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ABSTRACT: In this investigation, the Stroh formalism is used to develop a general
solution for an infinite, anisotropic piezoelectric medium with an elliptic inclusion.
The coupled elastic and electric fields both inside the inclusion and on the interface
of the inclusion and matrix are given.
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I. INTRODUCTION

The coupled electroelastic behaviour of piezoelectric materials adds considerably to
the difficulties in the design and analysis of mechanical behaviour of the materials. Further
complications arise from the inherent anisotropic of the piezoelectric ceramics. Nevertheless,
a reasonable amount of theoretical work has been directed towards the study of dislocation,
crack and inclusion problems as well as interfacial behaviour in homogeneous piezoelectric
solids. Sosa and Pak!! developed a three-dimensional solution for isotropic piezoelectric ce-
ramic with defects. Wang and Dul®3) and Chen!* analysed the inclusion and crack problems
in piezoelectric matrix based on Green’s function and Fourier transformation techniques.

' Extending Deeg’s!®! rigorous analytical solution to piezoelectric inclusion, Dunn and Tayal®)
estimated the effective properties using the dilute, self-consistent, Mori-Tanaka and differ-
ential micromechanical models. The present paper is concerned with deriving exact general
solution for an infinite, anisotropic piezoelectric medium with an elliptic inclusion. The cou-
pled electroelastic fields of the inclusion and matrix are given when the external elastic field
and electric field are both constant. The developed theory is based on the central idea of the
Stroh formalism established by Stroh!” and further elaborated by Ting/®9. More recently,
Stroh formalism was generalized to treat dislocations and line charges in linear piezoelectric

media by Pak[® and to solve the boundary value problems of lectroelastic media by Suo et
allll],

I1I. BASIC EQUATIONS

If no free charge and body force exist in piezoelectric body, the static elastic and electric
field equations can be written as!!?l

8D; =0 (1)
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Biaij =0 ' (2)
Di = —&is ¢a s+ Cirslr s (3)
O35 = Uijrslrs + €eji ¢a S (4)
and .
Yig = 5 (Ui + i) Ei=-9; (5)

where «,0,D and E are strain, stress, electric displacement and electric field; v and ¢
the elastic displacement and electric potential, respectively. The elastic, piezoelectric and
dielectric constants of the medium are represented by the fourth, third and second-order
tensors C, e, & respectively. Substitution of Egs.(3) and (4) into Egs.(1) and (2) yields

(Cij‘rsur + €551 ¢),si =0 (_Eia ¢ + eirsur),ai =0 (6)

For two-dimensional problems in which v and & depend on z; and z; only, the general
solution can be obtained by considering an arbitrary function of a linear combination of z;
and z,

{ur, 8} = af(§1z1 + &222) )

It is convenient, here and in the sequel, to take {u,, #} to be a column with the entities
indicated, so that a is likewise a four-component column. Without loss of generality, one
can always take £ = 1, {&; = p. Thus, the number p and the column a are determined by
substituting Eq.(6) into (7), which gives

(Cajrpar + €ajpas)fats = 0 (—€apas + €arpar)éalp =0 (8)

where o, 3 = 1 or 2. This is an eigenvalue problem consisting of four equations; a nontrivial
a exists if p is a root of the determinant polynomial. Since Eq.(8) admits no real root!1],
the p, occur as four pairs of complex conjugates. We let

Pats = Po . Im(pa) >0 a=12,3,4 (9)

where an overbar denotes the complex conjugate and Im stands for the imaginary part.
More generally, we have

4
V = {u,, 8} = 2Re Y _ aafalza) (10)
a=1

in which Re stands for the real part, a, the associated columns, and z, = z; + paz2. For
a given boundary value problem, the stress and the electric displacement obtained from
Egs.(4) and (10) are given by

4 4
{02, D2} =2Re Y bafi(2a)  {01j, D1} = —2Re Y bofi(za) (11)

a=1 a=1

where, for a pair (p, a), the associated b is

bj = (Cajrpar + egjaa4)€p by = (—e2pas + e2,80,)és _ (12)
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Substituting Eq.(12) into (8) gives an alternative expression
bj = .—p_l(clj.,.ﬁa,,‘ + eﬁj1a4)£ﬂ by = —p_l(—slﬁa4 + elrgar)fﬂ (13)

In matrix notation, the Egs.(12) and (13) are expressed as

1
b= (RT +pT)a = _5(Q +pR)a (14)
where the superscript T stands for the transposed matrix and R,T,Q are 4 x 4 matrices
given by
R— Cljrz €251 ] 0= Cljrl €151 ]
T _ T _
€ir2 €12 |, 4 €ir1 €11 |44
Cs; ea;
T — '21:11'2 252 :| (15)
621‘2 _622 4x4

We see that @ and T are symmetric and T is positive definite, and the Eq.(14) can be recast
in the standard eigenrelation

N§ = p€ (16)

_ N1 N2 _ a
vl o] eld) n
Ny=-TRT N,=T1=NT }

18
N3 = RT'RT —Q=NT (18)

where Ny and N3 are also symmetric and N3 is positive definite. If we define the 4 x 4
matrices A and B by

A = (alya2703ya4) B = (b17b2yb3yb4) (19)

each of the as is determined by the eigenvalue problem up to a complex-valued normalization
constant. It can be proved that the matrices H, L, S introduced by Barnett and Lothe(13]

S=i(24BT -I) H=2i4AY L[ =-2iBBT (20)

where i = 4/—1 and I is the unit matrix, are real and valid for the coupled electroelastic
problem. By introducing the following auxiliary function

4
U=2Re Z bofa(2a) (21)
a=1 -
Eqgs.(11) can be rewritten as
{02, D2} = Uy {o15, D1} = -Up (22)
Finally, from Eqs.(10), (16) and (21), we have the following differential equation

{V2,Uz2}=N{V,,U:} (23)
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II1I. ELECTRIC AND ELASTIC FIELDS IN MATRIX AND INCLUSION

In an infinite anisotropic piezoelectric material, consider an elliptic inclusion whose
boundary is given by
T; = acos Tg = bsinz (24)

where 2a,2b are the major and minor axes of the ellipse. The inclusion is extended indef-
initely in the ®s-direction, and the uniform stress and electric field are applied at infinity.
The inclusion and the matrix have a perfect bonding along the interface (24). Let o5y, V55
be the stresses and strains, D{°, EZ° the electric displacement and electric field in the matrix

at infinity. They are defined from Eqgs.(3) and (4)

055 = CijrsVrs — €sjillg” D = €;EX + €iraYrg (25)

We note that ofY have to be prescribed in such a way that v§3 = 0, the auxiliary functions
V> and U can be expressed using the variables in an infinite body
Ve ={uX, 87} = {(z177° + 227%°), (21 EY° + 22E5°)} (26)
U = {(z113° — 22t7°), (z1 DF° — 22 D7°)} (27)
in which
7% = {7111, 0, 2775} = uY
75 = {277,755, 2755 } = uF (28)
i = {0,015, 013}
t5° = {052,055, 053}
In engineering applications including the present case, fi, fa, f3, f4 have the same function

form
falza) = qaf(2a) o not summed (29)

where q,,, @ = 1,2, 3, 4 are arbitrary complex constants. If we introduce the diagonal matrices

z = diag{21, 72, 23, 24} (30)
F(2) = diag{f(21), f(22), f(23), f(24)} (31)
Eqs.(10) and (21) can be written as
V = 2Re{AF(z)q} (32)
U = 2Re{BF(2)q} (33)

in which ¢q is the 4 x 1 matrix whose elements are ¢,, @ = 1,2, 3,4. Before we superimpose
the general solution (32) and (33) onto (26) and (27), we replace the complex constant q by

g=ATg+ BTh (34)
where g and h are real. We therefore consider the general solution

V = {u,, 8} = 1 {7, E°} + 22{7, EP) + 2Re{AF(2)AT}g + 2Re{AF(2)BT}h (35)
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U = z;{t3°, D} — z2{t°, D°} + 2Re{BF(2)AT }g + 2Re{ BF(z)BT}h (36)

of the auxiliary function for the piezoelectric materials with elliptic inclusion. Following
Lekhnitskiil'4l, we choose the arbitrary function f(z,) in F(z) of the following form

F(z) = diag(¢;', 657,657, 65) (57)
€a = {za + [2% — (a® + PLb?)]"/?}/(a — ipab)
It is clear that ’
€1 = {za — 2% — (a® + p2b")*}/(a + ipab) (38)
Along the interface (24), we then obtain
€1 = cosy —ising F(2) = (cosp — isinp)I (39)

We next consider the general solution of auxiliary functions V° and U? in the inclusion
of piezoelectric ceramics. According to Wang!?, the coupled elastic and electric fields inside
the inclusion stay uniform when the external elastic field and electric field are constant for
the piezoelectric medium containing an elliptic inclusion

VP = {u, 8} = {(z17} + 2273), (z1 EY + 22 E7)} (40)
U° = {(z1t3 ~ z2t]), (21 D3 — 22D9)} (41)
where
7(1) = {7?1"’”’ 27?3} = "’?1
79 = {278 — w, 782, 2985} = ul @)
t] = {091, 072,003}
t3 = {021,035, 085}
in which w is the rotation (counter clockwise) of the elliptic inclusion. The elastic and
electric fields in the inclusion are also related by Egs.(3) and (4)

0 _ 0 .0 __0 f0 0_ 0F0_ 0 .0
035 = Cijrs7‘r‘s - esjiEs Di - EisEs + €irsVrs (43)
where Cf,,, €},, €}, are the elastic constants, dielectric permittivity and piezoelectric

constants of the inclusion, respectively. From the basic solution given by (35), (36) for the
matrix and by (40), (41) for the inclusion, the problem reduces to the determination of the
unknown constants g, h, (¢, D?), (¢9, DY), (49, E?) and (~9, E9) only.

Along the elliptic interface defined by (24), Egs.(40) and (41) reduce to

V® = acos {7}, E}} + bsinp{~3, ES} (44)

U° = acos¢{t, DI} — bsin {1, DV} (45)
while using (20) and (39),,(35) and (36) become

V = cosw(a{vs®, Bf°) +h) + sin(b{v5°, B5°} — Sh — Hg) (46)

U = cos¢(a{t5®, D5} + g) —sin(b{t3°, D;°} — Lh + ST g) (47)
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Assume the bond is perfect, so that the displacement and potential, the stress and
electric displacement are continuous across the bonded segment

v=v?’ U=U° (48)

From Eqgs.(23), (28), (42) and the solution to anisotropic elasticity problems introduced
by Hwu and Ting/'%!, we have

[ D1 D2

B ob | gy =btan.an) ()

where ; ) .
Dy=S+-N) Dy=H+-N{ Dy=L~—N§
a a

dy = (N1 — N?){v%°, Ef°} + (N2 — N§){t3°, D3°}
dy = (N3 — N){7$°, Ef°} + (N — ND){t3°, D3}

Eq.(49) can be solved for h and g explicitly by inverse transformation, and we then obtain

h =b(Ds+ DID;'D,)"Y(DTD;'d; — ds)
(50)
b

g =b(Dy+ D1 D;' DY)~V (d, + D1 D3 'dy)

We also rigorously prove that (D3+DTD;'D,) ! and (Dy+D1 D3 DY)~ are both positive
definite which justifies the existance of the inverse in Eqgs.(50).

IV. IDENTICAL EQUATIONS

Let n(w), m(w) be, respectively, the unit vectors tangent and normal to the interface,

we have
nT(w) = {cosw,sinw,0) mT(w) = (- sinw, cosw, 0) (51)
Therefore, Eqgs.(15) can be generalized by
r 3
R@)=| G |,
L Cirs —Eis |
[ C.. o
Qu)=| & %% | mun, (52)
L €irs —E&is |
T(w) — C?I_Z"rs €331 mim,
L Cirs —&is | Y

and it can be seen that (52) reduces to (15) when w = 0. Next we consider the generalized
eigenrelation

N(w)€ =p(w)§ (53)

wo-[39 5] e(3) e

M) = -THWRTW)  Malw) = T7(w) } 55

N3(w) = R(w)T™ ()R (w) — Q(w)
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It can be proved that the eigenvalues p{w) are related to p in Eq.(18) by
p{w) = (pcosw — sinw)/(psinw + cosw) ' (56)

As before, Egs.(53) have eight eigenvalues p,(w), Im(p,(w)) > 0, a = 1,2, 3,4 which come
in four pairs of comblex conjugates and can be combined into one compact form as

o 3)-[529]

where A and B are defined in (19) and
P(w) = diag(p1(w), p2(w), ps(w), pa(w)) (58)
Substituting N(w) from (54), we obtain the identities
24P(w)BT = Ni(w) — i[N1(w)S — Na(w)L]
= Ni(w) —i[SN1(w) + HN3(w)L]
2AP(w)AT = Ny(w) — i[Ny (w)H + Ny(w)ST)
2BP(w)BT = N3(w) - i[N3(w)S — N{" (w)L]

(59)

The proof parallels that of Barnett and Lothel!?! for the anisotropic elasticity problem, and
we have an alternative expression for S, H, L defined in (20)

1 ™
5=—/ Mw)dw
T Jo

1 Y
H= /0 Ny (w)dw (60)

J

1 ™
L= ——/ N3(w)dw
T Jo

to anisotropic piezoelectric materials. The three matrices S, H, L can be used to obtain the
real-form solutions of the electroelastic fields in anisotropic piezoelectric medium, without
determining the eigenvectors A, B.

V. FIELDS ALONG THE INTERFACE

Let n(w), m(w) be, respectively, the unit vectors tangent and normal to the interface
boundary, and T, the stress and electric displacement vectors along the interface. We have

Tm =Uq, =coswlU +sinwl 2 (61)
Since U = U 9 at the interface, using (41) leads to
T = cos wTy — sinwT} (62)

where 77 is the stress and the electric displacement vectors in the inclusion. Next consider
the stress and the electric displacement vectors normal to the interface. Then

Tn=-U, =sinwl; —coswl , (63)
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Substituting (36) into (63) leads to
T, = sinwTs® + coswT™® — 2Re{BF ,,,(2)AT}g — 2Re{BF ,,(2)B*}h (64)

in which T is the stress and the electric displacement vectors in the matrix at infinity.
The differentiation of (38) and evaluation of the result at the interface (24) yields

%{;1 = (pa cOSW — sinw)%ﬁ;l

(1 PN (65)
= | S cosw — o sinw Pa(w) :

where we have made use of (56). Therefore, using (37) we obtain

F(2) = <1 cosw — %Sinw) P(w) (66)

a

where P(w) is defined in (58). Finally, substituting (66) into (64) and using (59) yields
. .
T.(w) = cos w{TF" - L[Na(w)h + NE()g]}
1
+sinw{Ts° + E[Ng,(w)(Sh + Hg) + NF(w)(STg — Lh)]} (67)

where Eqgs.(67) are the real-form solution of the elastic and electric fields in an infinite
piezoelectric medium with an embedded elliptic inclusion subject to a uniform stress at
infinity. It is clear that the coupled fields are only dependent on the identities given by
the elastic and electric constants and the boundary conditions. Finally, in the case of
nonpiezoactive medium (e,;; = 0) where no coupled solution exists, particular formulas-
of independent elastic and electric fields can be derived from the general expressions (67),
which are exactly the same as that given by Hwu and Ting!*® using the Stroh method in
anisotropic elastic mechanics.

VI. CONCLUSION

In this paper, the Stroh method in anisotropic elastic mechanics was used to analyze
the coupled elastic and electric fields in infinite piezoelectric medium containing an elliptical
inclusion. The explicit real-form solutions for the electroelastic fields both inside the inclu-
sion and on the boundary of the inclusion and matrix are obtained. The general expression
can also be used in measuring the piezoelectrical constants of piezoelectric composites. It
is apparent that understanding of the coupled electrical and mechanical properties of the
generalized anisotropic piezoelectric body is essential to the design and manufacturing of
piezoelectric components.
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