do not depend 
on the detailed microstructure of  the system, only on some general characteristics of the system, 
such as the components of  the order parameter and dimension of  the system. In the following part, 
we will study a specific system whose explicit form of/~(a°,T) and .i can be obtained, and to predict 
its macroscopic characteristics. 

3. THE EQUATION OF STATE OF ZrO~ CONTAINING CERAMICS SUBJECTED TO 
AN APPLIED STRESS AND TEMPERATURE 

To simplify the analysis, we introduce the following constraints about the system we 
studied. 

(1) The non-transformed tetragonal ZrO2 particles in ceramics are of spherical shape and they 
form a cubic lattice in the matrix (Fig. 2). 

(2) Under an external load and temperature, some tetragonal ZrO2 particles will transform 
to monoclinic phase. We assume that the matrix and non-transformed tetragonal ZrO2 particles 
are isotropic and with a uniform elastic moduli, whereas the transformed monoclinic ZrO2 particles 
are anisotropic and with a uniform eigenstrain c p. 
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Under the above assumption, we can derive the change in the total elastic potential energy 
which constitutes the first term in eq. (3) when a tetragonal ZrO2 particle transforms to monoclinic 
phase. 

Consider a matrix D contains an inhomogeneous inclusion t2 with eigenstrain e~ under the 
action of an external load, the total potential energy of the body is defined by the sum of the elastic 
strain energy and the potential energy of the external load F,. According to Colonetti's 
theorem [14], the elastic strain energy W due to F~ and e p is 

W = W~ + W,~, (32) 

where Ww and W,, are the elastic energies due to the single action of F~ (EP = 0) and the single action 
¢~ (F~ =0), respectively, and they are expressed as [14] 

l f l f (33) . 

F 1 ~ a~Pdv, (34) 

where E*~ is the fictitious eigenstrain introduced in the equivalent inclusion method by Eshelby [15]. 
If  the material is homogeneous without the inclusion, the total potential energy is 

1 f a ~ ° d v - ;  F,u°ds. (35) w0=  

Thus, the change in the total elastic potential energy due to the existence of a transformed 
ZrO2 particle is 

E ~ = W - ; F~(u ° + ui)ds - Wo 

= ~ ~ a i ~ d v -  Fiu,ds. (36) 

Finally, eq. (36) can be expressed in the form [14] 

1 0 , E ~ = - ~ v[ao(e ~i + 2E~) + trifP] (37) 

_ 4 ~ra 3 and v - ~ , a is the radius of the tetragonal Zr02 particle, e*0, tr,j are determined by the following 
equations 

Cijkl(e O, -~- SklmnE*mn) = C~ijkl(E O, ~- SklmnE~mn - -  E*kl) (38) 

¢~ij ~- C~;ji.jkl[Sklmn((:Pmn "J[- e*mn) - -  (e~l "~- E*kl)] (39) 

and C,j,~, C~,:j,~ are elastic moduli of the monoclinic ZrO2 particle, ceramic matrix, respectively. S~,/ 
is Eshelby's tensor, which is shown in Appendix A for spherical inclusion. 

The second term in eq. (3) is the chemical free energy change, which is a function of the test 
temperature T [16] 

E~(T) = AS(To - T)v,  (40) 

where AS is the transformational entropy change per unit volume and To is the temperature at 
which the unconstrained tetragonal phase begins to transform to the monoclinic phase. The 
addition of certain solutes (e.g. MgO2, CeO2) will lower To. If  we neglect the surface energy change, 
substitution of eqs (37) and (40) into eq. (3) gives 

1 
h(tr°,T) = -~ v[tr~(e*~/+ 2e p) + tr~ p] - AS(T0 - T)v. (41) 
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To derive an expression for J(r, - rj) in eq. (2), one has to calculate the total elastic energy 
of two inhomogeneous inclusions in the matrix. Consider that there are two inclusions in a body, 
each of them has a uniform eigenstrain e~ (Fig. 3). 

According to Colonetti's theorem [14] the total elastic energy W ~ of a body containing two 
inhomogeneous inclusions with an eigenstrain e~ can be expressed in the form as 

W ~ = W~ + I4"2, (42) 

where W, is the total elastic potential energy created only by the external load without the 
eigenstrain and W2 is the total elastic potential energy created only by the eigenstrain without 
external load. 

Consider a body with two inhomogeneous inclusions without any eigenstrain, the strain energy 
W*~ is 

1 jo¢" 0 , 2 o eb+ 2 eii)dv = a , / ) (e , j  + = W*, ~ (a,j + a,i + 

lfo, °,adv+lfo 1 fo (43) "~ . $ (a~+a~)(e ° + e~j + e~)dv + 

where e~i, a~j are strain and stress perturbations due to the existence of f2, inclusion, e~, a~ are strain 
and stress perturbations due to the existence of 02 inclusion. 

~r,)(e,j + e]j + e2)dv u,nj(a[i + a~)ds - ui(a]j + a,.:,.).jdv O, (44) 

= a ~ ) . ,  since n/(a~j + a~) 0 on S and (ab + = 0 in D. 

f a°(4+e~)dv=fD ° ' 2-- • aij[e~i+e~i e*ijH(121) - e*oH(I22) + e*~jH(12,) + e**i(f22)]dv 

= . re, a°e*i]dv+fjo_~ a°e*,~dv, (45) 

where e*~/is the equivalent eigenstrain and 

others. (46) 

Z 

c~u 

Cijm 
r~ 

Y 

× 

Fig. 3. Schematic of two inhomogeneous inclusions. 
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Eshelby [15], then 
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If we replace the inhomogeneous inclusion by a homogeneous inclusion according to 

C~,/,,[e, t, + e, 2, - e*k,H(f2,) -- e*k,n(f22)] = a)i + o'~. (47) 

By using eq. (44) we obtain 

f, a°(eb + e~)dv = f, a°¢.*odv + ;, a°~.*~,dv. (48) 
I 2 

Substitution of eqs (44) and (48) into eq. (43) yields 

W*, = ~ l f o a ° , / . ° d v + l f a ° ~ * , / d v + l f a ~ * , j d v . 2  , 2 2 (49) 

The total potential energy of the body is 

W, = W*, - ~ F~(u ° + u~ + u~)ds, (50) 

where u~, u 2 are displacements due to t2~ and f2:. 
The other part of energy comes from the eigenstrain in the inclusions. 

1 fo (try? + a~P)eodv, w2= ~ (51) 

where a~P, a~ are stress fields created by e~ at Q~ and ~2, respectively, e~ is the elastic strain, which 
can be written as 

eii= e,j -- e~H(f2,) -- e~H(f22). (52) 

Substitution of eq. (52) into eq. (51) gives 

';o fo W~ = - "~ a)?e~dv - -~ a~Pe~dv - a~Pe~dv. (53) 
I 2 I 

In deriving eq. (53), we have used 

fo(G~P "q- a~P)Qdv = O, (54) 

which can be approved as eq. (44). 
According to eq. (42), the total elastic energy W of a body containing two inhomogeneous 

inclusions with an eigenstrain e~ is 

l f, a~dv + l f, a~e*~,dv + f a°e*,dv- f F,(uO, + u1+ u~,) ds W= ~ -~ 
I 2 

1 1 --~f,~,a~,J'e~dv--~foa~'e~dv-~,~a~'e~dv. (55) 

The additional change in interaction energy due to two neighboring tetragonal particles 
transforming to monoclinic phase is 

J ( r , -  rj) = - ( W -  ~ - ~ - W0), (56) 

where I4/0 is determined by eq. (35), and ~ and ~ can be determined by eq. (36). 
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Since there is no exact solution for a body containing two inhomogeneous inclusions, we 
have to make some assumption to obtain the interaction energy. We assume that ~ in eq. (55) can 
be determined by a single inclusion problem, i.e. e;. is given by eq. (38). Substitution of  eqs (35), 
(36) and (55) into eq. (56) yields 

J ( r~ -  ri) = fa a~Pedv" 
I 

(57) 

Since a~ is the stress field created by e~ at t2~, according to Mura [14], we know 

a~ p = Co~,Ok,,,,(X)(~*m. + eg,), (58) 

where x is a point outside the inclusion f2z. C ~  is the elastic moduli of  monoclinic ZrO~ particles, 
e,,* can be determined by eq. (38), and 

4~za3 I ~ aS 8n(1 -- 7)O,jk,(x) = --7-- ( 6,k6j, + 6jk~k, -- 606k,) + ~ (6~k,  + 6,k6it + 6j.5.) -- 2?n,n~k, 

--(1 -- ?)(mnfi~ + n~nk6j~ + n~n~6ek + n~n,6~) 

- -~ - 1 (n~n~6~ + n~n~. + n i n ~  + n~n~6u + n~n~6~ + n~nfl~) + \ r~ - 5 n ~ n ~ m ,  (59) 

where a is the radius of  the particles, r is the distance between the centers of  the two neighboring 
inclusions, y is Poisson's ratio of  the matrix. The integral in eq. (57) can be done directly by 
substituting eq. (58) into eq. (57)[17], the final result is [18] 

4 3 I lO(13a~ ? ) r S ~ . ( n ) ]  * P P J(r, - r~) = ~ rca C~k, D~,~,(r, - rj) + (Em, + E,,,)E0, (60) 

where 

A~m,(n) = fiofkl + fiikfijt + 6j~fi,, - 5(nkm6~i + n:,n~f~k + n~n~fjk - njnkf,  - n~nj6,, - n~nk6~l) 

+ 5n~njn,n~. (61) 

Since we assumed that the non-transformed tetragonal particles in ceramics formed a cubic 
lattice (Fig. 3), J(r~ - r~) might take three different values according to the relative positions of  the 
neighboring inclusions. They are J~, J~. and J-, and J~ is determined by substituting n = (1,0,0) into 
eq. (60), J,  is determined by substituting n = (0,1,0) into eq. (60) and J= is determined by 
substituting n = (0,0,1) into eq. (60). Substitution of eqs (41) and (60) into eq. (11) gives the critical 
condition for transformation or the yield condition in the stress-strain relation 

1 /~=~l  zta3[ao(e,i/+ 2E~) + a~f~] - rca3AS(To - T )  + ~ (Jr + J,.. + J:) = O. (62) 

Since we divided the body into many cubic cells and assumed that there is a ZrO2 particle in 
each cell, the distance r between the centers of two neighboring inclusions is the size of the cubic 
cell. If we know that the original volume fraction of tetragonal ZrO: particle is c~, r in eq. (60) 
can be determined by 

a 
r -  (3C~/4n),/3 . (63) 

Given the transformation strain C, eq. (62) is a function of  external load and temperature. 
According to the discussion in Section 2, we know that when external load and temperature satisfy 
eq. (62), the volume fraction of  transformed particles takes two values [eq. (29)], one value is smaller 
than ½ c~ and the other value is larger than I 0 Cr for T < To. So eq. (62) in fact determines a 
peuso-yielding condition for ZrO: particles containing ceramics. 
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To get a deep understanding of the transformation phenomena, we should derive the critical 
temperature by using eq. (27), where ½ C~ particles will transform from one phase to the other. For 
cubic lattice, 2(k) in eq. (27) can be determined from eq. (21) by summing over the sets of vectors 
{(+ 1,0,0), (0, + 1,0), (0,0, + 1)} 

2(k) = 2[J*(0)]- l(Lcosk, + ],cosk2 + ):cosk3) (64) 

and J*(0) can be determined by eq. (20) as 

J*(0) = 2(3.,- + J,. + at.-) = 1 (j,. + j,. + 4) ,  (65) 

in which we have used eq. (12). Thus from eq. (27), the critical temperature is given by 

T¢ = Ba 3 , J ,( l  - cosk,) + J,]O --- c ~ 2 )  + 4(1 - cosk3) ' (66) 

where B is a material constant, and in statistical physics, it is Boltzmann's constant. Jr, J,, 4 are 
functions of external load and transformation strain, and they can be determined by eq. (60). But 
the external load in eq. (66) must satisfy eq. (62). The two conditions determine a critical point 
according to the above discussion. 

By substituting T in eq. (62) by T¢ in eq. (66), we can obtain 

1 3 o * 2 { 3n2c~ 
~ na [ao(e ~j + 2e~) + a ~ ]  -- ~ lta3AS To Ba 3 

Jx(1 - cosk~) + Jr(1 - cosk2) + 4(1 - -  c o s k 3 )  + 2 (y* + J '  + 4 )  = 0. (67) 

Equation (67) represents a surface in stress space under the condition of given transformation 
strain. Any point on this surface is a critical point of the system. When a system is at a critical 
point, it has some specific characteristics. For example, the volume fraction of transformed particles 
equals ½ C~ (or the order parameter is zero). When the system is near the critical point, some scaling 
laws such as eq. (31) are generally true for all the thermodynamics functions and the exponents 
which appear in them are believed to be universal. 

Substitution of eqs (11), (41), (64) and (65) into eq. (25) yields the final state equation 

1 

where 

(Cr--1/2c~) 2 ] T ~ r m 3 [ a ° ( e * , + 2 e ~ ) + a o ~ - ~ ] - ~ n a 3 A S ( T o - T ) + ½ ( J ~ + J , , + 4 ) )  
(1/2C~)2 = B (J~ + J. + 4 ) ( C / -  ½c~)/C~ " ' 

(68) 

I(u) - 31t2c~ , u(J~ + J,  + J~) + J~(1 - cosk,) + ],.(1 - cosk2) + 4(1 - cosk3) " (69) 

If we know the external load and temperature, we can determine the volume fraction of 
transformed particles from eq. (68). On the other hand, to obtain some amount of transformed 
particles, we can also determine the needed external load under given working temperature T from 
eq. (68). Equation (68) is an analytical relation between the volume fraction of transformed 
particles, the external load and temperature. We call it the equation of state. 

4. SIMPLIFICATION OF RESULTS 

To simplify the results obtained in the third part, we use some dramatic assumptions, but we 
hope that these assumptions will not change the properties of the material qualitatively. The key 
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assumption we make  in this par t  is that  the elastic constants  o f  the t ransformed particles are the 
same as the matr ix and they can be treated as isotropic materials. Thus  f rom eqs (38) and (39), 
we know 

~*~ = 0 (70) 

[ = 0 1 5 ( l  - (6~,.a~. + 6,.6,,.) a,~ C~.~(S.~,,,,,- I~.,°)~. = ,(5~ 2~(57+ 1) 606~.]~g. 
15(1 -7)  (71) 

where/~,  7 are shear modulus  and Poisson's ratio of  the material, and L... is the identity tensor. 
I f  we fur ther  assume that  non-zero components  o f  e~. are EF, = E5 = E~3 ¢ O, Er3 = c~ # O, E~. 
can be expressed in the form 

I (72) 

where El~k = e~'j + ' 5  + e~3. 
Substi tut ion o f  eqs (70)-(72) into eq. (41) gives 

4rta 31- 1 o 
h(tr°'T) = ~ L ~ tr,;~, + 2a°3e5 

/~(57 - 7) -] 4rca 3 2U(7 + 1 ) , .  x2 + (e~'3) 2 -- A S ( T o -  T), (73) 
9(1 -- 7) tEr, j 15(1 y) _] 

where a ~ = a ? ,  +a~2+a~3.  
By substituting eqs (70) and (72) in to  eq. (60), after some cumbersome mathematics,  we can 

obtain 

8/za 6 { [ (  3a2"~ ~ ~ ( 6a2 ) 1  k 2 7 -  1 -  - -  + _ - 7 -  1 n,n~e~.e~ J ( r i -  r j ) -  3(1 7)r 3 r-' J 

+ l~ 3 + ff~r 2 + Y -  (n~ + n  2)+ k r2 - 1  n~n 2 (ES) 2 , (74) 

where k is the bulk modulus  and r is the distance between the centers o f  two inclusions, n ,  n2, n3 
denote  the relative orientat ions of  one inclusion with respect to the other  (Fig. 3). If  the center 
positions of  the two inclusions are on the x-axial,  i.e. n, = 1, n: = n3 = 0, f rom eq. (74), we can 
obtain 

( 3a ) 
J ~ -  9 ( 1 - 7 ) r  3 1 + 7 -  ~ (d%)% (75) 

where r is given by eq. (63) if we know C~. 
I f  the two inclusions are on the y-axial,  i.e. n2 = 1, n~ = n3 =0 ,  one obtains 

8n/m 6 ( 1 - 27 4a2'~ - 2 
J Y -  3 ( 1 - - - ~ r  3 ~ + ~ r  2) (d3).  (76) 

I f  the two inclusions are on the z-axial, i.e. n3 = 1, n, = n2 =0 ,  one obtains 

8/t~a 6 ( 3a 2 "X 2 
J- = J~ - 9(7 ---~)r 3 1 + 7 - ~-~ )(d'3) • (77) 
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Substitution of eqs (73), (75), (76) and (77) into eq. (62) gives the condition for half of the 
tetragonal particles transforming to monoclinic particles, i.e. the yielding condition for the 
macroscopic stress-strain relation in the form 

g ~,;~, + ~3cr~ = q(1 - ~) + ~ (To - T )AS - [ 30(1 - ~,) + 

1 q 2/3 
3#c~ [ 1 + i _ 6 ( ~  ) I}(E~)2 (78) ~,rc(1 2_ ~,) 

Equation (78) is a bilinear yielding condition, which is quite similar to the phenomenological 
one proposed by Chen [3]. 

Substitution of eqs (75)-(77) into eq. (66) gives the critical temperature 

u(Er3)2c?a3[ ( 3c? '~2'3-1 
(79) 

where 

4 
Kc(rl) = ~ (2 + r/)[(co + 1) '~z -- (09 -- 1)'/2]K(m2)K(m3) (80) 

1 
rn2 =- ~ [(co - 1) '/2 - (o) - -  3)  '/2] [ ( t o +  1) '/2 - (co - -  1) ':2] (81) 

1 
m3 = ~ [(r_j.) - -  1) ','z - (~o - 3) '/2] [(~o-I- 1)  ̀ /2 - (co - 1) '/2] (82) 

a~-= 4+3r l  
,~ (83) 

_ = 3 f.2_3 .,,'~-~-I 
" =  s, 5t,4,<,) ] (84) 

and K(m) is a complete elliptic integral of the first kind. 

~ X 

P 

3 

¢ 
I; 

Fig. 4. Configuration of hydraulic compression test. 
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When I~, (To- T)/Tc are small, the critical equation of  state (31) can 
explicitly 

/~(cr~, T) 2r/rt2K~(r/) (C,~. ½C~) ~ T - Tc ~ C/-Z 1/2¢~ "~212 
a-"-~ ~ (2+~)~ ~C' ~ I_ r~ + \  1/2~ / j '  

where Kc(r/) is given by eq. (80) and 17 is determined by eq. (84). 

be written out 

(ss) 

5. AN EXAMPLE AND DISCUSSION 

Since we do not have sufficient experimental data to determine some necessary parameters in 
the model such as B, To, etc., we can only obtain the qualitative prediction of  the transformation 
behaviors on the example studied by Chen and Reyes Morel [3]. The material was Mg-PSZ cylinder, 
which was subjected to a hydraulic compression test (Fig. 4) under room temperature. In these 
experiments, a hydrostatic confining pressure P is provided in addition to a uniaxial compression 
~. Under such loading condition, the maximum shear stress plane is shown in the figure. Suppose 
we establish a coordinate system based on this plane as in Fig. 4, with 1- and 3-axes along the 
shear direction and perpendicular to the shear plane. Thus, if we further assume that all 
transformed particles have the same non-zero transformation strain ~ = E~2 = E~3 ~ 0, ~ ~ 0, 

- ~- 0vtaa) 

4 ( ~ 0 "  

D 

i r ~ m  C~9) 

£FM 53/)--B 

0 0.05 0.I 0.15 0~. 0.25 0.3 0.35 

Cf 

Fig. 5. The volume fraction of transformed particles vs temperature and external load. 
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and the tetragonal particles form a cubic lattice with respect to this coordinate system, we can use 
the results obtained in the last part to deal with such specimens. The external load which appeared 
in equations of the previous section are tr,°, • = a°~ + tr°2 + a°3 = - (E + 3p), a°3 = •2 ,  and stress-free 
strain accompanying the transformation is E~, = 0.04, El'3 ---0.15. We cannot find the experimental 
data for To which is the temperature for unconstrained tetragonal particles transforming to 
monoclinic phase. For  pure zirconia, this temperature is about 1000°C, but the addition of certain 
solutes such as MgO will lower To. Therefore, we attempt to determine it from experimental data 
reported by Chen and Reyes Morel [3]. According to Chen and Reyes Morel, we know one yielding 
point where Cl = ½ c~ and tr°~ = - 2000 MPa, tr°2 = tr°3 = - 200 MPa, T = 22°C. From eq. (78), we 
can determine To as 557.6°C. 

Another parameter which needs to be determined is B. In statistical mechanics, it is 
Boltzmann's constant, but here it is a material constant which should depend on the volume of 
a particle. At the present stage, we do not know how to calculate it. So we also determine its value 
by experimental data through eq. (25). It seems to be B =0.2v x 106 J/K. Therefore the critical 
temperature can be determined by eq. (79) as Tc ~ 280°C. When the temperature is near its critical 
value To, eq. (85) is valid, which has been shown in Fig. 5. 

The relation between the volume fraction of  transformed particles, external load and 
temperature, which is shown in Fig. 5, is based on the assumption that any part of the material 
always stays in an equilibrium state when the external condition is changed. Therefore, it is suitable 
for both loading process and unloading process. In fact, it is almost impossible to make every part 
of the material always remain at equilibrium state under the loading. So in experiments, we often 
observed a loop of  hysteresis when a specimen is first loading, then unloading. The explanation 
of this phenomenon is the same as that for the loop of hysteresis in ferroelectricity. Even when 
the temperature is lower than the critical temperature, it is not very easy to observe the fiat part 
as shown in Fig. 5. 

This research is an attempt to deal with a mesoscale problem by using the microscale statistical 
mechanics method and results. As an optimistic estimation, this may become an efficient approach 
of microstructural mechanics, since it can predict the macroscopic behavior of materials even if 
there is no such possibility to determine their changing, stochastic microstructure. However, there 
are some unsolved problems in this research at the present stage, e.g. how to determine the constant 
B? How to consider the effect of  the irreversible transformation process? These problems will be 
considered in detail in the near future. 
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APPENDIX 

T h e  n o n - z e r o  c o m p o n e n t s  o f  E s h e l b y ' s  t e n s o r  S,,~ = S, ik~ = S i . .  f o r  s p h e r i c a l  i n c l u s i o n  a r e  

s ,  . . . .  s::::  = s ~ ,  = 17i~ - 

5 ~ , -  1 
SH2,_ = S22~3 = S~3.  = S . ~  = S 2 m  = $3~2 = 15(I - ~,j 

4 -  5 7 
St.,t2 = S.,3_,3 = $3~3t = 15(1 - ~,,) " 

( A I )  

( A 2 )  

( A 3 )  


