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Abstract-The maximum stress concentration factor in brittle materials with a high concentration of 
cavities is obtained. The interaction between the nearest cavities, in addition to the far field interactions, 
is taken into account to evaluate the strength distribution based on the statistical analysis of the nearest 
distance distribution. Through this investigation, it is found that the interaction between the nearest 
neighbors is much more important than the far field interactions, and one has to consider it in 
calculating the strength of brittle materials even if the volume fraction of cavities it contains is small. The 
other important conclusion is that the maximum stress concentration factor has a wide scattered 
distribution. 

1. INTRODUCTION 

IT IS A well known fact that the strength of brittle materials has a scattered distribution and 
this is due to the existence of randomly distributed defects in such materials. Since the 
distinguished work of Weibull, many researchers have been trying to establish the quantitative 
relation between the strength distribution of brittle materials and their random microstructures. 
They mainly considered the effects of size distribution and orientation distribution of defects [l, 21 
and neglected their interactions. 

It is extremely hard to obtain the stress field distribution in such materials by considering 
the defect interactions. Using the simple method developed by Mori and Tanaka [3], Tandon 
and Weng [4] derived the stress distribution in a material with a random distribution of 
inclusions. However, their result proved to be an approximation only by considering the far 
field interactions among inclusions. Therefore it may be a good method in calculating the 
effective elastic moduli, but inadequate to evaluate the local stress field fluctuation, which is the 
most important quantity in evaluating the strength distribution. 

At the suggestion of McCoy and Beran’s work [5], we not only consider the far field 
interactions but also take the interaction between the nearest inclusions into account to derive 
the distribution of the maximum stress in brittle materials with a high concentration of 
spherical cavities. First of all, the numerical distribution of cavities in volume V is assumed 
to be the binomial distribution, then the distribution function of the K nearest cavities to 
a reference cavity is derived. Based on the solution of an infinite matrix containing two 
cavities, the mean value and the standard deviation of the maximum stress concentration 
factor are obtained versus the volume fraction of cavities. Finally, the probability density 
function of the material strength is derived. Throughout this investigation, it is found that 
the interaction between the nearest neighbors is much more important than the far field 
interactions, and one has to consider this interaction in calculating the strength of brittle 
material even if the volume fraction of cavities it contains is small. The other 
important conclusion obtained is that for brittle material the wide scattered distribution 
of strength is mainly due to the wide scattered distribution of the maximum stress in such 
materials. 
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Fig. 1. Schematic of a random distribution of the nearest k inclusions. 

2. A STATISTICAL MODEL OF THE RANDOM DISTRIBUTION OF 
SPHERICAL INCLUSIONS 

The number of inclusions in volume V is assumed to be a random variable with a binomial 
distribution of probability, Thus the probability that the volume V contains i inclusions is given 

by 

P(i, V) = Ci(l - S)n-‘S’, i <n (1) 

where n is the maximum number of inclusions which may be embedded in V, and Cl is the binomial 
coefficient. The quantity S is given by 

S = 
s 

i. dvln, (2) 
Y 

where I is the density function of the mean number of inclusions, which was introduced by Wang 
et al. [6]. Since the volume fraction corresponding to the maximum packing is 0.74, the maximum 
packing number of inclusions in volume V is given by 

n = 0.74 V/(+2$ (3) 

where a is the radius of each spherical inclusion. If the inclusions are distributed uniformly in 
volume V, i.e. A( = N) is a constant, which means the mean number in unit volume, eq. (1) gives 
the same result as the one given by Herczynski [7]. The Poisson distribution function is also 
contained in eq. (1) when the spheres become points [S]. Through eq. (1), we can obtain the 
conditional probability density function locating the nearest k neighbors to a reference inclusion 
positioned at the origin. First of all, the volume V containing the nearest k inclusions is 
divided into v,; v,, Av,; v2, Av,; . . . ; vk, Avk (Fig. 1) to satisfy the requirement that 
r, E Av,, c2 E Av,, . . . , rk E Avk, and there is no inclusion within vi (i = 0, 1, . . . , k), in which r,, 
r2,..., rk are positions of the k nearest neighbors, and v,,, v,, . . . , vk are determined by 

V0 = $C (2Q)3 

v, = $n(r: - 8~~) - Av, 

v2 = !n(ri - r:) - Av, 

(4) 
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Table I. Experimental results of the metallographic observations 

21 

Group 1 Group 2 Group 3 Group 4 

Cf 0.4776 0.4882 0.4730 0.5646 
E(a) 0.0446 0.02684 0.0340 0.02855 
D(a) 0.0050 0.0044 0.0030 0.0040 

N 1289 6031 2872 5791 
D(N) Experimental 349 2115 634 1883 

Theoretical 451 2052 1036 1372 

E(a) and D(a) are the mean value and variance of the particle radius, and N is the 
mean number of particles in unit volume; D(N) is the variance of the number of particles 
in unit volume. The last row in Table 1 gives the theoretical results predicted by eq. (1). 

Sincetheevent{r,oAvZ,...,rkoAvk;rl<r2<... < rk} is equivalent to the event {i = 0, v, ; 
i 2 1, Av,; i = 0, v,; i > 1, Av,;. . . ; i > 1, Avk} we obtain the probability 

P{r,oAv,,r20Avz ,..., r,oAv,;r,<r,< . ..Grk) 

=P{i=O,v,;i~l,Av,;i=O,v,;i~l,Av,;...;i~l,Av,} 

= P(i = 0, v,)P(i 2 1, Av,) . . . P(i = 0, vL)P(i 2 1, Av,). (5) 

Substitution of eq. (1) into eq. (5) yields 

P{r,EAv,,r,oAv, ,..., rkEAvk;rl~rZ~r,~...~rk} 

= fi (1 -b$r[, -(I _i&~A”i], (6) 

i=l 

where m is the maximum packing number in unit volume, and is given by 

m = 0.74/($ra’). (7) 

Under the condition that there is an inclusion at the origin, the probability in eq. (6) becomes 

P{r,oAv,,r,oAv, ,..., r,EAv,;r,<r,<...<r,)l(i=O,v,)} 

The conditional probability density function of the k nearest positions can be derived by using 
eq. (8), and is given by 

f(fI,r2,...,rk)= 
lim P{r, E Av,, r2 E Av2, . . . , rk E Av,; r, G r2 < . . . Q rk)l (i = 0, vO)> 

max)Avil+O Av, Av, . . . Av, 

If the inclusions are uniformly distributed in the matrix, eq. (9) becomes 

.,rk)= -mklogk 
N 

( > 

jnm(ri - w 
f(r,,r2,. . l-- 

m 

Therefore, the probability density function of the nearest neighbor is determined by 

f(r,)= -m *og(* -!!)(I -!!>,.~r’~~3), 

(9) 

(10) 

(11) 

from which the probability density function of the nearest distance between two inclusions can be 
obtained through 

f(h)= 2n s s d@ ‘f(r,)r:sin 0 d8 = -4xmrflog 1 -E 
0 0 

( m)(l -q+@'-"', (12) 
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Fig. 2. Schematic of the material element. 
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Fig. 3. The mean value of the maximum stress concen- 
tration factor. 

which will be used to derive the distribution function of the maximum stress concentration factor 
by considering the interaction between the nearest inclusions. 

To check the assumption of eq. (I), quantitative metallographic observation experiments have 
been done on cast iron. Our attention focuses on the numerical distribution and size distribution 
of graphite particles. The results are shown in Table 1. 

3. THE STATISTICAL PROPERTY OF THE MAXIMUM STRESS CONCENTRATION 
FACTOR AND THE STRENGTH DISTRIBUTION OF BRITTLE MATERIALS WITH 

A HIGH CONCENTRATION OF CAVITIES 

Brittle materials with a high concentration of cavities are studied in this paper, an element of 
which is shown in Fig. 2. 

The main aim of this research is to obtain the maximum stress concentration factor, which 
is a random variable. Since it is impossible to derive the solution by considering all the interactions 
among cavities, the following approximate procedure will be adopted. (a) A typical region which 
contains k cavities is taken into account, and only these k cavities are assumed to exist in the 
infinite matrix. The effect of all surrounding cavities is reflected by the average stress (a,) in the 
matrix, by which the k cavities are loaded instead of 0”. (b) The solution of an infinite matrix 
containing k cavities is derived. (c) The statistical property of the maximum stress concentration 
factor is obtained based on the above discussion. When the region Q contains only one cavity, the 
maximum stress concentration factor can be easily obtained and denoted as the first-order 
approximation, when two cavities are taken into account, the second-order approximation is 
obtained, etc. 

3.1. The jirst -order approximation 

Wang et al. [2] have obtained the average stress in the matrix containing a random distribution 
of cavities, which is given by 

(13) 

where ai is the external stress field. Under equal triaxial tension, the maximum stress is given by 

A 

amaX = 3( 1 - Cf) 
a”kk. (14) 
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Fig. 4. The standard deviation of the maximum stress concentration factor. 

If Poisson’s ratio equals 0.25, A equals 1.5. Therefore* for the first-order approximation, the 
maximum stress concentration factor is 

1.5 s=-, 
1 - c, 

(15) 

which is shown in Fig. 3 versus the volume fraction C, of cavities. 

3.2. The second-order a~~~~xirn~~~~~ 
To obtain the second-order approximation, one has to derive the solution of an infinity 

containing two cavities, Based on the finite element solution obtained by Rodin and Hwang (private 
communication), the maximum stress can be expressed as 

(16) 

where &/a) is the infinite stress concentration factor containing two cavities, and r is the distance 
between two cavity centers. Since r and tl are random variables, the maximum stress LT,, is also 
a random variable. The mean vdue and standard deviation are derived as follows. 

If the probability density function of each cavity radius is assumed to kf(a), by combining 
eq, (12), the joint probability density function of 1” and a is given by 

_f@, a) =f@ la)“!-(a) = -47rmryp2) log 1 -F 
( J(, IV>‘““‘-““‘. 

Thus, the average value of the rna~irn~ stress concentration factor is determined by 

-E,*og( I - &) 

x(1 -~~-~-F(l-~~~~YZn(Y)dY~ Cl@ 

in which the relations 413 na3m = 0.74, N = C’/(4/3aa3) and Y = r/a are used. The second-order 
moment is given by 

E(P) = fl9) 
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By combining eqs (18) and (19) the standard deviation is given by 

J[W)l = Jbw2) - E2Wl. (20) 
When the Poisson’s ratio equals 0.25, the mean value and the standard deviation of the maximum 
stress concentration factor are as shown in Figs 3 and 4, respectively. 

According to the calculated results, we can conclude that: (a) to calculate the maximum stress 
concentration, or to analyse the strength distribution of brittle material with cavities, one has to 
consider the interaction between the nearest cavities, even for the case with a small concentration 
of cavities; (b) the standard deviation of the maximum stress concentration factor increases rapidly 
with increasing volume fraction of cavities, which may be the main cause why the strength of brittle 
materials has a widely scattered distribution. 

4. THE STRENGTH DISTRIBUTION FUNCTION 

Based on the distribution function of the maximum stress concentration factor obtained above, 
the strength distribution function can be derived by using the weakest-link hypothesis. If the failure 
probability P of a single cavity is denoted by 

P = P,(Sa, 2 (T<,), (21) 

where S is the maximum stress concentration factor and cc7 is the critical failure stress, the failure 
probability of volume V, which contains NV cavities, is given 

p I = 1 - ( 1 - p ),y 

Usually, NV is quite large and P is rather small, whereas NVP 
(22) becomes 

P, = I - p, [(l - P)’ yp 

= 1 - exp( -NVP). 

by 

(22) 

is always finite. In such cases, eq. 

(23) 

If the cavities are distributed non-uniformly in the matrix, the failure probability is given by 

where A is the numerical density function introduced above. 

5. CONCLUDING REMARKS 

In this paper, the statistical properties of the maximum stress concentration factor are obtained 
for brittle materials with a high concentration of cavities. Through the above analysis, the main 
results can be concluded as follows. 

(1) The binomial distribution function is used to describe the numerical distribution of 
cavities, through which the position distribution function of the k nearest cavities to a reference 
cavity is obtained. Since the number density function ,J is introduced, this model can be used to 
describe non-uniform distributions of inclusions. 

(2) The mean value of the maximum stress concentration factor is obtained by considering 
not only the far field interactions of cavities but also the interaction between the nearest two voids, 
and it is found that the local field fluctuation contributes greatly to the stress concentration. 

(3) The standard deviation of the maximum stress concentration factor is quite large, and 
increases rapidly with increasing volume fraction of cavities. This may be one of the most important 
factors for explaining the wide scattered property of strength. If the interactions among cavities 
are neglected and we further assume that defects in brittle materials are spherical voids and the 
size of each void is so small that the whole specimen can be treated as infinite, the strength does 
not scatter at all. However, according to this investigation, the maximum stress concentration 
factor has a very large scattered distribution; therefore the strength must also have a large scattered 
distribution. 



Strength distribution of brittle materials 31 

REFERENCES 

[I] R. Arone, Probabilistic fracture criterion for brittle body under triaxial load. Engng Fracture Mech. 32, 249 (1989). 
[2] Biao Wang, D. F. Wang and D. Wang, Probability fracture mechanics of brittle materials with randomly distributed 

defects under multi-axial states of stress. Engng Fracture Mech. 36, 105 (1990). 
[3] T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. 

Acfa Metall. 21, 571 (1973). 
[4] G. P. Tandon and G. J. Weng, Stress distribution in and around spheroidal inclusions and voids at finite concentration. 

I. appl. Mech. 53, 511 (1986). 
[5] J. J. McCoy and M. J. Beran, On the effective thermal conductivity of a random suspension of spheres. Int. J. Engng 

Sci. 14, 7 (1976). 
[6] B. Wang, D. F. Wang and D. Wang, An investigation of elastic field created by randomly distributed inclusions. In!. 

J. Solids Structures 25, 1457 (1989). 
[7] R. Hercxynski, Distribution function for random distribution of spheres. Nature 255, 540 (1975). 
[8] Biao Wang, A general theory on media with randomly distribution inclusions. J. uppl. Mech. (to lx published). 

(Received 29 August 1991) 


