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Abstract
I this paper, the clastic ficld in a solid witl randomly disteibiaed defects is derived.
These defects are composed of cavities and microcracks, whose locations, orientation and
size are random variables. The Random Point Field Model is proposed to describe the
randoni defects, and the basic equations Jor clastic field in a random defect medium are
developed Twoexamples are studied in detail. One is a solid with random microcracks and

the other is a solid with ellipsoidal cavities.

I. Introduction

Engincering material contains a variety of defects, and these delects play a dominant role in
material behaviour, particularly for brittle materials. Therefore, it is very important to study the
clfect of these defeets in material, Budiansky ctet! caleutated the clastic moduli of a cracked solid
using the self-consistent method. Whereas it is not enough to consider only the e{fect of microcracks
on clastic moduli. the more essential problem may be how these defects influence the stress
distribution in a material. The present paper attempts to study this problem by introducing the
Random Point Field Modcl. The basic equations {or elastic field in a random defect medium are
developed. Two examples are studied in detail. One is a solid with random microcracks, and the

othier is a solid with ellipsoidal cavitics.
II. Basic Theory

According to Ref [2] the basic equations of elastic {ield in an inhomogencous material are

Eiy = €¥I—IV-[\’UH(X—x/)cilmnen;ndv(XI) (21)
cru=a?,—I Siyn(x=xX")BiimaOmnd v (x) 2.2)
v .
where

K= —-’}i‘(ataxGu +348,Gx +0:0:Gi-+0,0:.Gar) (2.3)
Sim=Cu0(x—x") = C¥0n K s n2aC¥u1 2.4
‘ C;lm-='cllmn(x/) “‘C)'lm- 2.5)
B:lmn"—-BHmn(x/)’—B:’lmn (2.6)
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Mand B ®are clastic modulus

ymn

where G, is the Green's function for an unbounded medium. G

iy

and B

complianee tensor of the overall material, respectively €75 and  o?, are the homogencous

tensor and compliance (ensor of maltriy, respectively. G, o ATC clastic modulus tensor and

solutions of matrix. For a random inclusion medium, we can obtain

N,
Cltmn= 2o Climal o1 (2.7)
Arl
Blimu= }:%U:lmnVa(X’) .9
where
1 (x"€ha)
Vu(x’)={ B (2.9
0 (x"€ha)
C:lmn=C:lmn"—C‘:lmn y Ijzlmn:jjilmn'—B}:’lmn (2 . 10)
where /i is the region of the o-th inclusion. G, fand B, ! arc clastic modulus lensor and

complizinee tensor of inclusion.
When the inclusions become cavities, one oblains
C{;...=0. B{“m—)oo (211)
Substituting equations (2.7), (2.8) and (2.11) into cquations (2.1) and (2.2) gives
Ny

giy=¢)y+ ::;Jha Ky (x— x)Climnenndr (x7) (2.12)
N
Oyy=0)~ Zfljlx.. Sim(x~x"efidv (x7) (2.13)

Since the location, orientation and size of inclusion arc random variables, the strain and stress
determiined by cquations (2.12) and (2.13) are randowm field variables.

In what follows, we will consider the limiting transition from the cavity to a crack: considering
aMattened cavity, which occupies a finite simply-connected region I with a smooth boundary: then
cutting along a smooth oriented surface which is bounded by a closed contour 17 which lies
on the boundary of 7 . (Fig. ). X3
Let us choose a local coordinate system at the
pointx’ xZ( xL, %L, x5, such that its xF-uxis
is  directed along the normaln (x”) Let e (x)
be the trunsverse dimension of the Ci‘l\'il) and
xb,, xfbe the coordinates of the points of
intersection ol the  a% -axis with the boundary

of 1. whilext, x%, 50, as ¢ 0. For a fixed

pointx¢v.ilic kernels Ky, 8

'U“nrc smooth,

i’

hounded functions, hence,

J(Ijl-l(x_ x,)c‘i{lmn(“r!,n(”/(x’)
R f 4
ha !

Fig. 1 Schematie of a flattened cavity
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=‘ 1\’”“(X—“X,)C""!(mn’l.mbnde(X,) +0) 2.1
‘a, ) .

I S‘,“(X—X/)G:th(X')—":J Stser(x=x")nbndS(x") +0(¢) (2.15)
ha .Q,, '

where  Q, is the a-th crack surface, and #b arce the unit normal vector of crack surlace and the
opening of the crack, respectively.

"u:bu=-;‘("kbx+ln(h) (2.16)

Substituting cquutions (2.14) and (2.15) into equations (2.12) and (2.13) yields the basic equations of
elastic ficld for a cracked solid,
N,
ey=el, + Y

a=1

[ o K s =X it S (17 (2.17)

N
U‘;:O’?;—ZIQ S;;“(X—*X/)N(ybndS(X/) (2.18)

G=1
Assumptions:
(1) In volume ¥, the number of defects obeys Poisson distribution with parameter A | i.c., lor
m=0,0,2,--

P, [NV=1n]=(ml)“q',/ldV)m- exp[—'(v/ldV] (2,19

where P [N, =m] is the probubility of N, =m and 4 means the mean unmber of defects in unit
volume .
(2) {N,; vl }hasindependentincrementsin regions with a restriction for the interseclion

of them, e, forv=w0v,,u;,""* Vs,

1]
P'[NU‘=7I“ NU:-"—'”z,"" N:/h="k] =H Pr[NU,'=nlJ (2_20)

§=1
According to cquations (2.12), (2.13), (2.17) and (2.18), the field perturbations created by defects
can be represented as
Ny
Ay (x)=3 Al (x =14y $a) (2.21)

=1
wherergis the center ol the a-th defect.  ¢a represents the orientation and size of the a-th defect.

The characteristic function is defined as

M AE[exp(aidig)] (2.22)

where o, is a constant tensor, and the symbol /7 [ ] denotes the average, i 1s the imaginary unit.
Substituling of equation (2.21) into equation {2.22) yields
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N,
M o= I {exp [.ia., 2 At do) |} (2.23)

By using the property of conditional expectation, equation (2.23) becomes

M =P, [Ny=0] + ii[l',['_N,,=m] . E{exp (i ia;,A‘,’,)‘l(N;*ﬂ" )} (2.24€)
a=l

mel

where E [ ] means the average only with respect to defect orientlation and size under the condition
that N,=m. Substituting equations (2.19), (2.20) into equalion (2.24) gives

Ma=exp{| ABloxpGiai 41, =114V (r) } (2.25)

By using the characteristic function, the average of A is obtained as

(A.,>=i"(31\f,4,/aa‘; when as3=0 (2.26)
Substituting of cquation (2.25) into cquation (2.20) yields

<A,,>=j AE[ A j(x—Tay ba)1dV (ra) (2.27)
1 4

where the symbol £ ] in the integrand means the average only with respect Lo the orientation and
size of defects.

I111. An Elastic Body with Randomly Distributed Ellipsoidal Cavities
By taking the last term in cquations (2.12) and (2.13) as the tensor A, and substituting them into

equation (2.27), the average cquatious can be obtained as

= pf A o v’ M 1

<&y 3.1+L'1£[J'ha]\ i (X—x )C}lmnemndV(xl)]dV(ra) 3.1
—?, — 4 . !/ 1

{oyd=0}, J'VAE[II’;S'“:(X xNeldlV (x") ]dV(l'a) (3.2)

If the cavilies are uniformly distributed, A equals a constant #, which means the average number
of cavilies in unit volume.

(1) The average strain within a cavity

Given that x is within the cavity, the intensity function 4 is

I(ra—x) (ruehl)
n (ra € hx)

where fix is the region occupicd by a cuvity with its center at x. Substituting equation (3.3) into
cquation (3.1) gives

arar={ (3.3)

E(el)=—2— (J=<E>1C") {1 uieh: G0

1—-v,
where / is the identity tensor, and v, is the volume fraction of cavities. The tensor P, which was

introduced by Kunin* in studying a single inclusion problem, is shown in Appendix I. < >
denotes the average with respect to the orientation of cllipsoidal cavities.
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(2) The stress concentration around an ellipsoidal cavity
3y the aid of results obtained from the investigation of a single inclusion problem, the stress
congentration is derived as

Ol (N =S, Eel) (3.5

where # is the unit normal vector of the cavity surtace

S n(n) ="1'2_£;,—0'[?0(E3/n—E:nr‘Ehn)
+ A=y (B ~2E ) + E ] (3.6)

where Y ypi~FE?¢ jp1,which depend on the Kronecker delta and on a unit vector, arc shown in
Appendix H, and g5, and  pg are shear modulus and Poisson ratio of the matrix.

(3) Examples '

By using cquations (3.4) und (3.5), the stress concentration around and ellipsoidal cavity in a
solid with unidirectional cavities, or with random orientation cavitics is caleuluted, respectively. The
property of mutrix'is: £,=2.76GPa, 1,=0.35, the aspect ratio @ =0.1,1,10. The results for
unidirectional cavitics are shown in Figs. 2— 11, where v,=0 means the solution of a single cavity
problem. From the results, itis found that the stress concentration is enhanced in the case of v, = 0.4.
When the ortentation of cavitics is random, the result is shown in Table |1,

- 0 ., 0
E(ux) £(ay,) )
U5 1 0'?33
20 !
a=0.1 . a=0.1

0.0

1o \ v, =0.4
-1.9
()] " 7 iy
TR 40 o 8o 204060 B
Fig. 2 Vi stress concentration around an Fig.3. The stress concentration around an
unidirectional cavity unidirectional cavity
.0
E(0:) ()
L]
73 9y
8.0 0.04
03t
4.0 0.03
2-0L 0.02
0.0b 0.01
—p &
- N A 0.0 ' - Ly S
R (R ) I TR R
Fig. 4 The stress concentration aroud an Fig. 5 The stress concentration around an

unidirectional cavity unidirectional cavity
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Fig. 12 Schematic of an ellipsoidal cavity
IV. An Elastic Body with Randomly Distributed Penney Shaped Cracks

By taking the last term in equations (2.17). (2.18) as the tensor A, and substituting them o
equation (2.27), the cquations for average strain and stress in a cracked solid are obtained as

<e‘,>=e$,+jyu:[j 1\';/»z(x—x’)C“.‘;mnmmbmdS(x’)]dV(ra) 4.1
£,

<Gu> =0?J_IV&E[,[ SU“(X'—X’)YI“-[)()C{S(X’) ]dV(ra) (4_2)

£,
Assumption: [ theaverage stressin matrix is {o¥;> , every crack is independent, and loaded
by <o¥> . By using the assumption, the opening ofa crack can be obtained through the solution of
an infinity containing a single crack. For simplicity, o is taken in the form as

<”(mbn)>=—51‘7J‘u—;.(”"lbll+”nbm>dS (4.3)

oV

where S is the arca of the crack surface. In local coordinate system connected o the crack, one
obtains

<"(mlju‘,>=F£n?q<U’qu> (4.4)
where
FL — 16 ( 11— )’(2) )

_ 8(1—9p3)
= = 8 [Mly=L =t F0 8
3333 36,5, @ vore=I"To1a 3, (2 —10)S, ¢

The other components are zero and o is the crack radius.
(1) The average stress in the matrix

Assume that v is in the matrix, which means that there is no crack in a ncighborhood of X, i.c,

0 (Ira—x{<<a)
A(r,,):{ 4.6)

1 others

Substituting equation (4.6) into cquation (4.2) yiclds
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<U’:"1>=[l""SaQ’<E>J7f“021 4.7
where
Digoin=DL a1} mn (4.8)
where
_ 21 7T—5 _ 21y o Syl
D=5 <z, - D= x5 (1.9)
i, The orientation of cracks is random.
In such a case. the average of tensor £is
A iged=I"E yir L7 (4.10)
where
fB2U- DGR
= 1502 — 7905/, @D 41D
RN 111 Sl LRI
Ira= 45(2—719) S, L, @ (4,12)
Substituting equations (4.8) and (4.10) into equation (4.7) gives
<U’,"J>= (Glli‘fjkl‘*’(J'zE:JH)ozl (413
where
S N
U —aS, D (4.14)
G U:F‘l 'l'D]I“g'I‘E‘D:Fz _ -
2T TS, D) - 3L = 1S, D ) (DI 4 Dy + 3D, 175) (4.15)

Under a state of uniaxial loading  o3s . the average stress components in the matrix are shown in

Figs. 13 and 14 versus nda®>.

<al§y/ chr— {Uf{) /08,
3.C. 0,3}
- 0,6
o.of 0,4k
0,2
10 f . . Jmdas \ . N m<a®)
’ g1 0,2 03 0.4 0 0.1 0,2 0.3 0.4
Fig. 13 The average stress in the matrix with FFig. 14 The average stress in the matrix with

microcracks microcracks
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b. All the crack planes are pavallel with the smae plane (¢,.¢,).
[n such a case, subslituting tensor F* into cquation (4.7) gives
E(Ug’g)=(fga/(.l-l'"SuDama'FaL) (4.16)
The other components can also be obtained casily.

(2) The elastic moduli of a cracked solid
It is assumed that the locations o microcracks are uniformely distributed, i.c.

A=n (4,17)
Substituting equation (4.17) into equation (4.1) yiclds
Cepd=el 405 E({nbpd) (4.18)
where £( ) means the average with respect Lo the crack orientation Through cquation (4.18), the
clastic compliance tensor can be expressed as
B* =D ja1 405 L gmnd [ L =08 D <E> )01 m . (4.19

a. The orientation of cracks is random.
Substituting cquation (4.10) into equation (4.19) yiclds

1 1 L 1 1
ne 2 BY L, E, T By+Dy ~ (4.20)

where
B':=-2—La- +nS,G,, Bt= ——EK":—+nS.,(F2G. +F\G,+3F,G,) (4.21)

The results are shown in Fig. 15 and Fig. 16, where the doted line is the result of the self-consistent
method!", and the Young's moduli predicted by both the methods almost coincide with each other.

o5 G /&
1'0' / 0 "0 /(.ro

0.4k .
: N 0,4

U
. 0. .2r
. . A JN e L . . N Nda’)
0 0.1 0.2 0.3 0.4 0 0, o2 03 0.4
Fig. 15 The Young's modulus of a solid with Fig. 16 The shear modulus of a solid with
random criacks random cracks

b. All crack planes are purallel with (e,.c,).
In such a case, the overall material is quasi-isotropic, und

E:: __=1/(1 4 1S 53 ) (1.22)

I [T N ISSNRY OF 29
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Ly=Ly=1I, (4.28)
(%, / 1S oL § 330 (

S N, - =0 = 4.24)
G, ]/(l l L-nSeD a1 tars )

G*,=G, (4,25)

Using the self-consistent method, Hocing!" calculated the elastic moduli numerically, The results
obtained from both the methods are shown in Fig. 17 | where the doted line is  the Hocing's

result.

1.0 -
N
\

S Eh /G

0.6} ~
. <
~
~
0‘4\.
0,2
[
NS
X
L 3 !
0 01 v, 2 0.3 (11;.

Fig. 17 Elastic moduli ol a solid witly unidirectional cracks
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Appendix |
In the coordinate system connected to the ellipsoidixes, the tensor £ has the symmetry of the ellipsoid and

is defined by nine essential components, i.e

PLa =31 401 —avo)ly], Phas =ke(ln=~1y)

Pf’m=‘%"‘[1n'|'111‘1‘(1—3"'0)(11-1-11)] (ALY
where
3 dE 3 4 ____,,__\‘_1,5____#_____.
=g\ ardae T \ G B 5 (AL.2)
Lg==1/[16a11,(1=70)] (A1,3)
A& =y Tt H @) (a=123) (AL.4)

The remaining six tensor components are obtained by i cyclic replacement of the indices 1,2.3.
A

Appendix 1
E}”‘( =-71;~((3.,.(5;1-}-(511(31k)

L’f,,}, =8¢0
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