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Abstract—In this paper. the Green's function technique is used to develop a solution for an infinite.
piczoelectric medium containing a piczoelectric, ellipsoidal inclusion. The coupled elastic and electric
ficlds both inside the inclusion and on the boundary of the inclusion and matrix are obtained. These
results are used to calculate the effective constants of piezoelectric composite materials. It is found
that the coupled elastic and clectric ficlds inside the inclusion stay uniform when the external elastic
field and electric ficld are constant. As an example, the cylindrical inclusion is considered in detail
and some formulae for calculating the effective constants of piezoelectric, unidirectional-fiber
composites are obtained.

L. INTRODUCTION

Along with the widespread application of piczoclectric ceramics and  piczoelectric
composites, how to determine the cffects of defects and inclusions on the properties of
such materials becomes one of the most important problems in engineering. Generally, a
piczoclectric ceramic material is a complex system composed of crystallites, grain boundaries
and pores, and it may also contain many visible cracks perpendicular to the poling direction.
The existence of these defects greatly affects the electric, dielectrie, piczoclectric, elastic and
mechanical propertics of piczoclectric ceramics (Okazaki, 1985). In recent years, several
types of PZT-polymer composites have been fabricated to improve the piczoelectric prop-
erties of poled PZT (lead zirconate titanate) ceramics (Rittenmyer er al., 1985). How to
predict the effective constants according to their constituent propertics becomes a very
important topic in the design of PZT-polymer composites, and the solution of all these
problems relics on the analysis of the coupled elastic ficld and electric ficld of a typical
inclusion in piczoelectric media. According to the author’s knowledge, such a three-dimen-
sional analysis is not available at present.

This research attempts to obtain the coupled elastic field and electric field of a piczo-
electric, ellipsoidal inclusion in an infinite piezoelectric matrix. Two main difficulties exist
in such analysis. One is that the piczoelectric materials are anisotropic, and the other
difficulty is that the elastic ficlds and electric ficlds are coupled in such materials. In spite
of these difliculties, the Green's function technique proved to be an efficient method to deal
with such problems. By using the Green's function method, Kinoshita and Mura (1971)
obtained the clastic ficld for an ellipsoidal inclusion in non-piezoelectric, anisotropic media,
and Shintani and Minagawa (1988) have calculated the displacement and electric fields
produced by moving dislocations in anisotropic, piczoclectric crystals. Zhou et al. (1986)
proposed the multipole function representation and used the analogy theorem to obtain
the elastoelectromagnetic field equations for a finite piezoclectric body with defects. Wang
and Liu (1990) have obtained a general expression for the coupled elastic and electric fields
of an ellipsoidal inclusion in a piezoelectric matrix based on the Green's function technique.

In this paper, the coupled elastic and electric fields inside an ellipsoidal inclusion and
Jjust outside the ellipsoidal inclusion are obtained, then these results are used to calculate
the effective properties of the piezoelectric composites. As a simple, but important example,
the elastic and electric fields of a cylindrical inclusion are investigated in detail, and some
formulae for calculating the effective elastic, piezoelectric and dielectric constants of piczo-
electric, unidirectional-fiber composites are obtained.
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2. FORMULATIONS

If the free charges and body forces do not exist in a piezoelectric body, the static elastic
and electric field equations can be written as (Maugin, 1988)

&D, =0, (n
¢io,; =0, 2)
D, = —a,0, + e u,. 3
0, = Citte s + € D 1, 4)

where C is the elastic moduli tensor, measured at zero strain, e is the piezoelectric moduli
tensor and a is the permittivity of the dielectric material, and for transversely isotropic,
piezoelectric, ceramic materials, they contain five, three and two independent constants,
respectively. ® and uin eqns (2) and (3) are the electric potential and the elastic displacement.
D and ¢ in eqns (1) and (2) are the electric displacement and the elastic stress tensor.
Substitution of eqns (3) and (4) into eqns (1) and (2) yields

(Cl/kl“k.l).[ + (cnn/(b,m),/ = 0- (5)
((‘nu/“l‘/ m (an,l(b‘l)m = 0 (6)
Consider an infinite piczoclectric body with the elastic moduli C, the piezoelectric moduli

¢’ and the dielectric permittivity a’ in which there is an inhomogencous inclusion occupying
a region Q with constants C, e and a. By introducing the following notations:

~ | _ v ~()
ik Cl/kl - C:/kl‘ (7)
{ 0
elm/ = ('"llj - (‘mu 1) (8)
1 0
Uy = gy =y 9

the elastic, piezoelectric and diclectric constant tensors of the inhomogeneous medium can
be written as

C.,u(i) = C:'(/)kl+cliklh(-%)v (.IO)
enu/’ (}) = er(r)u/' +erlm/h(:{‘)v (l l)
ay(X) = ag+ agh(%), (12)

where A(X) is the characteristic function and defined by

1, XxeQ
h(xX) = {0 (13)

otherwise.
Substitution of eqns (10), (11) and (12) into eqns (5) and (6) yields
Chutte sy + €0y @y = = [Charti th ()] — [€m; ® ()] 1 (14)
Emirttiym = Ami® 1y = = [yt )] e+ (Wi ® ()] - (15

By introducing the Green's functions G'. G*, F', F* as follows:
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CouiGhpti +CmijFpmy = — 0,0(X—X"),
e})ﬂGx‘ij - a})kF ;Jk =0,
CoGly+efiFi =0,

eGiy—aiFl = —8(X-X),

eqns (14) and (15) can be expressed in the form

Uy = f G (X = X)[(Clattis + el:q"bx)h(i')].r dx’

.~

.

=up+ | Ghyi(X—XWCilgttics + €y ) A
o

~

+ anr.i(}—‘%’)(ei;d“kj" i‘lq}.i) dx’,
by

b= J. F (&= (Couttey + ey ® )R] dX’

’

.

=M+ | F ,'l..(i - -‘.:')(Ci;kluk.l +¢’klu ®,) dx’
0

.

+ | FHX—X)Wepu—ai®,)de,
)

+| Ga(¥ =) (et~ ai® (X)) A +uj,

+ | F =X (ehtte, —ay® (X)), A+,
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(16)

(mn
(18)
(19)

(20)

2

where u,, and ®, are homogencous solutions of eqns (14) and (15). In the derivation of

eqns (20) and (21), the property of the generalized function A(¥) and the relation

Gy (X=X) = =Gy (X —X)

is used.

(22)

By differentiating eqns (20) and (21), the equations of the elastic strain field and electric

field can be obtained in the form

0 1 2 ar -,
euﬂ = §(uavﬁ + uﬁ,u) = 8uﬁ+ J; Kaﬂi/(x_x )(Cl;yyayn '"e'!-I/Em) dx

+ J; Kvxzﬁi('% — X Yewtn+ai E)dx, (23)

E‘, = —‘D." = E,? + '[I S,,I,-i (.'\"*-."\'C')(C,}k,sk, --ek',,« Ek) d.%'

+ L Sa(X—X'WekiEu+arE)dx,

(29)
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where
K (X =30 = UG, 5+ Gy ). (25)
Ki(3—%) = UG.,+Gi). (26)
Sh(F=%)= —F/,. (27)
SHE=-X) = —F3, (28)

In a general case. the explicit forms of the Green's functions G', G*, F' and F* cannot
be obtained from eqns (16), (17). (18) and (19). Whereas the Fourier transform of the
Green's functions can be obtained easily, the Fourter transforms of eqns (16). (17), (18)
and (19) are

C,;H&,[k GA,,( )+(kllk(\,F‘r(E) = (s;;n (29)
RS GG —alk & s BT (6 = 0, 30)
Chul&,GE(EY el & FT(E) = 0, (30D
eSS GG 2 &8 () = 1, (32)
where
R B P e
GL(x—=X) = . J GiI(EY exp [iE -+ (x— X)) dE, (33)

and G{', F}" and F** can be determined similarly.
The eqns (29), (30), (31) and (32) can be expressed in the fourth-order matrix form as

WAL L A i N

ki1 el‘u)'ﬁlx%/ (’A/r 1’/' ()q) 0

A ozz 6z ox Grop = 0 e (34)
k1616 TS ok «

from which we cun find
le r - Fk! I" (35)

Substitution of egn {33) into eyns (23) and (24) gives
0 l b4 i 1z = £ t
Eap = Eap — 167[‘ A dx (Gu/ 515[{ + G}!/ ‘::51 (C weptyip — Cmy Em)

xcxp[x., (=3¢ j dy J‘(G‘. E &+ GTEL)

x (ehit+ay Eexp i (= 3)]dE (36)

el

1 - 2o s o
E“ = E? + g;[‘“\[ d»“"JF;‘[éxéa(Cz}‘k!SH _'i,;u Ek)cxp {"S’ " (x—x )} d
1

! 2= = oz
+ g f di J FETE 2 (et + b B oxp [iE - (% (37)

sk

)}d

~i
]
ratd
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In deriving eqns (36) and (37), the equation
. e ! . 2L a2
G,},.,,(x—x )= — g—{;jGi, & explié-(x—Xx)]d& (38)

has been used.

If the inclusion occupies an ellipsoidal sub-domain Q, the integrals in eqns (36) and
(37) can be further simplified by following the same procedure as Mura (1982) in deriving
the elastic field of an anisotropic, ellipsoidal inclusion in non-piezoelectric media. We take

the following integral in eqn (36) as an example:

1= de' fc‘,',f E5(Clyntyp— ety Em) exp [iE - (3= )] dE. (39)

The integration with respect to &-space is considered first. The volume element in z
space, d¢ is

dé = d&, d&, d&, = EXdE dS(W), (40)

= (S‘?'{"ég'*‘éi)'/:- w, = &/, 4

and dS(#) is a surface element on the unit sphere S7 in the §~spacc. Then egn (39) is
written as

fy = L dx’ J:: Erdé L’ G EL(Clutrp —emi En) exp [iEw - (X = X)} dS()
- % J; ds’ J‘: e de £ GUTEEN(Clyyty, ey Ex) expliciv- (¥~ 1)) dS(H)
= % L (Clrptyp—ehi En) A%’ L! E2G . Twwy dS(W) ﬁi Erexp [iEw- (X —X')]d¢
S L di J;z EXG T wowy" [t - (= %))(CL, 6, — ey En) AS(). @2)

In the above integrals, the following equations

£

§G. = Gl (W), j _cxp (in) d& = 2nd(n), 43

have been used.
If the crystalline directions of the anisotropic materials coincide with the principal axes
of the ellipsoidal inclusion, the region Q is expressed by

=1 (44)

(1) (xy)? + (x'xz) :
3

The following transformations of variables are used to simplify the calculating procedure:
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’

xyjay =y Xilay =y Xifay =i X\lay =y, Xifa; =5,

xXyay=y5 aw, =p, aw;=py awy=p;.

awi/p =W awwa/p=wa ayws/p =Wy, p=(pi+pi+pi) . (43)
The volume element dX” is
dx’ =dx\dx5dx) = qya,a;dy dyidyy = a,a;a;,r drdé d:. 46)

Substitution of eqns (45) and (46) into eqn (42) gives

I n R
Iy = —na,a.a, j‘ d: J do f rdr J Gl (0w (pW 3 — p2Z)
—1 0 ] 5?
X (Cl;yu{':_vp - erlrn/ Em) dS( \i'). (47)
where R = /12"
Let us consider the case when point X is inside the ellipsoid or point j is inside the unit

sphere. Since the boundary values of the integration by parts vanish, after twice integrating
by parts with respect to Z, eqn (47) becomes

I R 2
= | 7
Iu/f = —Tdd,dy J‘ d(l) [ J r dr (Cl/| pé |;n ('mu Em)
0 0

j
“7‘ {12 (Clup Ty —criu/ lif{r) } o Z -’l {Cl:l‘l ‘v '_‘-'rllijErln}r- R
{Cl;w .I”’ - ""/ Lml r=R :l/ J , Gul/r(ﬁ')wiwﬂ/’ A dS(ﬁ)‘ (48)
-, JST

where the upper index 7 refers to the field values for interior points. It can be seen from
(48) that if ¢’ and £’ are constant, [, is also a constant, and determined by

_ a2 Lo v N Y | -
Iu/! - 27t alu:“}(CI]}'ﬂi’l'p—('IHI[EHI)j‘ Gu; (")“:”ﬁp dS(M')
A

= 77[ ( :/vu )p I:li/'Ein) ,[‘2 Guljr(ﬁ’)wiwﬂ ds(‘vu)v (49)

where
dS(w;) = a,a,a;p ™’ dS(w). (50)

The other integrals in eqns (36) and (37) can be coped with in the same manner as /.. Since
the solutions of eqns (36) and (37) are unique, we can conclude that if a piczoelectric,
ellipsoidal inclusion in an infinite piczoelectric matrix is subjected to the uniform elastic
field €5y and electric field E°, the elastic field and the electric field inside the inclusion remain
uniform. Such a conclusion is also well known in electricity (Maugin, 1988) and elasticity
(Eshelby, 1957).

Furthermore, the surface element dS(iw,) can be written as

dS(w) = dw, do. (S

Then egn (49) is written as
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3 b 4
3 - -
l"ﬂ = zn-(C,';yps",.p "e,l,,lE,{') J‘ d”’} f w,; ”’ﬂGJIT(“') d9 (52)
-1 0

where

w, = W,/a,, w;=Ww/a., w;=w,/a;, (53)
and
lsinf, Wy =w,. (54)

wy = (1=-w})"%cos 8, Ww,=(l-w})"

By using eqn (52), eqn (36) and (37) can be expressed as

1 1 .
8!«5 = 5311 ~ 8 (Naliﬁj +Nﬁllaj)(Ci]l'yps{vp "'er:n'jEL) ~ & (N:aj +Nia.')(ei}d€l'u+ai“5/), (55)
| l
El=E)+ o }ijia(ci/l‘klelil ~e, E)+ an No(eweii+aiE), (56)
where
] 2r
N = J. dﬁ'~‘J‘ G (W)w,w, d0, 7
~t (]
| 2z
Niik = J d};’_‘ J. G,Zr(ﬁ')w, We dU. (58)
- 0
| 2r
N} = I dw, J‘ F”(fv)w,w, do. (59)
-1 0

If the matrix is a transversely isotropic piczoclectric material (with X, in the poling direc-
tion), the non-zero components of N', N*, N? are shown in the Appendix.

In the same manner, the coupled strain and electric fields outside the inclusion can be
obtained through eqns (36) and (37). The jumps of the strain field and the electric ficld on
the inclusion boundary are given by

[Euﬁ] = fﬂ —S‘Il{i
= G.}.'T(;l)[”/ Ci}kzﬂi/”u - ”,'e,:u'j E:{v”ﬂ]

+ G T () (Mg iy g + Monti E{ 1), ©

= - Gzz r(;') [”j Cl}klgilna —-n e,f,,, EL”«]

- FZT(;') [nﬂle’:l/] 6Ilj”a + nmai:leI’nn] ’ (6 1 )

where ¢ and EF are the strain field and the electric field just outside the inclusion, and
G, (7), G} (i) and F?7(#) are determined by eqn (34) with the replacement of & by , here
i is the outward normal on the inclusion boundary.

Equations (60) and (61) can also be obtained directly through the boundary condition
between the inclusion and the matrix as follows:

(a) Elastic field: The displacement and the interfacial traction across the boundary
must be continuous, that is
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ul = uf, (62)
nl; = nok. (63)

From eqn (62), we know
le,] = €5 =&l = A, (64)

where A, is the proportionality constant to be determined.
{b) Electric field: The electric field and electric displacement across the boundary
should satisfy the following conditions

Ax(EF—E') =0, (65)
n(Df~D]) =0. (66)

From eqn (65). we know
[E] = EF—E! = in,. 67)

Substituting the constitutive eqn (3) into eqn (63), one obtains
A Ciulea] = Cliitbs— €ois [Em] + e EL Y = 0. (68)
Substitution of cqn (4) into eqn (66) yiclds
n{ag(E) = ayE]+ ex,le, ] —elyen) = 0. (69)

Substitution of eqns (64) and (67) into eqns (68) and (69) gives

0 0 . o 1 /
nicl/kI”IAk - nle""[ 'l,,,/. = nll'l/kl“'kl - ”rcmu Em! (70)
0 ) ny A — 1 EI [ 7|
gyt neeg m; = meag £+ ngeg, 8, (7
from which we obtain
_ 1Ty ] ! 1 1 2T o= | ! [
A, = G ([ Ciiwtia — niem; En] + G5 (M) [neay Ef + nieg ey, (72)
— P R | 1 I ! ATy 1 ! 1 !
A= - Gj (n)[niCi/klEkl — i€ Em] ~F (")[nmemu‘ €ij +nmamlEl]' (73)

Substitution of eqn (72) into eqn (64) and eqn (73) into eqn (67) gives the same results as
eqns (60) and (61). The coupled elastic and electric fields just outside an inclusion can be
evaluated from eqns (60) and (61) when &}, and E{ are known.

If the strain field and electric field inside an inclusion are known, the effective elastic,
piczoelectric and dielectric constants of piezoelectric composites can be calculated as fol-
lows :

Definition. The effective elastic, piezoelectric and dielectric constants of piezoelectric
composites, C,. EY,; and af; are defined by the following equations:

{o,> = C;u(Eu)—é‘;;/(Em)‘ 74)
(D> = atiE) +el,{e,, (75)

where the symbol { ) denotes the volume average.
From eqn (74), it can be written that
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6,7 = Clulew) —enCEn).

1
r

]
Nl—

| —

J:(Cuklekl em:/E yde+ J (Cuklskl er(r)n‘jEm) dv

[J. (Cl/klekl Emij E, ) dr +J‘ (Cuklekl er(r’u'j Em) dl']

(Cljklskl erm/ E ) de— J\ (Cuklekl e’?lij Em) dl']
Chulen) —emi<E) + vy Ciiuibhi — v[er:u‘j El, (76)

where ¢, is the volume fraction of inclusions. In the derivation of eqn (76), the interactions
between inclusions are neglected. In the same manner, from eqn (75), we obtain

(D> = aliKEpD + el <ey)
= ag E +ef; (&> +v,al El +v,el, el an

3. CYLINDRICAL INCLUSION

As an important example, the cylindrical inclusion is considered in detail. Both the
inclusion and the matrix are assumed to be transversely isotropic. Their non-zero constants
are

0 ) 0 0 0 0
1 = C”‘ C ‘h 33 44 = L s, 66 = %(Cll"clz)v

0 0 [}] ) 0 (1] 0 (1]
€3 =€, €33, els = Cryy dyy = dzy, dyjy, (78)

and w, = cos 8, w, = sin 0 and w, = 0, where 3-axis is the symmetric axis. In such cases,
from eqn (34), onc obtains

2CY,sin® 0+ (CS, —CYy)cos’ 0

Gii(#) = 0 770 0 a, (79)
n(Ch—Cy)
G:I(f) - G!,T(‘-a) - (C||+C ») sin @ cos 902 (80)
) ) W€l —Ch) '
» 2CY, cos* 0+ (C%, —CY,)sin?0
ooy — t 11 12 2
Gz chen-¢c &1
0
GY3(#) L, (82)

B Clial, +(els)’

where eqns (53) and (54) are used, and the other components of G,T(#) are zero, and a is
the radius of the cylindrical inclusion cross-section

Gi'(W) = GiT(i) =
edsal

G!T ) ,
7 (%) Clal, +(e)s)?

(83)
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La’

F:T(;‘.) =
Claaly +(el)’

(84)

Substitution of eqns (78)~(84) into eqns (57). (58) and (59) yields the non-zero components
of N', N* N?as:

Ci~3CY
Nl = Nbypy = o 2002 g
h T 2CH (€T =CT)

—_— 71
] 0 0 \
2CII(CHM IZ)

2na’,

- C240?1+(9?5):’
a +C02
Nbe=Niu=Nha=Nun=- ZC?‘(!(‘-:O -C%H , (85)
it {

]
2rels

Ni =Ni.= I B
" 12 C24“n+(€' }

(86)

2Cn
Nh=Nh= — o 87
H o Cu“n’*"("as - ¢

Substituting cqns (85), (86) and (87) into cqns (55) and (56), onc obtains the equations for
determining the coupled strain and clectric ficlds instde a cylindrical inclusion in the form
of:

v (
3 *!)l"3 ‘)

. G vt
fgp = B oo "o‘”(a?n“” (C1heh + Clatha+ Cliehy)
ll il 2)

C
(C Sy (C \L||+C33132+Cv3l431)+7é| El. (88)
[}
C
ehy = &9, + ( + )(C el + Clagha + Cligly)
i
5CY, -3C e
ga‘el,l(‘"—éﬁlrl — )(wan +Chehy+Chiely) 5@}1 = (89)
Eg} = 8(3)}! (90)
o HCah + (eI + ek —atel EY o
B 4[C24a?1+(e?s):]+2e?5354+20?1ch ’
g __4[C34a?1+(€?s)2]£?3+(0?1e§4"0§z€’?5)E’| 92)
T ACLal +(€]5) )+ 2elses+2a], Cly
3¢s, -CY, -
gy = [:l + -——(‘3“—“—“5 Coe] el (93)
10
El = 2[Claaf, +(3?5)2]E?+2(9?5C;5—i’iscgﬂﬁlvz‘ (94)

2[C24a(|)| +(e75) 1 +elseis+ai,
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- 2[C235?; + (e?s)z}Eg + 2(8?;('}; “'f;szcga)sln

EL= 5
2[CSial, +(e]5) ']+ Claay, +elsels

Ey=ES.

303

95)

(96)

To obtain the effective elastic, piezoelectric and dielectric constants of unidirectional fiber

composites, the following procedures are taken:

(a) Only &}, # 0.
From eqns (88) and (89), one obtains

i

! ! 3 o

Eyy =83 = — 3oy T 7 €33.
2CH+CH+Cy;

According to eqn (76),

9
{0330 = Cly;3365
= C1e, +v/C;|5’n+Ufc§25’22+U/C§JE'33»

from which one obtains

' 20,(C1y)*
C%=Ch+v,Chy~ - .
Bh=Cn R +CHL+Cly
In the same manncr, one oblains
v, C(CL+Ch)

Ch=ChtyCh et +enrcl
(b) £}, =23, #0,and €], # 0.
From eqns (88) and (89), onc obtains

2c8, 0
200, +CL+Cl '

A

p=eh =

and &}, is given by eqn (93). Therefore

43
(o) = Cheli +Ctehs

= C?;ﬁ?g + C?s&?a +L’,‘C: 18;“ +L’IC:3€§2,

L]
(012> = 2C%E0:
= 2C258?3 +2UIC:,6€I; 2y

and one can obtain
G
il

CH+Ch=Ch+Ch+20/(Cl,+Cl2) %

and
CHh—-Ct=2C%

3 [ I el -1
= 2C25+23fCé5[l + ""‘ELL"—C‘TJL’“' Cés} .

2CH1(CT —Ch)

(c) €% #0.

SAS 29:3-C

20 +CL+Chy

on

(98)

99

(100)

(1o

(102)

{103)

(104)

(105)
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In such a case. from eqns (91) and (95). one obtains

YD I BN Wal! 0ot -
4= a4 O ()2 CL 4 e ! “layiexs —axeqs (e75Css = Cuseys)
tn = lats Clhs+(ers) 7]+ 2d7, saF2€is€s — S IR CRPA 0

-[UH w1+ 14y Fe\s€ s

x [a,Cla+(eV5) e, (106)
/ 2eVsCis—Cliels)

s L St 107
P 2 Ol (el T+ Claxl +elsels o (107)

(o230 = 2C% 80,
= 2C2482;+21‘,C14&2€3—l’,(’;JE’Z. (IOS)
Substitution of eqns (106) and (107) into eqn (108) gives C%,.
According to eqn (77). the effective piezoelectric constant e¥ can be obtained from
the following equation:
<D:> = ('?45?‘:‘1
= L":),‘J:gx'*‘l',(l]::[;,:+l'/('}41:lz‘. (IO())
(dy £5#0.
From egns (96) and (76). onc obtains
oy = "‘(":\Elx}

0 g0 U ge 0
—(']\I"j"‘l',('\;[;‘:+2l'/(.1;121“, (HO)

i

where ¢, is determined by equations (88) and (89) as

i r ('IHE‘: Qi
£y =85 = oo e e
T A + 0+
Therefore ¢, is given by
* +(| ) 0 b C;}l,’;‘ (II’))
ey = v, e, =)0y — 20 gy 2
D TTAC + O+
(o) = —et ES
= ‘L"_\]IE?_l'/i';lE(;+l’/‘(C:|+C::)f3lll~ (i13)

Substitution of eqn (111) into eqn (113) gives

(Cii+Ciyes,
¥ = pey (-0 2 — L o e e e (Il4)
¢y =U,03, ( /‘)‘.\l fZC(I)‘ Clll CIIZ

IFrom egn (77). we know

(Dy) = a%yES
=a(;]Eg+('/'(l_l\3E(_:+2l"£’;lf:1||. (115)

Substitution of eqn (111) into eqn (114) yields
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Table 1. Materials properties of a piezoelectric ceramic PZT-6B and polymer

Elastic stiffnesses Piezoelectric coefficients Dielectric constants
(10°Nm~d) (cm™?% (10" cvm-")
Chw Cy Cu Cp: Cy €y €y €13 Ay - 31)
PZT-6B 168 163 271 60 6.0 -09 7.1 4.6 36 4
Polymer 045 045 0.11 024 024 0 0 0 0 0
(e; [ )2
aty = aly;+vpaly+2v . 116
33 3tUeass IZC?.+C:.+C:2 (116)
(e) EV #0.
In such a case, a?, can be determined from the following equation:
(D) =a}E}
=al\E{+v,a E\ +vse|sels, (17

where E| and ¢}, can be obtained through eqns (92) and (94).

Although every effective constant of piezoelectric, unidirectional-fiber composite has
been obtained, one has to bear in mind that all these analyses have neglected the interactions
between inclusions. To obtain the more accurate results, one can use some approximate
methods, such as the self-consistent scheme, etc. to consider the interactions.

As an example, a piezoclectric ccramic PZT-6B which contains unidirectional polymer
fibcrs along the poling axis (X;-axis) is considered in detail. The engineering material
constants for PZT-6B and the polymer are listed in Table 1. (Shindo and Ozawa, 1990.)
The polymer is assumed to be an isotropic material with negligible piczoclectric constants
and diclectric constants.

The most important constants of the composite in engineering are e%,, a3 and the
hydrostatic coefficient e} (= e%,+2¢t;). By using eqns (112), (114) and (116), they are
obtained and shown in Fig. | versus the volume fraction of polymer.

Ve wh)

{

.
LY

B I I | 1 I 1 A
0.1 02 03 o4 05 08 07

¥

Fig. 1. The effective constants versus the volume fraction of polymer.
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4. CONCLUDING REMARKS

In this paper, a solution is developed for an infinite, piezoelectric medium containing
a piezoelectric, ellipsoidal inclusion. The coupled elastic and electric fields inside the
inclusion are obtained, and it is found that they remain uniform when the external strain
and electric fields are constant, which has again confirmed Eshelby’s proposition. The
coupled elastic and electric fields on the boundary of the inclusion and matrix are also
obtained. By neglecting the interactions among inclusions, the above results are used to
derive the effective constants of piezoelectric composite materials. As an example, the
cylindrical inclusion is considered in detail. In such a case. the explicit form of the solution
is obtained, and some formulae for calculating the effective constants of piezoelectric,
unidirectional-fiber composite are derived. It is found that the commonly-used rule of
mixture for determining the effective dielectric and piezoelectric constants along the poling
axis is not true due to the coupled effects.
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APPENDIX: THE NON-ZERO COMPONENTS OF N', N%, N’, FOR A SPHEROIDAL
INCLUSION IN A TRANSVERSELY ISOTROPIC, PIEZOELECTRIC MATRIX

For transversely isotropic, piczoelectric matrix, the non-zero material constants are shown in eyn (78).
Therefore

N cost O+ Ny, cost O

1
Vo = Ny =287 1 —ew? 5 do, Al
N = N 4 J:.( m’)dw’j:, Acost0+Bcos’ 0+ C (AD
' o PR YY S N°,

P s s fieost O+ N cos” 4+ N, 0 A2
N "_[, w“dw’j; Aeow 0T Beos 05 C O (a2

! * N, cos' 0+ N cos' 0
Y= Ny, =287 —w} ~= i do, A3
Nia = Nayy =28 L a w,)dw,j; Acos* 0+ Bcos*0+C A3

! N cosT O+ NG,
Ly=Nh, = 3 L . ds, A4
Nipy =Ny 2L “"3dw’J; Acos'+Beos’ 0+ C (A4)

! " eos? B (N3, cost 0+ N cos? §+ NS,
Lo = Nl =288 -wi o déd, AS
Ny =Niya =28 J:, a w,)dw,ﬁ Acos'0+Bcos* 0+C (43)

! N8 sint@cost O
v, =280 —wi 2 . do, A6
Nin:=28 J;(l w,)dm;j; Acos'@+Bcos0+C (A6
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R R R @
N3, =N, = 2;3'[)l wy(1—w})! Zdw,J;' D i;i?:f;l’s‘?jcg da. (A8)
Ni=Nip= zﬂzﬁl (1-w) deJ:l COS:9(Zi;§?:z;i\;i‘zceofg+N§} dé, (A9)
B
= [ -, [ R
W2, [ e
where
A =ay by cydi~a, by cudy+ad cydi~ai cdy+apdbi —ay by bady —ayayb5,d,
+ananbodi—a, by hocgta, o bl Fcanag by —cyayanbg—aganbhyd,
+agagbud,—al byditanagn by dy+aganbgci—azagbacy+ananhyc
—ulbyeyv—ai bl vagan b by vagaa by b —aibi,. (Al3)
8 = cyd(abyy+aypby)—cdi(anbyp+ayby)—aicydi+ai e d,
—buday, —a ) +bybada, —a ) +ananbydy—aya,,b,d,
F{ay —ay)ch by = bi(dy —d ) —cana, by +aya,,by,
+ayanbydi—ayanbydi—ayagnbyd+ayagbanadi—anay by ey
+ayagbacvFaydgbncs—ai byaey +al b —anagby by
—dyyayby by +ai bl (Al4)
C =abhyeydi—a, basedy—a,dbi +d by body—ca b3, +c.by,b41a s, (Al5)
N = byeyd=bycd =2b by co+bicy+d b3y, (Al6)
NS\ = bayesdy, = byci +2b,4,by 0y = b3 0y —d by, (Al7)
Ny =agbcrtayci+dayby —ayeydi—ag by co—ay by e (A18)
Ny =dgeby —day by —ay by dy~ay b3, +ay bgcotagby by, (A19)
N§ = day by di+ay bl —ayboci+ay cibyy—day by —ag by by, (A20)
Niv= by (caay) ~aqcs) —anbl —aybycy+ay,byc0+ by, bayay,, (A2D)
N =agbl +aybacy—aynbyco=by baay, +bya(cay, —ancy), (A22)
N =a, cyd,~da}, +2a,ay,c,—a,,ci —aiic,, (A23)
N3y =ay0d~aycd, (A24)
Ny =abyci+danay —~a) by dy~a,,a;0i—agay by +ad by, (A25)
NS, =ay by co—ay by, (A26)
Nio=a, by ci+agayci+byal,~asaby, —a by cy—c,a5,ay,, (A27)
Nl =apbyci—agbac,, (A28)
Ny =ay by di—2a0ayb. +ay b, +dad, —by,di,. (A29)
Ny =ay\bydy+abydo+2a,,a3b, —a, bl —d.a3, —byal, +a,,0%,, (A30)

NSy = asbd,—a:hi), (A31)
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Nio=alanby —a, byco—a by by —aici+aqa by +azanby,, (A3D)

N = "31“41b12+“||b3|b4|+a§|¢'4—“u“:1bn —aydi by —diah by a0y —cganby (A33)

NSe=d by by —ciay:b4s. (A34)
Ni=a,byc,—bywdi, —2ay,a.,b., +a,,bi, +c.ai,. (A3S)
N8 =cia, b +cya by, +2ay,a:,by —a, b3, —c al, —by.ai, +a)abi. (A36)
NS =apbycy—a, by, (A3
and
ay =B ~-wiNCl = Cl,), (A3R)
a;; = f 1l —wdCh+ Clwi. (A39)
ay =B (1 =wiHCT:~Ciy). (AdD)
ay = foy(1—wi)' (C+CY). (Ad1)
ay, = Pu(l—w)' (el + el (A$2)
by = FHL—@iHCoL = CY)) (A43)
by =B Ul=)HC) + Cham?, (A43)
b = ol =) HCH+CL). (A45)
bay = Pu(l=mi)' (e +eby). (A46)
Cy= (1 —o)Ch+Clwl, (A47)
Co= i =wi)els + e, (A48)
dy = = [F(l=mial, —wiz, (A49)

where ff is the aspect ratio of the spheroidal inclusion. The integrals with respect to 0 in egns (Al) (A12) can be
obtained by the residue calculation in a complex Z-plane, where

cos 0 = (z+z" Y2, sinl = (z—z ") (2), d0 = dzfiz. (AS0)



