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Abstract-Due to the presence of structural defects, the strength of brittle material has a substantial 
dispersion. This can be described by Weibull distribution function under uniaxial state of stress. 
The parameters in Weibull distribution function can be obtained through defect mechanics analysis, 
and the existed analyses are neglected in the microdefects interaction. In this paper, the distribution 
function is derived under multi-axial state of stress, and the parameters in it are obtained through 
microscopic analysis considering microdefects interaction. 

INTRODUCTION 

BRITTLE materials are characterized by a substantial dispersion in the fracture strength. This is due 
to the presence of structural defects and to the dominant role that these defects play in the failure 
process. This circumstance implies that the size, shape, orientation and the distribution of defects 
must be included to explain their rupture behavior. 

A statistical ~st~bution function of strength proposed by Weibull revealed itself as a useful 
tool in correlating experimental results under uniaxial states of stress. It takes the form 

F(a)=l-exp 
0 m 

[ 01 - a, (1) 

where co is a scale parameter, m is a shape parameter and 0 is the fracture strength. Similarily, 
when brittle material is loaded by multi-axial stress, the distribution function of strength is[l], 

F(&$)=l-exp 
[ 01 - A s’ (2) 

where, the applied stress state is defined by a stress vector ei = A@/, Iz is the stress intensity, tii defines 
the stress mode, 

Equations (1) and (2) are phenomenological models, and the parameters in them can be 
obtained through experiments. Quite a few authors try to derive these parameters by microstructure 
analysis. In this paper, the defects in brittle materials are idealized as random distributed 
microcracks. The stress field created by this group of microcracks was first calculated, then the 
distribution function of fracture strength for multi-axial states of stress was derived using maximum 
statistics. The difference of mean strength between the case of neglecting crack interaction and the 
case of considering crack interaction is calculated. 

BASIC THEORY 

The brittle material is considered to contain random distributed microcracks and loaded by 
~2. According to Kunin’s discussion[2J, the stress perturbation created by the a-th crack is 

AaJx) = 
s 

S,,,(x - ~‘)E(u/J,) dn(x’) (3) 
n 

where nk is the unit normal vector of crack surface and U, is the opening of the crack. Symbol E( ) 
denotes the mean value with respect to crack orientation. S&X - x’) is the fourth order symmetric 
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tensor, and it’s components are shown in Appendix I. The stress perturbation created by N 
microcracks is, 

Aa@) = i ACT 
a=I 

N 
=-- 

X1 
S,,(x - x’)E(n, ui) dL-2. (4) 

a=1 n 

The mean stress perturbation in the matrix is[3] 

(AcQ(x)) = - 
I I 

P (x) S,,,(x - x’)E(n,u,) 52 du(x), (5) 
(‘ -- rg n 

where V, is the region in which only one crack can exist and p(x) is the crack density. If the cracks 
are uniformly distributed, p(x) = m (const). In such case, it yields, 

(A@@) = --“IEtn,u,) s, do(x) [o &,(x - x’) da. (6) 

If the crack is a penny shape with it’s radius, V0 a sphere. From[3], one obtains, 

6_.,dV(x)j* 
S,,,(x - x’) dR = na*D,, (7 

where 

where yO, Go are the Poisson ratio and shear modulus of the material. Values of Ekk, and E&, are 
shown in the Appendix. 

Substitution of eq. (7) into eq. (6) gives, the mean stress in the matrix. 

of= gii- ~~ff~D~~~E~~~~~~. (9) 

It is assumed that, every crack is loaded by a; with a random distribution of orientation, E(n,ul) 
can be expressed as follows[3] 

E(%&) = Hk,,&$*). (10) 

where 

H 
I 

= 3211 - ~:)t5 - i+) 

45(x - Y~)E, 

H 
2 

= _ 16(1 -Y!) 

45(2 - Y,)&’ 

Substitution eq. (IO) into eq. (9) yields, 

where 

1 

“=l -fD,N, 

A2= -(I---fDlH,)*+3(l -fD,H,)(D,H,+D,H,+30,N,y 
(13) 

where f = pn<a3>. 
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2. A ssaii~?i~a~ theory for the f~ac~~~~ of b~~t~l~ ~t~ri~ls 

A large number of experiments revealed that the fracture strength of brittle materials under 
uniaxial state of stress obeys the Weibull distribution. Assuming that the fracture of brittle 
materials depend on the group of microcracks discussed above, and the probability of failure of 
brittle material for a given state of stress coincides with the probability that it contains at least one 
crack at, or beyond, the critical state, as a consequence of extremum distribution theory[4], the 
strength distribution function for a single crack is, 

g&J = G&l - GR (14) 

where C, a, k are constants of material. 
According to eq. (121, the mean stress in a brittle solid subjected to uniaxial state of stress 

is, 

(6) = (6!2) = A,,&&, (13 

<a% > = && 6 

The other components are zero. The stress state is completely defined by, 

@j = nJt, 

where ei is the stress mode, /z is the stress intensity, and, 

(161 

Substitution of eq. (17) into eq. (14) yields, 
k 

where C’ = CA -R, E’ = AE. 

= C’(J. - &yk (18) 

From eq. (18), it is found that C’, E’ not only depend on the material, but also depend on the 
stress mode. According to eq. (12). It is known that, if a b&tie solid is subjected to triple state 
of stress, the mean stress in the matrix is also a triple state of stress. Therefore, we can consider 
that eq. (18) is suitable for any triple state of stress, and only with different parameters C’, E’. 
According to extremum statistics[4], the strength distribution function, as a consequence of eq. (181, 
is 

F(&$)= 1-exp 
R 2e c 01 - - 
B 

(19) 

where, p depends on the stress mode $. 
In conclusion, we have testified that the generalized Weib~l dist~bution function equation 

(19) is correct for a multi-axial state of stress. 
Assumption: the fracture criterion for a single crack is, 

s<ss* (201 

where S* is the critical value of S for a single crack. 
We can assume that S = A:@($,) without losing generality, RI is the internal stress intensity 

for a microcra~k, $r is the internal stress mode. 
If the probability PR(dR) that the condition S 3 S* occurs for at least one crack having unit 

normal vector inside the solid angle da, can be written, 

P,(dS-2) = P(S) dR. (21) 

The probability P&da) of the opposite occurrence (S < S* for every crack with unit normal vector 
in dR) will be, 
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So, the probability of S < S* for all cracks ~probability of survival) is obtained by the Weakest 
Link Theory, 

P,=exp[ -//(S,d&?]. (231 

and, therefore, the probability of rupture is 

PR= I -ex~[-~*P(S)dR]. (24) 

Equation (24) expresses a general form of the rupture probability function, which is derived from 
the microstructure theory. The form of P(s), determining in its turn the functional form of PR, 
can be derived from theoretical arguments, based on its physical interpretation, or from the 
experimental macroscopic evidence. The second way of reasoning is followed here and a 
distribution, taking the form as eq. f19), is assumed to fit, with reasonable accuracy, the 
experimental rest&s for at least a particular stress state. The following work of this paper is to 
derive the value of parameter fl through combining eq. (19) and eq. (24). 

If eq. (19) is valid for a stress mode &,, i.e. 

F(E,,,II/,)= I-exp 
[ 

- * 
%l 

0 1 PO 
where, I, is the external stress intensity. By comparing eq. (25) with eq. (24) we obtain, 

where, SO = J.&C&, llOi is the internal stress intensity of a single crack, which is associated to the 
external field (A,, &). Let 

The solution of eq. (26) is obtained as, 

PC%) = 

So, if the internal stress field is 

S=,$@,=J~Bao, B+, 
0 

for any state of stress, then, 

(27) 

(28) 

P(S) = 
S”O 

BO 2% s (2% 
B$' dft 

n 

where, ,I0 is the external stress intensity for this state of stress. By substituting eq. (29) into eq. (24) 
and comparing with eq. (I 9), one obtains, 

(3oj 
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Fig. 1. The mean stress ~;;/a& in the matrix. Fig. 2. The mean stress u;I/u’$ in the matrix. 

By substituting 

in eq. (30), the form of parameter p(e) is obtained. 
So, the expectation of strength for multi-axial states of stress is, 

The variance is, 

l+$. 
0 > 

(31) 

(32) 

where r is the gamma function. 

CALCULATING RESULTS AND DISCUSSION 

(1) The calculation of stress field in a cracked solid. The interesting problem is to calculate 
the effective field, which a single crack, in a brittle solid with random crack, is subjected to. 
According to eq. (15), the results are plotted vs m (a') in Figs. 1 and 2. 

(2) The difference of mean strength between the case of neglecting crack interaction and the 
case of considering crack interaction. 

R( x 100%) = W)--W*) 

E(A) 

x 100o/ 0 (33) 

where, E(1), E@*) are the expectations of strength with neglecting and considering crack 
interactions, respectively. If the difference of the stress modes for two cases is neglected and 
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Fig. 3. The error of prediction for mean strength, neglecting crack interaction. 
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recalling that & = I.,,, , i,, = i, for the case of neglecting the crack interactions, 

R=[&& 100%. (34) 

In the case of equibiaxial tension (a,, = ojj = O), the ratio R is plotted vs ~?(a’) in Fig. 3. 
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APPENDIX 

S,,,,(x - x’) = G, - (+ K,,, + (4, - ~+%, - a, Ef,,, - ad%, - as Ei,,, - +%. 

E,;k, = f@,, S), + 6,,6,, 1, q,, = O,$,,. 

E;,,, = b,,n,n,, Et, = n,n,R,,. 

E:,,,=:(n,n,6,,+n,n,6,~+n,n,ci,,+n,,1,6,,. 

E” = n ,I n II Vi, / / I i 

(Al) 
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