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Abstract-In this paper. the Green’s function technique is used to develop a solution For an inlinite. 
piezoelectric medium containing a piezoelectric. ellipsoidal inclusion. The coupled elastic and clcctric 
fields both inside the inclusion and on the boundary of the inclusion and matrix are obtained. Thcsc 
results are used to calculate the ektive constants of pinoelectric composite materials. It is found 
that the coupled elastic and ektric fields inside the inclusion stay uniform when the external elustic 
lield and electric field arc constant. As ;m example. the cylindrical inclusion is considcrcd in detail 
and some formulae for calculating the e!Tective constants of piezoelcctric. unidirectional-tibcr 
composites arc obtained. 

I. IN7‘ROOUCTl0N 

Along with the widcsprcad application of piczoclcctric ceramics and piczoclcctric 

composites. how to determine the cNccts of defects and inclusions on the propertics of 

such materials bccomcs one of the most important problems in cnginccring. Ccncrally. a 

piczoclectric ceramic material is a complex system composed ofcrystallites. grain boundaries 

and ports, and it may also contain many visible cracks perpendicular to the poling dir&on. 

The cxistcncc of these dcfccts grcatty afli~ts the electric. dietcctric. piczoelcctric, elastic and 

mechanical properties of pirzoclcctric ceramics (Okazaki, 1985). In recent years. several 

types of PZT-polymer composites have been fabricated to improve the piczoelectric prop- 

erties of poled PZT (tead zirconate titanate) ceramics (Rittenmyer cv ~1.. 1985). How to 

predict the efrective constants according to their constituent properties becomes a very 

important topic in the design of PZT-polymer composites, and the solution of all these 

problems relies on the analysis of the coupled elastic field and electric field of a typical 

inclusion in piezoelectric media. According to the author’s knowledge, such a three-dimrn- 

sional analysis is not available at present. 

This research attempts to obtain the coupled elastic field and electric licld of a pirzo- 

electric. ellipsoidal inclusion in an infinite piezoelcctric matrix. Two main ditIiculties exist 

in such analysis. One is that the piczoelectric materials are anisotropic. and the other 

difficulty is that the elastic fields and electric fields are coupled in such materials. In spite 

of these ditficulties, the Green’s function technique proved to be an efficient method to deal 

with such problems. By using the Green’s function method, Kinoshita and Mura (1971) 

obtained the elastic field for an ellipsoidal inclusion in non-piezoelcctric. anisotropic media, 

and Shintani and Minagawa (1988) have calculated the displacement and electric fields 

produced by moving dislocations in anisotropic. piczoelcctric crystals. Zhou CI N/. (1986) 

proposed the multipole function representation and used the analogy theorem to obtain 
the elastoelectromagnetic field equations for a finite piezoclectric body with defects. Wang 

and Liu (1990) have obtained a general expression for the coupled elastic and electric fields 
ofan ellipsoidal inclusion in a piezoelectric matrix based on the Green’s function technique. 

In this paper, the coupled elastic and electric fields inside an ellipsoidal inclusion and 
just outside the ellipsoidal inclusion are obtained, then these results arc used to calculate 

the effective properties of the piezoelectric composites. As a simple. but important example. 
the elastic and electric fields of a cylindrical inclusion are investigated in detail, and some 

formulae for calculating the effective elastic. piezoclectric and dielectric constants of piezo- 
electric. unidirectional-fiber composites are obtained. 
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2. FORMULATIONS 

If the free charges and body forces do not exist in a piezoelectric body, the static elastic 
and electric field equations can be written as (Mat&n, 1988) 

?,D, = 0, (1) 

2,ari = 0, (2) 

D, = -a,, a., + e,,c/ut./. (3) 

ull = c/kPk.l+ G,,@.“. (4) 

where C is the elastic moduli tensor, measured at zero strain, e is the piezoelectric moduli 
tensor and a is the permittivity of the dielectric material, and for transversely isotropic, 
piezoelectric. ceramic materials, they contain five, three and two independent constants, 
respectively. @and u in eqns (2) and (3) are the electric potential and theelastic displacement. 
D and u in eqns (I) and (2) are the electric displacement and the elastic stress tensor. 
Substitution of eqns (3) and (4) into eqns (I) and (2) yields 

(C,,kI~~k,,)., + (~‘t,,,,(~,,,,),, = 0. (5) 

((,w,, It,,, ).m - (%,,(~‘.,).m = 0. (6) 

Consider an infinite piczoclcctric body with the elastic moduli C, the piezoelectric moduli 
e’ and the dielectric pcrmittivity no in which thcrc is an inhomogcncous inclusion occupying 
a region Q with constants C, c and a. Hy introducing the following notations : 

.I c r/k/ = (7) 

e’ rm, = f’ - 
,I’ 

,,,,, ( m,, 7 (8) 

a;, = (I‘d -a::. (9) 

the elastic, piezoelectric and dielectric constant tensors of the inhomogeneous medium can 
be written as 

c,,k,($ = c,:k, + C,;kh(-t). (10) 

e,,,,, (.q_) = elj,,j + 4,,4f), (1I) 

uk,(.+) = a:, + agl(l), (12) 

where h(Z) is the characteristic function and defined by 

1. .Z-ER 
It(T) = 

0, otherwise. 

Substitution of eqns (IO), (I I) and (I 2) into eqns (5) and (6) yields 

c:;kll~k.,, +  &, @,nfj = - [C,~k,“k,lh(f)l, - [el,,@.m”(~Z-)l_j* 

(13) 

(14) 

(1% 

By introducing the Green’s functions C’. G’, F’. F’ as follows: 
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C;&&l, + ezij Fd, L=: - 6,$(.? - i’), 

eqns (14) and (15) can be expressed in the form 

= 11: + I G,~~,i(.~-,~)(Ci:k,t(lr.,+e:i,(D.k)d.i. 
n 

+ 
s 

G&(2 - ,~)(e~~u~., - a,j&t,,) d.?. 
1 
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(16) 

(17) 

(18) 

(19) 

(33) 

(0 e I F,' (2 - .t’)[(C,;k,uk,, + e:,,(D~,)/~(.t’)]~~ d.i- 
I, 

= ‘I+, + 
J 

F,‘.,(.“r -.t')(C,;,,u,, +e:$Q d.i 
(1 

f Fj(.i--.~)(e~,r,,,,-u,tcD,,) d.F, (21) 
! 

where u,!!, and CD, are homogeneous solutions of cqns (14) and (I 5). In the derivation of 
eqns (20) and (21), the property of the generalized function h(_?) and the relation 

G,,,,.jJi-.?) = -G,,&-3) (22) 

is used. 
By differentiating eqns (20) and (21). the equations of the elastic strain field and electric 

field can be obtained in the form 
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where 

B. WWC 

In a general case. the explicit forms of the Green’s functions G’, G2, F’ and F’ cannot 
be obtrtined from eqns (16). (17). (IS) and (19). Whereas the Fourier transform of the 
Green’s functions can be obtained e:tsil>-. the Fourier transforms of eqns (16). (17), (18) 
and (19) are 

where 

. 

G:,,(.&T) = ’ 
Xn ’ j G:,!‘( 2, cnp [it * (.< -- .<‘)] dj. (33) 

and Gi’, F,:” and F”‘c;~n hc dctcrmincd simikirly. 
The eqns (29). (30), (3 I) and (32) can he cxprcsscd in the fourth-order matrix form as 

from which we czn find 

Substitution ofeqn (33) into cqns (23) and (24) gives 

I * 
~~,,p = cl:,, - I 6n” L* 

s J 
d.4’ (G!,“<L,, + G,;,“:,:,, NC:, ,,I:, I, - cl,,, & 1 
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In deriving eqns (36) and (37). the equation 
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has been used. 

If the inclusion occupies an ellipsoidal sub-domain R, the integrals in eqns (36) and 
(37) can be further simplified by following the same procedure as Mura (1982) in deriving 
the elastic field of an anisotropic, ellipsoidal inclusion in non-piezoelectric media. We take 
the following integral in eqn (36) as an example : 

(39) 
J J 

The integration with respect to i-space is considered first, 
space. dt is 

The volume element in f- 

(40) 

where 

and dS{3) is a surface element on the unit sphere S’ in the t-space Then eqn (39) is 
written as 

in the above integrals, the following equations 

(42) 

(43) 

have been used. 
If the crystalline directions of the anisotropic materials coincide with the principal axes 

of the ellipsoidal inclusion, the region Q is expressed by 

(44) 

The following transfo~ations of variables are used to simplify the calculating procedure : 



The volume element d.?’ is 

d.?’ = d-y’, d& d-x; = alala, dy‘, d_r’: d y’, = ala2a3r dr d6’ d:. (46) 

Substitution of eqns (45) and (46) into eqn (42) gives 

G‘f:( ,i*)N~,w,6”(p~, )‘t - pz) 

x (c,:,.,,~:,.,, -~,!&,,)dS(ir). (47) 

where R = ,,/-I -iZ .‘. 

Let us consider the case when point i- is inside the ellipsoid or point ,C is inside the unit 
sphere. Since the boundary values of the integration by parts vanish, after twice integrating 
by parts with rcspcct to Z, cqn (47) becomes 

where the upper index I rcfcrs to the field values for interior points. It can bc seen from 

(48) that if E’ and E’ arc constant, f,,,, is also a constant, and determined by 

I,,,, = 2n~u,fl~fI~(C,~r,,l:~.l,-e,~,,E~,) G;,"( 6) w’, LL’~~ - ’ dS( G) 

where 

dS(G,) = a,aza,p-3dS(~). (50) 

The other integrals in eqns (36) and (37) can be coped with in the same manner as IO,,. Since 
the solutions of eqns (36) and (37) are unique, we can conclude that if a piezoelectric, 
ellipsoidal inclusion in an infinite piezoelectric matrix is subjected to the uniform elastic 
field E$ and electric field E”, the elastic field and the electric field inside the inclusion remain 
uniform. Such a conclusion is also well known in electricity (Maugin, 1988) and elasticity 
(Eshelby, 1957). 

Furthermore, the surface element dS(G,) can be written as 

Then eqn (49) is written as 
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PI PZn 
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(52) 

where 

and 

t, =(I-$~)“*cos8, C2=(I-C3)“2sin0, b?, =ej. 

By using eqn (52). eqn (36) and (37) can be expressed as 

(54) 

where 

N,$ = 
?n 

G,"-( tit) w, wt dU. 

?n 
F”‘(iv)w,w, dU. 

(57) 

(58) 

(59) 

If the matrix is a transversely isotropic piezoclectric material (with XI in the poling direc- 
tion), the non-zero components of N’. N’, NJ are shown in the Appendix. 

In the same manner. the coupled strain and electric fields outside the inclusion can be 
obtained through eqns (36) and (37). The jumps of the strain field and the electric field on 
the inclusion boundary are given by 

= GJ,'(ii)[t~,C~~&n~ - nje,!,,, E,!,np] 

+ G,?T(ii)[n,e,!,,,c$8 +n,u,!,,E,'n,,]. 

[E,,] = E,“- E: 
.a 

= - G%) PJ, Clfd,n,a - nje,!,tj Ehl 
-F2T(i)[nme,!,,,.c~na +n,u,!,,E,‘n.J, (61) 

where 8 and EE are the strain field and the electric field just outside the inclusion, and 
Gd,r(ir), Gyr(ii) and FzT(ir) are determined by eqn (34) with the replacement off by ii, here 
ii is the outward normal on the inclusion boundary. 

Equations (60) and (61) can also be obtained directly through the boundary condition 
between the inclusion and the matrix as follows : 

(a) Elastic field: The displacement and the interfacial traction across the boundary 
must be continuous. that is 
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I.( = Uf. 

n/d, = n,at. 

(62) 

(63) 

From eqn (62). we know 

[&,,I = E,:‘ -&I, = A,n, (64) 

where A, is the proportionality constant to be determined. 

(b) Electric field: The electric field and electric displacement across the boundary 

should satisfy the following conditions 

ii x (K-2-1) = 0, (65) 

n,(DP - 0:) = 0. (66) 

From eqn (65). we know 

[El] = E,k’ - El = Ln, 

Substituting the constitutive eqn (3) into eqn (63). one obtains 

II, (c:;&,] - c,;,,c:, - c:,, [Em] + E!“,, E!,) = 0. 

Substitution of cqn (4) into cqn (66) yields 

n, (ut,[E,] -u:,E:+ei,,[r:,,] -c&f(,) = 0. 

(67) 

(68) 

(69) 

Substitution of eqns (64) and (67) into eqns (68) and (69) gives 

n,C::&,n,Al, - n,ej!,,,n,,i. = n,c,~&, - n,e,!,,, Ek. (70) 

ntN~,n,i.+n,e~,,n,Ai = nku:,E:+nke:,,t$ (71) 

from which we obtain 

A, = G!~($[n,C,)kIdI - v!,,, E!,] + G,fT(ii)[nka,!,E! + n,e:,jd,], (72) 

1. = -G~r(ii)[n,C,~k,$.,-n,e,!,,, Eb] - F’T(g)[n,r!,,, E;, + n,d,, EI]. (73) 

Substitution of eqn (72) into eqn (64) and eqn (73) into eqn (67) gives the same results as 

cqns (60) and (61). The coupled elastic and electric fields just outside an inclusion can be 

evaluated from eqns (60) and (61) when E,II and E: are known. 

If the strain field and electric field inside an inclusion are known, the effective elastic, 

piezoelectric and dielectric constants of piezoelectric composites can be calculated as fol- 
lows : 

Dejnition. The etfcctive elastic, piezoelectric and dielectric constants of piezoelectric 

composites, C:,,, E,+,,i and & arc defined by the following equations : 

(a,,> = CXE~~)--~XE,,). (74) 

CR> = Q&(G) +et,k,), (75) 

where the symbol ( ) denotes the volume average. 
From eqn (74). it can be written that 



Analysis of ellipsoidal inclusion in piaoelectric material 301 

where r1 is the volume fraction of inclusions. In the derivation of eqn (76). the interactions 

between inclusions are neglected. In the same manner, from eqn (75). we obtain 

(77) 

3. CYLINDRICAL INCLUSION 

As an important exam+. the cylindrical inclusion is considered in detail. Both the 

inclusion and the matrix are assumed to bc transvcrscly isotropic. Their non-zero constants 

arc 

and w’, = cos 0. nj2 = sin 0 and ol = 0. where 3-axis is the symmetric axis. In such cases, 

from eqn (34). one obtains 

c;:(;c*) = 
2Cy, sin’ U+ (C:, - Cy,) ~0s’ 0 ,z 

CY,(C:r, -CY,) ’ 

Gf;(&) = G::(li-) = - 
(CY, +C?,) sin 0 cos 0 2 

CYI(CY, -CT,) a ’ 

G:;(k) = 
2C~Icos’O+(C~,-C~2)sin20 

CY,(CY, -CT,, 
a’. 

(79) 

(81) 

(82) 

where eqns (53) and (54) are used, and the other components of GiT(i;) are zero, and a is 

the radius of the cylindrical inclusion cross-section 

GiT(G) = G;T(;s) = 0, 

(83) 
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Substitution ofeqns (78)-(84) into eqns (57), (58) and (59) yields the non-zero components 

ofN,.Nz.N3as: 

(87) 

Substituting cqns (85). (86) and (87) into cqns (55) and (56), one obtains the equations for 

determining the coupled strain rend electric ftctds inside a cylindrical inclusion in the form 

of: 

(91) 

(92) 

(93) 

(94) 
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E: = Et. (96) 

To obtain the effective elastic, piezoelectric and dielectric constants of unidirectional fiber 
composites, the following procedures are taken : 

(a) Only & # 0. 
From eqns (88) and (89), one obtains 

According to eqn (76), 

from which one obtains 

In the same manner, one abtains 

(b) E:, = e:, # 0, and E:? # 0. 
From eqns (88) and (89), one obtains 

(97) 

(98) 

(99) 

and E:? is given by eqn (93). Therefore 

(103) 
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In such a case. from eqns (9 I) and (95). one obtains 

E; = (107) 

Substitution of eqns (106) and (107) into eqn (108) gives C?,. 

According to eqn (77). the effective piezoelcctric constant cr., can be obtained from 

the following equation : 

((I) I:‘: # 0. 
I:roni cqns (06) and (76). one obtains 

(Cl,) = -1,:,f?: 

= - ‘a’; ,I:’ ‘( - I’, 1,: ,I:“: + Zf,, C’ ; ,I:: ,) 

whcrc I::, is dclcrniincd hy cquutions (t(S) and (X9) 3s 

Thcrcforc UT, is given by 

(110) 

(III) 

(112) 

(a,,) = -lJ:,E’: 

= -L”~,E:)-I’,l~:,E’:+I,,.(C~, +c;$;‘,,. (113) 

Substitution of cqn (I I I) into cqn (I 13) gives 

From eqn (77). we know 

(D,) = u:,E’: 

(114) 

Substitution of eqn (I I I) into eqn (I 14) yields 
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Table I. Materials properties of a piczoclcctric ceramic PZTdB and polymer 
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Elastic stiffncsscs Piezoclatric coefficients Dielectric constants 
(IO” N m-9 (cm-‘) (lO’Ocvm-‘) 

c,, c,, cu c12 CI, ejI eJ3 en5 alI al3 

PZTdB 16.8 16.3 2.71 6.0 6.0 -0.9 7.1 4.6 36 34 
Polymer 0.45 0.45 0.1 I 0.24 0.24 0 0 0 0 0 

u:, = up, + r’,a:, + 217, 
(&)’ 

2c:,+c:,+c;, 

(e) E: # 0. 
In such a case, a:, can be determined from the following equation : 

WI> = aTIE! 

where E I and E() can be obtained through eqns (92) and (94). 

Although every effective constant of piezoelectric, unidirectional-fiber composite has 

been obtained, one has to bear in mind that all these analyses have neglected the interactions 

between inclusions. To obtain the more accurate results, one can use some approximate 

methods. such as the self-consistent schcmc. etc. to consider the interactions. 

As an example. a piezoclectric ceramic PZTdB which contains unidirectional polymer 

fibers along the poling axis (X3-axis) is considered in detail. The engineering material 

constants for PZT-6B and the polymer arc listed in Table I. (Shindo and Ozawa. 1990.) 

The polymer is assumed to be an isotropic material with negligible piczoclectric constants 

and dielectric constants. 

The most important constants of the composite in engineering are ef,, a: and the 

hydrostatic coethcient et (= cf,+2~:~). By using eqns (I 12). (I 14) and (I l6), they are 
obtained and shown in Fig. I versus the volume fraction of polymer. 

Fig. I 

-32 

- 20 

.- -20 ” 

8’ 

2- 

- a* ,I 

I- --- *: 

-_- a; 

o- -. 

I I I I I I I 

0.1 0.2 0.3 0.4 OS 0.0 0.7 

"I 

. The effective constants versus the volume fraction of polymer. 
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4. CONCLUDING REMARKS 

In this paper, a solution is developed for an infinite. piezoelectric medium containing 
a piezoelectric, ellipsoidal inclusion. The coupled elastic and electric fields inside the 
inclusion are obtained, and it is found that they remain uniform when the external strain 
and etectric fields are constant, which has again coafirmed Eshelby’s proposition. The 
coupled elastic and electric fields on the boundary of the inclusion and matrix are also 
obtained. By neglecting the interactions among inclusions, the above results are used to 
derive the effective constants of piezoelectric composite materials. As an example. the 
cylindrical inclusion is considered in detail. In such a case. the explicit form of the solution 
is obtained, and some formulae for calculating the effective constants of piezoelectric. 
unidirectional-fiber composite are derived. It is found that the commonly-used rule of 
mixture for determining the effective dielectric and piezoelectric constants along the poling 
axis is not true due to the coupled effects. 
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paper. This work was supported by the national Natural Science Foundation. 
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APPENDIX: THE NON-ZERO COMPONENTS OF N’, N’, S’, FOR A SPHEROIDAL 
INCLUSION IN A TRANSVERSELY ISOTROPIC, PIEZOELECTRIC MATRIX 

For transversely isotropic. piczoclectrio matrix. the non-zero material constants arc shown in cqn (7%). 

Therefore 

(A3) 

(A4) 
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NI,l, = ,v;,,, = 2s w,(l -wj)“‘d,, 

N:,, = N;,, = 2g ‘a,(, -w;,’ zdw J J ‘* N :, cos’ B + N:, cos’ B 

’ o Acos’O+BCOS~~J+C 
d6. 

Nj,, = Njzz = t/J’ j)y )d 4 WI J ‘” COS2~(N:4COS'e+N~4COS'efN:r)ds 

AC~S'~+BC~S'~+C 0 

(A7) 

(AS) 

(A91 

N:,, = 2 
I’ J w: do, 

*‘N& COS'o+N:,COS2e+N:, 

Acos’B+Bcos’O+C 
de. 

N:, = 2@f (,i:)dcu,~’ 
COS'e(N:4COS40+N:,COS'@+N:,) 

AC~~JB+BC~S*B+C 

(AlO) 

(All) 

N;,=Z 
I' J UJ: dcu, 

‘* N :, cos’ 6 + N:, cos’ 9 + N;, 

0 0 Acos’tl+Bcos’O+C 
d0. (AI21 

where 

A = a,,h:,c~d,-a,,b,,c,~~,+ai,c~~l,-ai,c,d,+a,,d,h~,-a,,b,,b,,d,,-a~,al,bJ,d, 

+u,,at,b,ld,-a,,b,,b,,c,+al,c,h~, +c4a,lcl,,hl, -cla2,a,,h,,-a*,a,,hl,J1 

+a2,a4,hl,d,- a:,b,,d,+~~l,a,,b:,~~,+o,,cr,,h,,c,-a,l 

-a:,h,,c,- ai,b:, +a~lu,lbt,brl +al,allhllh,, -cri,hi,. 

B = ~~rl,(cr,,h,~+a~,h,,)-c,d,(a,,h~~+a~,h~,)-u~,c,d,+aj,c~,d, 

-hi,~l,~r~,,-a,:)+h,,h,,d,(u,,-a,~)+a:,~~,,h,,d,-u:,a~,h,,d, 

+(~~II-cr,l)c~,bllhrl-c,b~,(cr,,-a,,)-c,cr,,~~,,b,,+c,a,,a,,b,, 

+a~,cr,,h,,d,-a~,a,,b,,d,-N,,u,,b~2~l,+~~,,a,,b~~~~,-u~,u,,b,~~~, 

+c~~,c~,,h,,c,+~,,a,,h~~c,-a~,h~~c,+cr~,h~,-u,,u,,h,,h,, 

-cr,,cJ,,b,,h,,+a:,h;‘,. 

C=u,lh~~~Jd,-a,~b~~~,cl,-a,~~l,hj,+a,2hr,br,d,-cra,2h~,+c,h,,br,a,~. 

N:, = b,,c,cl,-h,,~I-2h,,h,,c,th~,c,td,h~,. 

N:‘, =b,,c,d,-h,,clt2b,,b,,c,-b:,c,-d,bi,. 

N:I = a,,b,,cJ+allc~td,a,,b,,h,, -a~,c,d,-a,,b,,c,-a,,b,,c,. 

W, = arlc4b2, -d4aJlb2, -a~,b3,d,-a,lb~, +a~lb,,c4ta,,b,,b4,, 

NY, = a,,b,,d,+a b’ ,I 4, -azlb,,c,+a,,c,b ~2-d,a,,b~*-a,,bl,b.,. 

Nf, = b2,(c,aj1 -a.lc,)-a,lb:,-a21b,~c,+a2,b,,c,+b,,~,,a,,. 

Nf4 = u,,b:, +a2,b4,c, -a2Alc4-W41a~l +b12(c,a,, -add. 

A’$ =a,1c~d.-d,u~,t2a,,o,,c,-a,,c~-a~,c,, 

Nf? = a,jc,d,-a,lc:. 

N& =a~~b,,~,td.a~,a~,-a~,h~,d,-a,,a~,c,-u,,a,,b,,+ai,b,,. 

N% = al:b,,c4-a,:b,,d,, 

Ni, = a,,h,,c,+a,,a,,c,+h,,a~,-a u b 11 ,I 3, -alI h 11c~-c~a21a111 

NY, =a,2hf,c,-a,zh,,c,. 

N?J =a,,b:,d,-2a,,a2,h,,+a,,h:,+d,ai,-b,,aj,. 

NT, = a~~b~:d,+a,~b,,d,+2a,,a,,b,, -a,,b:, -d,ai, -h,,u:, +a,lb:,, 

1 
NC, = a,:h::d,-a,+;,, 

(A13 

6.414) 

WS) 

(A161 

(A17) 

(A181 

6419) 

(A201 

(A211 

(A221 

(~23) 

(~24) 

6425) 

(A26) 

(~27) 

(A281 

(~29) 

(A30) 

(A31) 
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N<. =a$,,b2, -u,,b,,c,-a,,b,,b,,-ai,c,+u,,u:,h,,+-a:,a,,h,,. (A32) 

Y’ 14 = UjlU4, b ?:+Ull bb ’ I, ,l+~:tC4--a4, a b,, -a,,ti;,b,, -u,lh,,b,,-c,a,,bl,-c,Y,:b:,. 2, (A33) 

iv ,d = u,:b,,h,, -c,J,+:,. (AJJ) 

N:, = u,,b_,c,-h.,u‘ , _ iI -2u,,a,,b;, +U,,hi, +CtUi,. (A39 

Nf, = c,a,,b,,+c,o,,h,,+~u,,u~,b,,-a,,hi,-c,a~,-b~Zu~l+a,~b~l. (A36) 

IV::, = u,,h,,c,-u,,b;,, (A37) 

and 

(AM) 

(A?Y) 

(AJD) 

(AJl) 

(AZ) 

(A43) 

(Ad41 

(A45) 

(A46) 

(AJ7) 

(NX) 

(A-V)) 

whcrc /j is the ;IS~NXI r;wo of the spheroidal inclusion. The inkgals with rcspcct to U in eqns (Al) (AIZ) can bc 
obtainrd by the rcsiduc c;~lculation in a complca %-pl;~nc. where 

cos0 = (:+: .I)/?. sin0 = (2-z ‘) (2). dlJ = tk/i:. (AS(J) 


