
Engineering Fracfure Mechanics Vol. 38, No. Z/3, pp. 207-214, 1991 0013-7944/91 s3.00 + 0.00 
Printed in Great Britain. 0 1991 Pergamon Press pk. 

THE CRACK-BRIDGING MODEL WITH THE 
CONSIDERATION OF RESIDUAL STRESS IN 

PARTICULATE-REINFORCED CERAMICS 

WANG BIAO,t LIU YU-LAN,? YU SHOU-WEN and HWANG KEH-CHIH 

Department of Engineering Mechanics, Tsinghua University, Beijing, China 

Ah&act-The crack-bridging model with the consideration of residual stress in particulate- 
reinforced ceramics is presented. The compressive residual stress in the matrix is obtained through 
microstructural analysis. In this paper, the bridging particles are treated as randomly distributed 
discrete springs, and the bridging stress distribution with the consideration of residual stress is 
derived. A rough estimation on toughening in Al,O,/Al composites gives reasonable results. 

INTRODUCTION 

THE FRACTURE toughness of ceramics can be greatly enhanced by dispersed ductile metal particles. 
This phenomenon can be comprehended by the mechanism of crack-bridging. The crack-bridging 
model presumes that the faces of an advancing crack in the ceramic are pinned together by intact 
particles for some distance behind the crack tip, reducing the crack-tip stress intensity that would 
otherwise occur. Rose[l] and Budiansky et al.[2] treated the bridging particles as a continuous 
distribution of spring and investigated the effect of these particles on the toughness. Along such 
a way, it is difficult to consider the effect of residual stress which is created by the misfit of thermal 
expansion coefficient between metal inclusions and the matrix. Sigl et a/.[31 presented some 
observations in WC/Co and A&O,/Al composites, and the presence of crack bridging was 
confirmed. But they found that the level of toughening predicted was appreciably less than the 
measured toughening. The disparity can be partially due to the effect of residual stress. The present 
investigation attempts to incorporate the residual stress in the crack-bridging model. The bridging 
particles are treated as randomly distributed discrete springs. It is found that the compressive 
residual stress in the matrix has a great effect on toughening. 

CALCULATION OF RESIDUAL STRESS 

The composite considered consists of a ceramic matrix containing a uniform distribution of 
inclusions. Since in many of the composite systems of interest, the inclusions have a large thermal 
expansion coefficient than the matrix, residual tension thus exist in the inclusions and residual 
compression in the ceramic when the composite is cooled. The average residual stress within an 
inclusion or in the matrix can be derived as follows: 

Cf(al) + (1 - C,)(a”) = 0 (11 

where, C, is the volume fraction of inclusions, and (a’), (o”) are the average residual stresses 
in the inclusion and matrix, respectively. Equation (1) means that the residual stress is self- 
equilibrium. In order to establish the relation between (a’) and (cP), it is assumed that, 
every single inclusion with a misfitting strain or is in the shape of a sphere, and is loaded by (o”) 
(Fig. 1). 

This assumption is very similar to the self-consistent approach. To obtain the average stress 
within an inclusion, one can use (a”) to reflect the influence of the other inclusions, just like in 
self-consistent approach, the effective moduli are used. The next step is to solve a single inclusion 
problem under the coupled actions of external stress field (a”) and the misfitting strain cr. This 
solution has derived by Wang[4] as follows: 

(I+D:B’):(a’)=(a”)+D:6r (21 

tPresent address: School of Astronautics, Harbin Institute of Technology, Harbin, China. 

EFM 18-2/3-O 207 



208 WANG BIAO et al. 

misfitting strain eT 

Fig. 1. A spherical inclusion under [u”] and [ET. 

where I is the identity tensor, and 

D,, = D, E,$ + Dz E$, 

B:,mn = B t E.&n, + & %n, 
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Eitt = i(bikdj/ + Sitsjk>, E;,c, = Q%,, (7) 

E,,,, G,, ym are Young’s modulus, shear modulus and Poisson ratio of the matrix, and E, G, y are 
the corresponding elastic constants of the inclusion. 

Substitution of eq. (1) into eq. (2) gives 

(g’) = (1 - C,)[I + (1 - C/)D : B’j-’ : D : cT (8) 

(d’)= -C,[I+(l -C,)D:B’]:D:cT. (9) 

According to the contraction rule of the basic tensors E’, E2, i.e. 

E’ : E’ = E’, E’ : E2 = E2 : E’ = E2, E2 : E2 = 3E2, (10) 

one obtains 

where 

(a’)=(1 -C,)[HlDlE’+(HlD2+H2Dl+3H2D2)E2]:~T (11) 

(d’)= -C,[HlDlE’+(H,D2+H2D,+3H2D2)E2]xT (12) 

HI = 
I 

1 + (1 - C,M7 - 5Y,) 
(13) 

H-- 
(1 - C,)[BI(5Y, + 1) + 1082U + Y,)l 

2- [l +p’(l -C,)(7-5%J12+3(l -C,)[l +P1(1 -C,)(7-5Y,)lW’(5Y,+ 1)+ lW2U +%?I)1 

B1=$- l)/(l -IL), B,=$-%)/(l -Ym). (14) 

For composites whose constituents have different thermal expansion coefficients, the misfitting 
strain can be expressed as 

ci= (u -u,) AT = AaAT, (15) 
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where ii = 11,22,33 (no summation), and the other components are zero, a, a,,, are thermal 
expansion coefficient of inclusions and matrix, respectively. AT is the cooling range. Substitution 
of eq. (15) into eqs (11) and (12) gives 

(~~)=(l-Cf)AaAT[H,D,+3(H,D,+H,D,+3H,D,)] 

(a:) = -C’Aa AT[H,D, + 3(H,D, + H,D, + 3H,D,)] 

where ii = 11,22,33 (no summation). 

(16) 

(17) 

For A&O,/Al composite system, the material properties are 

E,,, = 20 GPa, y,,, = 0.2, E = 70 GPa, y = 0.33 

AU = 1.1 x lo-‘, AT = 5OO”C, C’= 0.2. (18) 

Substitution of the material properties (18) into eqs (16) and (17) gives 

(0:) = 754.58 MPa, (ay) = - 188.64 MPa. (19) 

CALCULATION OF BRIDGING STRESS 

The randomly distributed inclusions can be considered as springs which restrict the crack 
opening (Fig. 2). The bridging stress means the stress in the spring. For the case of linear springs 
we adopt the notation of Rose[l] here, and write the spring stress, or bridging stress as 

kE u 
a(x) = 2 

14 

in terms of the crack-face displacement U, Young’s modulus Em, Poisson’s ratio yrn and a spring 
stiffness coefficient k. 

According to Appendix B, the reduction of the crack-face displacement due to the action of 
the residual stress in the matrix is 

where NL is the number of inclusions in (0, L), d is the average diameter of the inclusion and xi 
is the center of the i-th inclusion. Since NL and Xi are random variables and u2 is also a random 
variable. The reduction of the crack-face displacement due to the action of the bridging stress is 

NL 4(1 -?;) x/+W) 
u3= 1 

i=, @n s x, - co?) 

o(x’)log(~) dx’ 

Ai!, 4(yi:)O(Xi) d log(w) (22) 

where a(~,) is the bridging stress of the i-th inclusion. In the same reason, u3 is also a random 
variable. In order to derive the average values of u2 and u3, the following assumptions are 
introduced. 

Assumptions: 
(1) On the interval [1,_, , Z,], the number of inclusions obeys the Poisson distribution with 

parameter 2, i.e. for n = 0, 1, 2, . . . . 

(23) 

x-a 
Fig. 2. A schematic illustrating the bridging process. 
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where Ai = li - Ii_, , P,[N,, = n] is the probability of NAi = n, and ;Z means the average number of 
inclusions in unit length. 

(2) (Nbi) has independent increments on the intervals with a restriction for the intersection 
of them, i.e. for Ai = Al, 62, . . . , Ak 

k 

PSNA, = n, , N,, = n,, . . . , NM = nk] = n P,[NAi = nil. (24) 
i=l 

(3) PJN, = 0] = 1, which means that there is no inclusion at x = 0. The random terms in eqs 
(21) and (22) can be expressed as 

UP = 5 U(X, Xi) (25) 
i-l 

where u(x, xi) is the function of x and xi. The average up can be derived with the aid of above 
assumptions. 

(u,>= f P,WL=~I 
?I=0 ( 

,$,4x,xJ~N~=n) 

=~,(~!)~i(~o‘~dx>‘e~p(-~o~~dx)n(~o~~dx)~’~o‘i~(x,x~)dx~ 

s 

L 
= 

0 

s I.. 

= Au (x, xi) dxj . 
0 

In derivation of eq. (26), the probability 
i=l,2..., NL takes the form 

(26) 

density function of the independent random variable xi, 

Ptxi) = (, Jo 1 dx) n(xi) (27) 

which is the consequence of the assumptions. 
With the aid of eq. (26), the crack-face displacement equation can be expressed as 

where K is the stress intensity factor. If the inclusions are uniformly distributed, A is a constant 
m, which means the average number of inclusions in unit length. One can approximately obtain 

C,=md (29) 

where C, is the volume fraction of inclusions. Substitution of eq. (29) into eq. (28) yields 

(1 -y!&(x) =4U -Y:)K& _4(1 -r*) 
kE -%lJ2n 

rrE,m CfloL o(xWg($$) dx’ 

Jo o ($$)dx’, ? g (30) 

or in non-dimensional form this is 

g(~)+C,~;&)log($$)df+(l-C,)G(~;)~;log($+)d~=$ (31) 

where 

4kx 4kx ’ fJ 4kL 
s=-, t=-, <G> 

G(a!) = -3 
It g=K$’ K@Z 

a =-. 
Ir II 
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Fig. 3. Non-dimensional bridging stress distribution with Fig. 4. Non-~mensional bridging stress distribution with 
a = 5, G(a;) = 0. a = 5, C,= 0.2. 

If C, = 1, which correspond to the continuous distribution of springs, eq. (3 1) becomes the same 
form as the one derived by Bu~ansky et a1.[2]. A similar procedure to Budiansky ef al. is used 
to solve the integral eq. (31), which is described in detail in Appendix A. Under the different volume 
fraction of inclusions and the different residual stress, the non-dimensional bridging stress 
distribution is obtained, respectively, and shown in Figs 3 and 4. 

CALCULATION OF TOUGHENING 

The compressive residual stress in the matrix (a:) and the bridging stress G(X) contribute 
to the toughening of ceramics. The inclusions can be treated as a random distribution of 
concentrated forces, which can reduce the stress intensity factor AK, that follows as 

(32) 

where a(~,) is the bridging stress of the i-th inclusion. The contribution of the compressive residual 
stress in the matrix is 

AK,= z. 
Js 

L <Ot> dx _ x’+(di2)mdx 

x 0 & Jf 

2 2 

ni-.l xi-(d/2) fi 

According to eq. (26), the average values of AK, and AK, can be derived as 

(AK,) = - 
Js 

L ad 1- a(x) dx 

o J;; 

The total toughening effect can be obtained as 

AK = (AK, > + (AK2 > 

(33) 

(34) 

(35) 

(36) 
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If the inclusions are uniformly distributed, i.e. 1 is a constant m, 

(37) 

Since available experimental information is very limited, a rough estimation of the toughening 
effect of Al,Os/Al composite system is given as follows. The bridging stress IJ(X) is taken as a 
constant, and equals to the yield stress fly of aluminum particles, which may correspond to 
rigid-plastic springs. The eq. (37) becomes 

J2L AK=-2- & [cfgy- (1 - c,Kdx (38) 

By using the experimental results given by Sigl et a1.[3], i.e. 

L =80 pm, C,= 0.2, a,=70 MPa, 

substitution of eq. (19) into eq. (38) yields 

AK = - 2.354 MPa,/& 

whereas the experimental result is 

AK, = - 5.4 MPa&. 

(39) 

(40) 

(41) 

CONCLUDING REMARKS 

The present research attempts to develop a crack-bridging model with the consideration of 
residual stress. The metal particles in ceramics are treated as randomly distributed discrete springs. 
In case of a uniform distribution of particles, the average residual stress distribution is derived, 
and the effect of particulate volume fraction and residual stress on toughening is investigated. 
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APPENDIX A: INTEGRAL-EQUATION SOLUTION 

A similar method to Budiansky et a/.[21 is used to derive the solution of eq. (3 1). A convenient set-up for solving the 
integral eq. (31) is obtained by differentiation, which gives 

g’s + fc, 

If we now let 

g(s)=H(s) 

then A(1) reduces to 

WI 

ZsH(s) - H(s) + C,s 



Crack-bridging model 213 

A neat way to proceed is to write 

H(s)=A f +f(.r) 
0 

(A4) 

where A = &g(a) and f(0) =f(a) = 0. Then 

A c + C,)s + y log 7 1 + 2.$‘(s) -f(s) + C/s s Oaf;df=S-(l-C,)sG 2,f+,fl [ a 3 ni$&$ I], (A5) 

and with 

s =4(1 -cos8), A6) 

the Fourier-expansion 

is appropriate. Since 

f = i a,sin(nO) 
n-1 

(A7) 

s "f 0) 
- dt = n i a, cos(n@, 

0 t-s n=I 
eq. (A5) becomes 

-i 
a,sinnO +‘C a(1 -cos0) i a,cosne 

2 f n-1 

=$i-case)-$-cose)(l-c,)G 2&+J;;sinBlog 
[ 2 (S)] 

If we now multiply (AS) by sin(&) and integrate over (0, n), we get 

-N 
C,,,A -l 1 DMa.=B,,, 

where 
‘.=I 

Cm = (1 + aC,)F, + $ T, 

1 

{- 

(m odd) 
F,= m m 

-~ (m even) 
Wl*-1 

D,, = 

m<n 

m=n 

m > n 

P_= 

(m + n odd) 

) sin(m8) d0 

B,,, = [a - 2a&(l - C,)G]F, - fl(l - C,)GX, 
2fi 

x,= “(1- I 0 

cos Qu2 lo{: T s!~r~~~) sin(m0) de. 

The substitution of (A4) into the undifferential integral eq. (31), and its assertion at the point s = a leads to 

(‘48) 

(A9) 

(AlO) 

P,,A + C&r i P,a,=Z 
“=I 

(All) 
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F 

P 

Fig. Bl. Schematic of a semi-infinite plane crack. 

where 

P, = L + f C/$(2 log 2 + 1) 
& 

Z = & - (1 - C,)aG 

Eqs (AlO) and (All ) constitute N + 1 linear equations for A and a, (n = 1,2. , N), and can be solved numerically. 

APPENDIX B: THE OPENING DISPLACEMENT CREATED BY A CONCENTRATED 
FORCE ON THE CRACK SURFACE 

According to the displacement formula (Tade et al.[5]), the crack-face displacement created by a concentrated force 
on the crack surface can be expressed as 

where 
for plane stress 

for plane stress 
(B2) 

K,p and K,r are the stress intensity factors created by the concentrated force P and the imaginary force F, respectively. 
According to Tada et a@], for a semi-infinite plane crack, one knows 

where 

Substitution of eq. (B3) into eq. (Bl) yields 

Ax - x’. (B4) 
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